Foreground maps

From Planck Legacy Archive Wiki
Revision as of 15:44, 11 July 2018 by Jcarron (talk | contribs) (2018 Lensing band powers and likelihood)
Jump to: navigation, search

Astrophysical Components[edit]

Overview[edit]

This section describes the maps of astrophysical components produced from the Planck data. These products are derived from some or all of the nine frequency channel maps described above using different techniques and, in some cases, using other constraints from external data sets. Here we give a brief description of each product and how it is obtained, followed by a description of the FITS file containing the data and associated information. All the details can be found in Planck-2020-A4[1] and Planck-2020-A8[2].

Commander-derived astrophysical foreground maps[edit]

As discussed in detail in Planck-2020-A4[1], the main Planck 2018 frequency sky maps have significantly lower systematic errors than earlier versions. At the same time, these maps are also associated with a significant limitation, in that no robust single detector or detector set maps are available. As described in Planck-2020-A3[3], such maps do not contain the full signal content of the true sky. As a result, only full frequency maps are distributed and used in the 2018 analysis.

For polarization analysis, this is not a significant issue, and the 2018 polarization foreground products therefore supersede the 2015 release in all respects. However, for temperature analysis the lack of single-detector maps strongly limits the ability to extract CO line emission from the data set, and it is also not possible to exclude known detector outliers; see Planck-2015-A10[4] for details. For these reasons, we consider the parametric foreground products from 2015 to represent a more accurate description of the true sky than the corresponding 2018 version. As a result, we do not release parametric temperature foreground products from the 2018 data set, but rather recommend continued usage of the 2015 temperature model. For polarization, we recommend usage of the 2018 model.


Two Commander-based polarization foreground products are provided for the Planck 2018 releaes, namely synchrotron and thermal dust emission. For synchrotron emission, a spatially constant spectral index of β=-3.1 is adopted. For thermal dust emission, the dust temperature is fixed to that derived from the corresponding 2018 intensity analysis, while the spectral index is fitted directly from the polarization measurements, smoothed to 3 degrees FWHM. For both synchrotron and thermal dust emission, we provide results derived from both the full-mission data set, and from the half-mission and odd-even splits.

In addition to the real observations, we also provide 300 end-to-end noise simulations processed through the algorithm with the same spectral parameters as derived from the data for each of the data splits. The filenames of these simulations have the following format:

  • dx12_v3_commander_{synch,dust}_noise_{full,hm1,hm2,oe1,oe2}_00???_raw.fits

Inputs[edit]

The following data products are used for the full-mission polarization analysis (corresponding data are used for the data split products):

Outputs[edit]

Synchrotron emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 40 arcmin
Reference frequency: 30 GHz
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 μK_RJ Stokes Q posterior maximum
U_STOKES Real*4 μK_RJ Stokes U posterior maximum
Thermal dust emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 5 arcmin
Reference frequency: 353 GHz
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 uK_RJ Full-mission Stokes Q posterior maximum
U_STOKES Real*4 uK_RJ Full-mission Stokes U posterior maximum

SMICA-derived astrophysical foreground maps[edit]

Two SMICA-based polarization foreground products are provided, namely synchrotron and thermal dust emission. These are derived using the usual SMICA spectral matching method, tuned specifically for the reconstruction of two polarized foregrounds. Specifically, three coherent components (plus noise) are fitted at the spectral level with the first one constrained to have CMB emissivity. No assumptions are made regarding the other two components: they are not assumed to have a specific emissivity or angular spectrum, nor are they assumed to be uncorrelated. This leaves a degenerate model but that degeneracy can be entirely fixed after the spectral fit by assuming that synchrotron emission is negligible at 353 GHz and that thermal dust emission is negligible at 30 GHz. For both synchrotron and thermal dust emission, we provide results derived from both the full-mission data set, and from the half-mission and odd-even splits.

In addition to the real observations, we also provide 300 end-to-end noise simulations processed through the algorithm with the same spectral parameters as derived from the data for each of the data splits. The filenames of these simulations have the following format:

  • dx12_v3_smica_{synch,dust}_noise_{full,hm1,hm2,oe1,oe2}_00???_raw.fits

Inputs[edit]

The following data products are used for the full-mission polarization analysis (corresponding data are used for the data split products):

Outputs[edit]

Synchrotron emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 40 arcmin
Reference frequency: Integrated 30 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 mK_RJ Stokes Q posterior maximum
U_STOKES Real*4 mK_RJ Stokes U posterior maximum
Thermal dust emission[edit]
Full-mission file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 12 arcmin
Reference frequency: Integrated 353 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 mK_RJ Full-mission Stokes Q posterior maximum
U_STOKES Real*4 mK_RJ Full-mission Stokes U posterior maximum

GNILC thermal dust maps[edit]

The 2018 GNILC thermal dust products are provided as single files that include both intensity and polarization, 3x3 IQU noise covariance matrices per pixel, and as well as local smoothing scale for the variable resolution map. The structure of the data files is the following:

Uniform resolution file name: COM_CompMap_IQU_thermaldust-gnilc-unires_2048_R3.00.fits
Variable resolution file name: COM_CompMap_IQU_thermaldust-gnilc-varres_2048_R3.00.fits
Nside = 2048
Angular resolution = 80 arcmin FWHM, or variable
Reference frequency: Integrated 353 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
I_STOKES Real*4 K_cmb Stokes I estimate
Q_STOKES Real*4 K_cmb Stokes Q estimate
U_STOKES Real*4 K_cmb Stokes U estimate
II_COV Real*4 K_cmb^2 Covariance matrix II element
IQ_COV Real*4 K_cmb^2 Covariance matrix IQ element
IU_COV Real*4 K_cmb^2 Covariance matrix IU element
QQ_COV Real*4 K_cmb^2 Covariance matrix QQ element
QU_COV Real*4 K_cmb^2 Covariance matrix QU element
UU_COV Real*4 K_cmb^2 Covariance matrix UU element
FWHM Real*4 arcmin Local FWHM smoothing scale

2018 Lensing maps[edit]

We distribute several variations of lensing potential estimates presented in Planck-2020-A8[2] as part of the 2018 data release, together with matching simulation packages.

There are 4 lensing data packages:

  • COM_Lensing_4096_R3.00
Baseline lensing potential estimates from SMICA DX12 CMB maps. Provided are temperature-only (TT), polarization-only (PP) and minimum-variance (MV) estimates.
  • COM_Lensing_Sz_4096_R3.00
Variations obtained without galaxy cluster masking.
  • COM_Lensing_Inhf_2048_R3.00
Variations obtained using inhomogeneous noise filtering.
  • COM_Lensing-Szdeproj_4096_R3.00
Variation obtained from thermal Sunyaev-Zeldovich deprojected SMICA CMB map (TT only).

Each map represents an estimate of the CMB lensing potential on approximately 70% of the sky. The lensing estimates from COM_Lensing_4096_R3.00 also forms the basis for the Planck 2018 lensing likelihood.

These data packages have the following common file structure:

Contents of lensing data package COM_Lensing_4096_R3.00
Filename Format Description
mask.fits.gz HEALPix FITS format map, with N_{\rm side}=2048 Lens reconstruction analysis mask.
TT/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from temperature only, after mean-field subtraction).
TT/mf_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence mean-field \langle \hat{\kappa}_{LM} \rangle_{\rm{MC}} subtracted from the raw temperature-only data estimate.
PP/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=2048 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from polarization only, after mean-field subtraction).
PP/mf_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence mean-field \langle \hat{\kappa}_{LM} \rangle_{\rm{MC}} subtracted from the raw polarization-only data estimate.
MV/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (minimum-variance estimate from temperature and polarization, after mean-field subtraction).
MV/mf_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence mean-field \langle \hat{\kappa}_{LM} \rangle_{\rm{MC}} subtracted from the raw minimum variance data estimate.
TT/nlkk.dat ASCII text file, with columns = (L, N_L , C_L+N_L) Temperature-only reconstruction approximate noise N_L (and signal+noise, C_L+N_L) power spectrum of \hat{\kappa}_{LM} , for the fiducial cosmology used in Planck-2020-A8[2].
PP/nlkk.dat ASCII text file, with columns = (L, N_L , C_L+N_L) Polarization-only reconstruction approximate noise N_L (and signal+noise, C_L+N_L) power spectrum of \hat{\kappa}_{LM} , for the fiducial cosmology used in Planck-2020-A8[2]..
MV/nlkk.dat ASCII text file, with columns = (L, N_L , C_L+N_L) Minimum-variance reconstruction approximate noise N_L (and signal+noise, C_L+N_L) power spectrum of \hat{\kappa}_{LM} , for the fiducial cosmology used in Planck-2020-A8[2].

with slight variations:

- in COM_Lensing_Inhf_2048_R3.00, all HEALPix FITS format alm files have L_{\rm max}=2048.
- COM_Lensing-Szdeproj_4096_R3.00 only provides the temperature-only reconstruction.

The matching 4 lensing simulation packages are

  • COM_Lensing-SimMap_4096_R3.00
  • COM_Lensing-SimMap_Sz_4096_R3.00
  • COM_Lensing-SimMap_Inhf_2048_R3.00
  • COM_Lensing-SimMap-Szdeproj_4096_R3.00

with the following content:

Contents of lensing simulation package COM_Lensing-SimMap_4096_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with N_{\rm side}=2048 Lens reconstruction analysis mask.
/inputs/FFP10_wdipole_lenspotentialCls.dat ASCII text file, with columns = (L, C_L^{TT} , C_L^{EE} ,C_L^{BB} ,C_L^{TE} ,C_L^{\phi\phi} ,C_L^{T\phi} ,C_L^{E\phi} ) Input unlensed CMB spectra of the fiducial cosmology used in Planck-2020-A8[2].
TT/sim_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from temperature only, no mean-field subtraction) of all 300 FFP10 simulations used in Planck-2020-A8[2].
PP/sim_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=2048 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from polarization only, no mean-field subtraction) of all 300 FFP10 simulations used in Planck-2020-A8[2].
MV/sim_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (minimum-variance estimate from temperature and polarization, no mean-field subtraction) of all 300 FFP10 simulations used in Planck-2020-A8[2].
TT/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from temperature only, no mean-field subtraction).
PP/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=2048 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (from polarization only, no mean-field subtraction).
MV/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=4096 Estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} (minimum-variance estimate from temperature and polarization, no mean-field subtraction).
TT/nlkk.dat ASCII text file, with columns = (L, \textrm{RD-}N_L^{0} , \textrm{MC-}N_L^{0}, N_L^{1}, {PS}_L, \langle \hat C^{\kappa\kappa}_L - C_L^{\kappa\kappa, \rm fid}\rangle_{\rm MC}, 1/\mathcal R^\kappa_L) Temperature-only reconstruction lensing spectrum biases and quadratic estimator normalization (inverse response), as defined in Planck-2020-A8[2].
PP/nlkk.dat ASCII text file, with columns = (L, \textrm{RD-}N_L^{0} , \textrm{MC-}N_L^{0}, N_L^{1}, {PS}_L, \langle \hat C^{\kappa\kappa}_L - C_L^{\kappa\kappa, \rm fid}\rangle_{\rm MC}, 1/\mathcal R^\kappa_L) Polarization-only reconstruction lensing spectrum biases and quadratic estimator normalization (inverse response), as defined in Planck-2020-A8[2].
MV/nlkk.dat ASCII text file, with columns = (L, \textrm{RD-}N_L^{0} , \textrm{MC-}N_L^{0}, N_L^{1}, {PS}_L, \langle \hat C^{\kappa\kappa}_L - C_L^{\kappa\kappa, \rm fid}\rangle_{\rm MC}, 1/\mathcal R^\kappa_L) Minimum variance reconstruction lensing spectrum biases and quadratic estimator normalization (inverse response), as defined in Planck-2020-A8[2].

with the same slight variations:

- in COM_Lensing-SimMap_Inhf_2048_R3.00, all HEALPix FITS format alm files have L_{\rm max}=2048.
- COM_Lensing-SimMap-Szdeproj_4096_R3.00 only provides the temperature-only reconstructions.

We further provide the input lensing convergence realizations of all 300 FFP10 simulations in

  • COM_Lensing-SimMap-inputs_4096_R3.00

with contents

Contents of lensing simulation package COM_Lensing-SimMap-inputs_4096_R3.00
Filenames Format Description
/inputs/clkk.dat ASCII text file, with columns = (L, C_L^{\kappa\kappa}) Input lensing convergence CMB spectrum of the fiducial cosmology used in Planck-2020-A8[2].
sky_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=4096 Input lensing convergence {\kappa}_{LM} = \frac{1}{2} L(L+1){\phi}_{LM} realizations of all 300 FFP10 simulations used in Planck-2020-A8[2].

2018 Lensing-induced B-mode maps[edit]

We distribute maps of the lensing-induced B-modes presented in Planck-2020-A8[2], together with a matching simulation suite. The Stokes parameter maps of the lensing B-modes are produced by combining tracers of lensing potential with E-mode data from the SMICA CMB polarization maps. These lensing-induced B-mode polarization maps are provided on approximately 60% of the sky. Planck-2020-A8[2] details the construction of these maps.

These maps come in two variations. In the first we use the TT + TE + EE quadratic estimator built from the DX12 SMICA CMB maps (we discard TB and EB in order to use lensing tracers that are statistically independent of the B-mode map). In the second we further add CIB information at 545 GHz (GNILC) to the lensing tracer.

These maps are filtered template of the lensing B-mode (both the lensing tracer and E-mode used to build the B template are Wiener-filtered). The simulation suite may be used to assess the filter, as was done in Planck-2020-A8[2] to produce the B-mode power spectrum (Fig. 14).

The B-mode template package is

  • COM_Lensing-Bmode_2048_R3.00

with contents

Contents of B-mode template data package COM_Lensing-Bmode_2048_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with N_{\rm side}=2048 B-mode analysis mask used in Planck-2020-A8[2].
/inputs/clbb.dat ASCII text file, with columns = (L, C_L^{BB}) Input lensing B-mode power spectrum for the fiducial cosmology used in Planck-2020-A8[2].
dat_blm_TTTEETEE.fits HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} lensing tracer and E-mode map.
dat_blm_545_TTTEETEE.fits HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} + \rm{CIB} lensing tracer and E-mode map.

The B-mode template simulation package is

  • COM_Lensing-SimMap-Bmode_2048_R3.00

with contents

Contents of B-mode template simulation package COM_Lensing-SimMap-Bmode_2048_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with N_{\rm side}=2048 B-mode analysis mask used in Planck-2020-A8[2].
/inputs/clbb.dat ASCII text file, with columns = (L, C_L^{BB}) Input lensing B-mode power spectrum for the fiducial cosmology used in Planck-2020-A8[2].
/TTTEETE/blm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} lensing tracer and E-mode map of all 300 FFP10 simulations used in Planck-2020-A8[2].
/545_TTTEETE/blm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} + \rm{CIB} lensing tracer and E-mode map of all 300 FFP10 simulations used in Planck-2020-A8[2].
/TTTEETE/dat_blm.fits HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} lensing tracer and E-mode map.
/545_TTTEETE/dat_blm.fits HEALPix FITS format alm, with L_{\rm max}=2048 Lensing B-mode template built from the \hat \phi^{TT + TE + EE} + \rm{CIB} lensing tracer and E-mode map.

2018 Lensing combined tracers maps[edit]

We distribute estimates of the CMB lensing convergence maps built combining the Planck 2018 quadratic estimators and CIB data at 545 GHz (GNILC), together with a matching simulation suite. The construction of these maps is decribed in details in Planck-2020-A8[2]. The maps are built on about 60% of the sky.

The tracer are Wiener-filtered estimates of the convergence \hat \kappa_{LM} = \frac 12 L (L + 1) \hat \phi_{LM}.

These maps come in two variations. In the first we use the minimum-variance (MV) quadratic estimator together with the CIB. In the second we use the TT + TE + EE quadratic estimator together with the CIB, and is statistically independent from the CMB B-polarization.

The lensing combined tracer data package is

  • COM_Lensing-CIBcomb_2000_R3.00

with contents

Contents of lensing combined tracer data package COM_Lensing-CIBcomb_2000_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with N_{\rm side}=2048 Tracer combination analysis mask used in Planck-2020-A8[2].
dat_klm_545_MV.fits HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the minimum-variance quadratic estimator and the CIB (GNILC 545 GHz map).
dat_klm_545_TTTEETEE.fits HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the TT + TE + EE quadratic estimator and the CIB (GNILC 545 GHz map).

The lensing combined tracer simulation package is

  • COM_Lensing-SimMap-CIBcomb_2000_R3.00

with contents

Contents of lensing combined tracer simulation package COM_Lensing-SimMap-CIBcomb_2000_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with N_{\rm side}=2048 Tracer combination analysis mask used in Planck-2020-A8[2].
545_MV/sim_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the minimum-variance quadratic estimator and the CIB (GNILC 545 GHz map) of all 300 FFP10 simulations used in Planck-2020-A8[2].
545_TTTEETEE/sim_klm_{???}.fits 300 HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the TT + TE + EE quadratic estimator and the CIB (GNILC 545 GHz map) of all 300 FFP10 simulations used in Planck-2020-A8[2].
545_MV/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the minimum-variance quadratic estimator and the CIB (GNILC 545 GHz map).
545_TTTEETEE/dat_klm.fits HEALPix FITS format alm, with L_{\rm max}=2000 Lensing tracer built from the TT + TE + EE quadratic estimator and the CIB (GNILC 545 GHz map).

Also part of this package are high-resolution figures of the lensing deflection (similar to Fig. 3 and Fig. 13 of Planck-2020-A8[2]). The figures show the Wiener-filtered, gradient (E) mode of the displacement \hat \alpha_{LM} = \sqrt{L (L + 1)} \hat \phi_{LM}.

Mollveide projection of the minimum variance quadratic estimator lensing map:

  • Lensing_2018_MV_alphaA0_YlGnBu_300dpi_47in_moll.png

Orthographic projection of the minimum variance quadratic estimatorlensing map:

  • Lensing_2018_compMV_alphaA0_YlGnBu_300dpi_47in_moll.png

Orthographic projection of the minimum variance quadratic estimator combined with the CIB (GNILC 545 GHz map) lensing tracer map:

  • Lensing_2018_compMV545_alphaA0_YlGnBu_300dpi_47in_orth.png

2018 Lensing band powers and likelihood[edit]

The lensing reconstruction spectrum band powers, covariance matrix and likelihood linear corrections are provided as a zip of a series of ASCII files

  • planck_lensing_2018.zip

We provide a total of four variations: temperature-only and minimum-variance reconstructions, covering the conservative [math]( 8 \leq L \leq 400 )\lt math\gt or aggressive \lt math\gt ( 8 \leq L \leq 2048 )\lt math\gt lensing multipole range. The files are in CosmoMC format, which is available [https://cosmologist.info/cosmomc here]. A new Python code called [https://github.com/JesusTorrado/cobaya Cobaya] which follows the same methodology will be soon available and should produce the same results. Lensing-only MCMC chains are available [http://pla.esac.esa.int/pla-rc/aio/product-action?COSMOLOGY.FILE_ID=COM_CosmoParams_lensonly_R3.00.zip here]. Follow this [https://wiki.cosmos.esa.int/planckpla-int/index.php/Cosmological_Parameters link] for joint constraints and parameter tables. = Previous Releases: (2015) and (2013) Foreground Maps = \lt div class="toccolours mw-collapsible mw-collapsed" style="background-color: #FFDAB9;width:80%"\gt '''Astrophysical components based on the 2015 data release''' \lt div class="mw-collapsible-content"\gt ''' Overview ''' This section describes the maps of astrophysical components produced from the Planck data. These products are derived from some or all of the nine frequency channel maps described above using different techniques and, in some cases, using other constraints from external data sets. Here we give a brief description of each product and how it is obtained, followed by a description of the FITS file containing the data and associated information. All the details can be found in {{PlanckPapers|planck2014-a12}} and {PlanckPapers|planck20}}. ''' Astrophysical foregrounds from parametric component separation ''' We describe diffuse foreground products for the Planck 2015 release. See the Planck Foregrounds Component Separation paper {{PlanckPapers|planck2014-a12}} for a detailed description of these products. Further scientific discussion and interpretation may be found in {{PlanckPapers|planck2014-a31}}. '''Low-resolution temperature products''' : The Planck 2015 astrophysical component separation analysis combines Planck observations with the 9-year WMAP temperature sky maps (Bennett et al. 2013) and the 408 MHz survey by Haslam et al. (1982). This allows a direct decomposition of the low-frequency foregrounds into separate synchrotron, free-free and spinning dust components without strong spatial priors. '''Inputs''' The following data products are used for the low-resolution analysis: * Full-mission 30 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=30|period=Full|link=LFI 30 GHz frequency maps}} * Full-mission 44 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=44|period=Full|link=LFI 44 GHz frequency maps}} * Full-mission 70 GHz ds1 (18+23), ds2 (19+22), and ds3 (20+21) detector-set maps * Full-mission 100 GHz ds1 and ds2 detector set maps * Full-mission 143 GHz ds1 and ds2 detector set maps and detectors 5, 6, and 7 maps * Full-mission 217 GHz detector 1, 2, 3 and 4 maps * Full-mission 353 GHz detector set ds2 and detector 1 maps * Full-mission 545 GHz detector 2 and 4 maps * Full-mission 857 GHz detector 2 map * Beam-symmetrized 9-year WMAP K-band map [http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm (Lambda)] * Beam-symmetrized 9-year WMAP Ka-band map [http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm (Lambda)] * Default 9-year WMAP Q1 and Q2 differencing assembly maps [http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm (Lambda)] * Default 9-year WMAP V1 and V2 differencing assembly maps [http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm (Lambda)] * Default 9-year WMAP W1, W2, W3, and W4 differencing assembly maps [http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.cfm (Lambda)] * Re-processed 408 MHz survey map, Remazeilles et al. (2014) [http://lambda.gsfc.nasa.gov/product/foreground/2014_haslam_408_info.cfm (Lambda)] All maps are smoothed to a common resolution of 1 degree FWHM by deconvolving their original instrumental beam and pixel window, and convolving with the new common Gaussian beam, and repixelizing at Nside=256. '''Outputs''' '''Synchrotron emission''' \lt !--\lt center\gt \lt gallery style="padding:0 0 0 0;" perrow=3 widths=800px heights=500px\gt File:commander_synch_amp.png | '''Commander low-resolution synchrotron amplitude''' \lt /gallery\gt \lt /center\gt --\gt : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_Synchrotron-commander_0256_R2.00.fits|link=COM_CompMap_Synchrotron-commander_0256_R2.00.fits}} : Reference frequency: 408 MHz : Nside = 256 : Angular resolution = 60 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-Synchrotron |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || uK_RJ || Amplitude posterior maximum |- |I_MEAN || Real*4 || uK_RJ || Amplitude posterior mean |- |I_RMS || Real*4 || uK_RJ || Amplitude posterior rms |} {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ Extension 1 -- SYNC-TEMP |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |nu || Real*4 || Hz || Frequency |- |intensity || Real*4 || W/Hz/m2/sr || GALPROP z10LMPD_SUNfE spectrum |} '''Free-free emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_freefree-commander_0256_R2.00.fits|link=COM_CompMap_freefree-commander_0256_R2.00.fits}} : Reference frequency: NA : Nside = 256 : Angular resolution = 60 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-freefree |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |EM_ML || Real*4 || cm^-6 pc || Emission measure posterior maximum |- |EM_MEAN || Real*4 || cm^-6 pc || Emission measure posterior mean |- |EM_RMS || Real*4 || cm^-6 pc || Emission measure posterior rms |- |TEMP_ML || Real*4 || K || Electron temperature posterior maximum |- |TEMP_MEAN || Real*4 || K || Electron temperature posterior mean |- |TEMP_RMS || Real*4 || K || Electron temperature posterior rms |} '''Spinning dust emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_AME-commander_0256_R2.00.fits|link=COM_CompMap_AME-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 60 arcmin Note: The spinning dust component has two independent constituents, each corresponding to one spdust2 component, but with different peak frequencies. The two components are stored in the two first FITS extensions, and the template frequency spectrum is stored in the third extension. : Reference frequency: 22.8 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-AME1 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || uK_RJ || Primary amplitude posterior maximum |- |I_MEAN || Real*4 || uK_RJ || Primary amplitude posterior mean |- |I_RMS || Real*4 || uK_RJ || Primary amplitude posterior rms |- |FREQ_ML || Real*4 || GHz || Primary peak frequency posterior maximum |- |FREQ_MEAN || Real*4 || GHz || Primary peak frequency posterior mean |- |FREQ_RMS || Real*4 || GHz || Primary peak frequency posterior rms |} : Reference frequency: 41.0 GHz : Peak frequency: 33.35 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ Extension 1 -- COMP-MAP-AME2 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || uK_RJ || Secondary amplitude posterior maximum |- |I_MEAN || Real*4 || uK_RJ || Secondary amplitude posterior mean |- |I_RMS || Real*4 || uK_RJ || Secondary amplitude posterior rms |} {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ Extension 2 -- SPINNING-DUST-TEMP |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |nu || Real*4 || GHz || Frequency |- |j_nu/nH || Real*4 || Jy sr-1 cm2/H || spdust2 spectrum |} '''CO line emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_CO-commander_0256_R2.00.fits|link=COM_CompMap_CO-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 60 arcmin Note: The CO line emission component has three independent objects, corresponding to the J1-\gt 0, 2-\gt 1 and 3-\gt 2 lines, stored in separate extensions. {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-co10 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || K_RJ km/s || CO(1-0) amplitude posterior maximum |- |I_MEAN || Real*4 || K_RJ km/s || CO(1-0) amplitude posterior mean |- |I_RMS || Real*4 || K_RJ km/s || CO(1-0) amplitude posterior rms |} {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ Extension 1 -- COMP-MAP-co21 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || K_RJ km/s || CO(2-1) amplitude posterior maximum |- |I_MEAN || Real*4 || K_RJ km/s || CO(2-1) amplitude posterior mean |- |I_RMS || Real*4 || K_RJ km/s || CO(2-1) amplitude posterior rms |} {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ Extension 2 -- COMP-MAP-co32 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || K_RJ km/s || CO(3-2) amplitude posterior maximum |- |I_MEAN || Real*4 || K_RJ km/s || CO(3-2) amplitude posterior mean |- |I_RMS || Real*4 || K_RJ km/s || CO(3-2) amplitude posterior rms |} '''94/100 GHz line emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_xline-commander_0256_R2.00.fits|link=COM_CompMap_xline-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 60 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-xline |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || uK_cmb || Amplitude posterior maximum |- |I_MEAN || Real*4 || uK_cmb || Amplitude posterior mean |- |I_RMS || Real*4 || uK_cmb || Amplitude posterior rms |} Note: The amplitude of this component is normalized according to the 100-ds1 detector set map, ie., it is the amplitude as measured by this detector combination. '''Thermal dust emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_dust-commander_0256_R2.00.fits|link=COM_CompMap_dust-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 60 arcmin : Reference frequency: 545 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-dust |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML || Real*4 || uK_RJ || Amplitude posterior maximum |- |I_MEAN || Real*4 || uK_RJ || Amplitude posterior mean |- |I_RMS || Real*4 || uK_RJ || Amplitude posterior rms |- |TEMP_ML || Real*4 || K || Dust temperature posterior maximum |- |TEMP_MEAN || Real*4 || K || Dust temperature posterior mean |- |TEMP_RMS || Real*4 || K || Dust temperature posterior rms |- |BETA_ML || Real*4 || NA || Emissivity index posterior maximum |- |BETA_MEAN || Real*4 || NA || Emissivity index posterior mean |- |BETA_RMS || Real*4 || NA || Emissivity index posterior rms |} '''Thermal Sunyaev-Zeldovich emission around the Coma and Virgo clusters''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_SZ-commander_0256_R2.00.fits|link=COM_CompMap_SZ-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 60 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-SZ |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Y_ML || Real*4 || y_SZ || Y parameter posterior maximum |- |Y_MEAN || Real*4 || y_SZ || Y parameter posterior mean |- |Y_RMS || Real*4 || y_SZ || Y parameter posterior rms |} '''High-resolution temperature products''' High-resolution foreground products at 7.5 arcmin FWHM are derived with the same algorithm as for the low-resolution analyses, but including frequency channels above (and including) 143 GHz. '''Inputs''' The following data products are used for the low-resolution analysis: * Full-mission 143 GHz ds1 and ds2 detector set maps and detectors 5, 6, and 7 maps * Full-mission 217 GHz detector 1, 2, 3 and 4 maps * Full-mission 353 GHz detector set ds2 and detector 1 maps * Full-mission 545 GHz detector 2 and 4 maps * Full-mission 857 GHz detector 2 map All maps are smoothed to a common resolution of 7.5 arcmin FWHM by deconvolving their original instrumental beam and pixel window, and convolving with the new common Gaussian beam, and repixelizing at Nside=2048. '''Outputs''' '''CO J2-\gt 1 emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_CO21-commander_2048_R2.00.fits|link=COM_CompMap_CO21-commander_2048_R2.00.fits}} : Nside = 2048 : Angular resolution = 7.5 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-CO21 |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML_FULL || Real*4 || K_RJ km/s || Full-mission amplitude posterior maximum |- |I_ML_HM1 || Real*4 || K_RJ km/s || First half-mission amplitude posterior maximum |- |I_ML_HM2 || Real*4 || K_RJ km/s || Second half-mission amplitude posterior maximum |- |I_ML_HR1 || Real*4 || K_RJ km/s || First half-ring amplitude posterior maximum |- |I_ML_HR2 || Real*4 || K_RJ km/s || Second half-ring amplitude posterior maximum |- |I_ML_YR1 || Real*4 || K_RJ km/s || "First year" amplitude posterior maximum |- |I_ML_YR2 || Real*4 || K_RJ km/s || "Second year" amplitude posterior maximum |} '''Thermal dust emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_ThermalDust-commander_2048_R2.00.fits|link=COM_CompMap_ThermalDust-commander_2048_R2.00.fits}} : Nside = 2048 : Angular resolution = 7.5 arcmin : Reference frequency: 545 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-dust |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |I_ML_FULL || Real*4 || uK_RJ || Full-mission amplitude posterior maximum |- |I_ML_HM1 || Real*4 || uK_RJ || First half-mission amplitude posterior maximum |- |I_ML_HM2 || Real*4 || uK_RJ || Second half-mission amplitude posterior maximum |- |I_ML_HR1 || Real*4 || uK_RJ || First half-ring amplitude posterior maximum |- |I_ML_HR2 || Real*4 || uK_RJ || Second half-ring amplitude posterior maximum |- |I_ML_YR1 || Real*4 || uK_RJ || "First year" amplitude posterior maximum |- |I_ML_YR2 || Real*4 || uK_RJ || "Second year" amplitude posterior maximum |- |BETA_ML_FULL || Real*4 || NA || Full-mission emissivity index posterior maximum |- |BETA_ML_HM1 || Real*4 || NA || First half-mission emissivity index posterior maximum |- |BETA_ML_HM2 || Real*4 || NA || Second half-mission emissivity index posterior maximum |- |BETA_ML_HR1 || Real*4 || NA || First half-ring emissivity index posterior maximum |- |BETA_ML_HR2 || Real*4 || NA || Second half-ring emissivity index posterior maximum |- |BETA_ML_YR1 || Real*4 || NA || "First year" emissivity index posterior maximum |- |BETA_ML_YR2 || Real*4 || NA || "Second year" emissivity index posterior maximum |- |} '''Polarization products''' Two polarization foreground products are provided, namely synchrotron and thermal dust emission. The spectral models are assumed identical to the corresponding temperature spectral models. '''Inputs''' The following data products are used for the polarization analysis: * (Only low-resolution analysis) Full-mission 30 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=30|period=Full|link=LFI 30 GHz frequency maps}} * (Only low-resolution analysis) Full-mission 44 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=44|period=Full|link=LFI 44 GHz frequency maps}} * (Only low-resolution analysis) Full-mission 70 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=70|period=Full|link=LFI 70 GHz frequency maps}} * Full-mission 100 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=100|period=Full|link=HFI 100 GHz frequency maps}} * Full-mission 143 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=143|period=Full|link=HFI 143 GHz frequency maps}} * Full-mission 217 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=217|period=Full|link=HFI 217 GHz frequency maps}} * Full-mission 353 GHz frequency map, {{PLAFreqMaps|inst=LFI|freq=353|period=Full|link=HFI 353 GHz frequency maps}} In the low-resolution analysis, all maps are smoothed to a common resolution of 40 arcmin FWHM by deconvolving their original instrumental beam and pixel window, and convolving with the new common Gaussian beam, and repixelizing at Nside=256. In the high-resolution analysis (including only CMB and thermal dust emission), the corresponding resolution is 10 arcmin FWHM and Nside=1024. '''Outputs''' '''Synchrotron emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_SynchrotronPol-commander_0256_R2.00.fits|link=COM_CompMap_SynchrotronPol-commander_0256_R2.00.fits}} : Nside = 256 : Angular resolution = 40 arcmin : Reference frequency: 30 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-SynchrotronPol |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Q_ML_FULL || Real*4 || K_RJ km/s || Full-mission Stokes Q posterior maximum |- |U_ML_FULL || Real*4 || K_RJ km/s || Full-mission Stokes U posterior maximum |- |Q_ML_HM1 || Real*4 || K_RJ km/s || First half-mission Stokes Q posterior maximum |- |U_ML_HM1 || Real*4 || K_RJ km/s || First half-mission Stokes U posterior maximum |- |Q_ML_HM2 || Real*4 || K_RJ km/s || Second half-mission Stokes Q posterior maximum |- |U_ML_HM2 || Real*4 || K_RJ km/s || Second half-mission Stokes U posterior maximum |- |Q_ML_HR1 || Real*4 || K_RJ km/s || First half-ring Stokes Q posterior maximum |- |U_ML_HR1 || Real*4 || K_RJ km/s || First half-ring Stokes U posterior maximum |- |Q_ML_HR2 || Real*4 || K_RJ km/s || Second half-ring Stokes Q posterior maximum |- |U_ML_HR2 || Real*4 || K_RJ km/s || Second half-ring Stokes U posterior maximum |- |Q_ML_YR1 || Real*4 || K_RJ km/s || "First year" Stokes Q posterior maximum |- |U_ML_YR1 || Real*4 || K_RJ km/s || "First year" Stokes U posterior maximum |- |Q_ML_YR2 || Real*4 || K_RJ km/s || "Second year" Stokes Q posterior maximum |- |U_ML_YR2 || Real*4 || K_RJ km/s || "Second year" Stokes U posterior maximum |} '''Thermal dust emission''' : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_DustPol-commander_1024_R2.00.fits|link=COM_CompMap_DustPol-commander_1024_R2.00.fits}} : Nside = 1024 : Angular resolution = 10 arcmin : Reference frequency: 353 GHz {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-DustPol |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Q_ML_FULL || Real*4 || uK_RJ || Full-mission Stokes Q posterior maximum |- |U_ML_FULL || Real*4 || uK_RJ || Full-mission Stokes U posterior maximum |- |Q_ML_HM1 || Real*4 || uK_RJ || First half-mission Stokes Q posterior maximum |- |U_ML_HM1 || Real*4 || uK_RJ || First half-mission Stokes U posterior maximum |- |Q_ML_HM2 || Real*4 || uK_RJ || Second half-mission Stokes Q posterior maximum |- |U_ML_HM2 || Real*4 || uK_RJ || Second half-mission Stokes U posterior maximum |- |Q_ML_HR1 || Real*4 || uK_RJ || First half-ring Stokes Q posterior maximum |- |U_ML_HR1 || Real*4 || uK_RJ || First half-ring Stokes U posterior maximum |- |Q_ML_HR2 || Real*4 || uK_RJ || Second half-ring Stokes Q posterior maximum |- |U_ML_HR2 || Real*4 || uK_RJ || Second half-ring Stokes U posterior maximum |- |Q_ML_YR1 || Real*4 || uK_RJ || "First year" Stokes Q posterior maximum |- |U_ML_YR1 || Real*4 || uK_RJ || "First year" Stokes U posterior maximum |- |Q_ML_YR2 || Real*4 || uK_RJ || "Second year" Stokes Q posterior maximum |- |U_ML_YR2 || Real*4 || uK_RJ || "Second year" Stokes U posterior maximum |} ''' Modelling of the thermal dust emission with the Draine and Li dust model ''' The Planck, IRAS, and WISE infrared observations were fit with the dust model presented by Draine & Li in 2007 (DL07). The input maps, the DL07 model, and the fitting procedure and results are presented in {{PlanckPapers|planck2014-XXIX}}. Here, we describe the input maps and the output maps, which are made available on the Planck Legacy Archive. '''Inputs''' The following data have been fit: * WISE 12 micron map * IRAS 60 micron map * IRAS 100 micron map * Full-mission 353 GHz PR2 map * Full-mission 545 GHz PR2 map * Full-mission 857 GHz PR2 map The CIB monopole, the CMB anisotropries and the zodiacal light were subtracted to obtain dust emission maps from the sky emission maps. All maps were smoothed to a common angular resolution of 5'. '''Model Parameters''' For each pixel of the inputs maps, we have fitted four parameters of the DL07 model: * the dust mass surface density, Sigma_Mdust, * the dust mass fraction in small PAH grains, q_PAH, * the fraction of the total luminosity from dust heated by intense radiation fields, f_PDR, * the starlight intensity heating the bulk of the dust, U_min. The parameter maps and their uncertainties are gathered in one file. This file also includes the chi2 of the fit per degree of freedom. : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_Dust-DL07-Parameters_2048_R2.00.fits|link=COM_CompMap_Dust-DL07-Parameters_2048_R2.00.fits}} : Nside = 2048 : Angular resolution = 5 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-Dust-DL07-Parameters |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Sigma_Mdust || Real*4 || Solar masses/kpc^2 || Dust mass surface density |- |Sigma_Mdust_unc || Real*4 || Solar masses/kpc^2 || Uncertainty (1 sigma) on Sigma_Mdust |- |q_PAH || Real*4 || dimensionless || Dust mass fraction in small PAH grains |- |q_PAH_unc || Real*4 || dimensionless || Uncertainty (1 sigma) on q_PAH |- |f_PDR || Real*4 || dimensionless || Fraction of the total luminosity from dust heated by intense radiation fields |- |f_PDR_unc || Real*4 || dimensionless || Uncertainty (1 sigma) on f_PDR |- |U_min || Real*4 || dimensionless || Starlight intensity heating the bulk of the dust |- |U_min_unc || Real*4 || dimensionless || Uncertainty (1 sigma) on U_min |- |Chi2_DOF || Real*4 || dimensionless || Chi2 of the fit per degree of freedom |} '''Visible extinction maps''' We provide two exinctions maps at the visible V band: the value from the model (Av_DL) and the renormalized one (Av_RQ) that matches extinction estimates for quasars (QSOs) derived from the Sloan digital sky survey (SDSS) data. : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_Dust-DL07-AvMaps_2048_R2.00.fits|link=COM_CompMap_Dust-DL07-AvMaps_2048_R2.00.fits}} : Nside = 2048 : Angular resolution = 5 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-Dust-DL07-AvMaps |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Av_DL || Real*4 || magnitude || Extinction in the V band from the DL model |- |Av_DL_unc || Real*4 || magnitude || Uncertainty (1 sigma) on Av_DL |- |Av_RQ || Real*4 || magnitude || Extinction in the V band renormalized to match estimates from QSO SDSS observations |- |Av_RQ_unc || Real*4 || magnitude || Uncertainty (1 sigma) on Av_RQ |} '''Model Fluxes''' We provide the model predicted fluxes in the following file. : File name: {{PLASingleFile|fileType=map|name=COM_CompMap_Dust-DL07-ModelFluxes_2048_R2.00.fits|link=COM_CompMap_Dust-DL07-ModelFluxes_2048_R2.00.fits}} : Nside = 2048 : Angular resolution = 5 arcmin {| border="1" cellpadding="5" cellspacing="0" align="center" style="text-align:center" |+ HDU -- COMP-MAP-Dust-DL07-ModelFluxes |- |- bgcolor="ffdead" ! Column Name || Data Type || Units || Description |- |Planck_857 || Real*4 || MJy/sr || Model flux in the Planck 857 GHz band |- |Planck_545 || Real*4 || MJy/sr || Model flux in the Planck 545 GHz band |- |Planck_353 || Real*4 || MJy/sr || Model flux in the Planck 353 GHz band |- |WISE_12 || Real*4 || MJy/sr || Model flux in the WISE 12 micron band |- |IRAS_60 || Real*4 || MJy/sr || Model flux in the IRAS 60 micron band |- |IRAS_100 || Real*4 || MJy/sr || Model flux in the IRAS 100 micron band |} ''' Other Special maps ''' '''Introduction''' This section describes the map-based products that required special processing. ''' 2015 lensing map ''' We distribute the minimum-variance (MV) lensing potential estimate presented in {{PlanckPapers|planck2014-a17}} as part of the 2014 data release. This map represents an estimate of the CMB lensing potential on approximately 70% of the sky, and also forms the basis for the Planck 2014 lensing likelihood. It is produced using filtered temperature and polarization data from the SMICA DX11 CMB map; its construction is discussed in detail in {{PlanckPapers|planck2014-a11}}. The estimate is contained in a single gzipped tarball named ''{{PLASingleFile|fileType=map|name=COM_CompMap_Lensing_2048_R2.00.tgz|link=COM_CompMap_Lensing_2048_R2.00.tgz}}''. Its contents are described below. The convergence map "dat_klm.fits" that can be found in the tarball, has been categorized as COM_Lensing-Convergence-dat-klm_2048_R2.00.fits in the Lensing Products section of the archive. {| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" |+ ''' Contents of Lensing package ''' |- bgcolor="ffdead" ! Filename || Format || Description |- | dat_klm.fits || HEALPix FITS format alm, with \lt math\gt L_{\rm max}=2048[/math] || Contains the estimated lensing convergence \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} . |- | mask.fits.gz || HEALPix FITS format map, with N_{\rm side}=2048 || Contains the lens reconstruction analysis mask. |- | nlkk.dat || ASCII text file, with columns = (L, N_L , C_L+N_L) || The approximate noise N_L (and signal+noise, C_L+N_L) power spectrum of \hat{\kappa}_{LM} , for the fiducial cosmology used in Planck-2015-A13[5]. |}

2015 Compton y parameter map

We distribute here the Planck full mission Compton parameter maps (y-maps hereafter) obtained using the NILC and MILCA component-separation algorithms as described in Planck-2015-A22[6]. We also provide the ILC weights per scale and per frequency that were used to produce these y-maps. IDL routines are also provided to allow the user to apply those weights. Compton parameters produced by keeping either the first or the second half of stable pointing periods are also provided; we call these the FIRST and LAST y-maps. Additionally we construct noise estimates of full mission Planck y-maps from the half difference of the FIRST and LAST y-maps. These estimates are used to construct standard deviation maps of the noise in the full mission Planck y-maps, which are also provided. To complement this we also provide the power spectra of the noise estimate maps after correcting for inhomogeneities using the standard deviation maps. We also deliver foreground masks including point-source and Galactic masks.

Update 04 Aug 2017: The file containing the masks named COM_CompMap_Compton-SZMap-masks_2048_R2.00.fits has been updated with the file COM_CompMap_Compton-SZMap-masks_2048_R2.01.fits. The difference between the two is that in the R2.00 version a region around the Galactic pole had been masked, while only the Galactic plane should be masked. This has been fixed in version R2.01. The full updated data set is contained in a single gzipped tarball named COM_CompMap_YSZ_R2.01.fits.tgz. The R2.00 version of the mask is not available in the PLA anymore, but can be requested via the PLA Helpdesk.

The contents of the full data set are described below.

Contents of COM_CompMap_YSZ_R2.01.fits.tgz
Filename Format Description
nilc_ymaps.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side}=2048 Contains the NILC full mission, FIRST and LAST y-maps.
milca_ymaps.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the MILCA full mission, FIRST and LAST y-maps.
nilc_weights_BAND.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 128 Contains the NILC ILC weights for the full mission y-map for band BAND 0 to 9. For each band we provide a weight map per frequency.
milca_FREQ_Csz.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the MILCA ILC weights for the full mission y-map for frequency FREQ (100, 143, 217, 353, 545, 857). For each frequency we provide a weight map per filter band.
nilc_stddev.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the stddev map for the NILC full mission y-map.
milca_stddev.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the stddev maps for the MILCA full mission y-map.
nilc_homnoise_spect.fits ASCII table FITS format Contains the angular power spectrum of the homogeneous noise in the NILC full mission y-map.
milca_homnoise_spect.fits ASCII table FITS format Contains the angular power spectrum of the homogeneous noise in the MILCA full mission y-map.
masks.fits HEALPix FITS format map, with N_{\rm side} = 2048 Contains foreground masks.
nilc_bands.fits ASCII table FITS format Contains NILC wavelet bands in multipole space


2015 lensing-induced B-mode map

We distribute the lensing-induced B-mode map presented in Planck-2015-XLI[7]. The lensing B-mode Stokes parameter maps are produced by combining the lensing potential reconstruction from the SMICA CMB temperature map with E-mode data from the SMICA CMB polarization maps. The SMICA temperature and polarization products are described in Planck-2015-A09[8]. The lensing-induced B-mode polarization maps are used in cross-correlation with the SMICA CMB polarization maps to obtain a lensing B-mode power spectrum measurement from approximately 70% of the sky, as described in Planck-2015-XLI[7].

We provide both raw products, which can be utilized to generate products adapted to one's specific needs in term of mask, filtering, etc., and "ready-to-use" products for cross-correlation study purposes.

Raw products

We deliver the non-normalized lensing-induced Stokes parameter maps, labelled \bar{Q}^{\rm{lens}} and \bar{U}^{\rm{lens}} , which form the basis of the final lensing B-mode estimator defined in equation (6) of Planck-2015-XLI[7]. They are defined as

\begin{eqnarray} \bar Q^{\rm{lens}}({\bf n}) &=& \widetilde Q^{E}({\bf n}) \cdot \nabla \widetilde \phi({\bf n}), \\ \bar U^{\rm{lens}}({\bf n}) &=& \widetilde U^{E}({\bf n}) \cdot \nabla \widetilde \phi({\bf n}), \end{eqnarray}

where \widetilde Q^{E} and \widetilde U^{E} are the filtered pure E-mode polarization maps given in equation (5) of Planck-2015-XLI[7], and \widetilde \phi is the filtered lensing potential estimate.

We also provide the normalization transfer function \mathcal{B}_\ell defined in equation (11) of Planck-2015-XLI[7], as well as the "L70" mask M({\bf n}) that retains 69% of the sky before apodization, and its apodized version \tilde{M}({\bf n}) , which has an effective sky fraction f_{\rm{sky}}^{\rm{eff}} = 65\% .

As an example of the utilization of these products, the lensing B-mode maps that are shown in figure 4 of Planck-2015-XLI[7] are generated from

Q^{\rm{lens}} \pm i U^{\rm{lens}} = \sum_{\ell m} \left( G_\ell \mathcal{B}_\ell^{-1} \int d{\bf n} {\, }_{\pm 2}Y_{\ell m}^*({\bf n}) \left(\bar{Q}^{\rm{lens}} \pm i \bar{U}^{\rm{lens}} \right) \right) {\, }_{\pm 2}Y_{\ell m}({\bf n}) ,

where G_\ell is a Gaussian of 60 arcmin FWHM (introduced for highlighting large angular scales, although it can be removed or replaced by any other filter). This can be practically done by ingesting \bar{Q}^{\rm{lens}} and \bar{U}^{\rm{lens}} in the HEALPix "smoothing" routine, and using the product G_\ell\mathcal{B}_\ell^{-1} as an input filtering function.

Specific products

We provide the lensing B-mode spherical harmonic coefficient estimate B_{\ell m}^{\rm{lens}} over approximately 70% of the sky.

It can also be constructed using the raw products described above from

B_{\ell m}^{\rm{lens}} = f_{10 \rightarrow 2000} \, \mathcal{B}_\ell^{-1} \, \, {\, }_{\pm 2}\mathcal{Y} \left[ \tilde{M}({\bf n}) \left( \bar{Q}^{\rm{lens}}({\bf n}) \pm i \bar{U}^{\rm{lens}}({\bf n}) \right) \right] ,

where f_{10 \rightarrow 2000} is a function for producing band-powers over the range 10 \le \ell \le 2000 , and {\, }_{\pm2}\mathcal{Y} is a short-hand notation for transforming a map into spin-weighted spherical harmonic coefficients {\, }_{+2}a_{\ell m}, {\, }_{-2}a_{\ell m} and forming 1/(2i)\left({\, }_{+2}a_{\ell m} - {\, }_{-2}a_{\ell m}\right). This can be done using, e.g., the HEALPix "anafast" tool.

The lensing B-mode power spectrum estimate \hat{C}_\ell^{BB^{\rm{lens}}} discussed in Planck-2015-XLI[7] is obtained by forming the cross-correlation power spectrum of B_{\ell m}^{\rm{lens}} and the B-mode data from the SMICA polarization maps B_{\ell m} :

\hat{C}_\ell^{BB^{\rm{lens}}} = \frac{\left(f_{\rm{sky}}^{\rm{eff}}\right)^{-1}}{2 \ell +1} G_\ell^{-2} \sum_m B_{\ell m}^* B_{\ell m}^{\rm{lens}},

where G_\ell is the 5 arcmin Gaussian beam that convolves the SMICA CMB maps.


The products are contained in a single gzipped tarball named COM_Lensing-Bmode_R2.00.tgz. Its contents are described below.


Contents of Lensing B-mode package
Filename Format Description
bar_q_lens_map.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the non-normalized lensing-induced Q Stokes parameter map \bar Q^{\rm{lens}}({\bf n}) .
bar_u_lens_map.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 Contains the non-normalized lensing-induced U Stokes parameter map \bar U^{\rm{lens}}({\bf n}) .
mask.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 The L70 mask.
mask_noapo.fits HEALPix FITS format map in Galactic coordinates with N_{\rm side} = 2048 The L70 mask without apodization.
transfer_function_b_l.dat ASCII text file, with columns = (\ell, \mathcal{B}_\ell ) The transfer function.
lensing_bmode_b_lm.fits HEALPix FITS format alm, with \ell_{\rm max} = 2000 Contains the lensing B-mode harmonic coefficients B_{\ell m}^{\rm{lens}} .
lensing_bmode_bandpowers.dat ASCII text file, with columns = (\ell_{\rm min}, \ell_{\rm b} , \ell_{\rm max} , \hat{C}_{\ell_{\rm b}}^{BB^{\rm{lens}}} , \Delta \hat{C}_{\ell_{\rm b}}^{BB^{\rm{lens}}} ) The lensing B-mode bandpower estimate on approximativily 70% of the sky and over the multipole range from 10 to 2000 shown in figure 9 of Planck-2015-XLI[7] (for plotting purposes only).

2015 Integrated Sachs-Wolfe effect map

We distribute estimates of the integrated Sachs-Wolfe (ISW) maps presented in Planck-2015-A21[9] as part of the 2015 data release. These map represents an estimate of the ISW anisotropies using different data sets:

  • SEVEM DX11 CMB map, together with all the large-scale structure tracers considered in the ISW paper, namely: NVSS, SDSS, WISE, and the Planck lensing map
  • Using only the large-scale structure tracers mentioned above
  • SEVEM DX11 CMB map, together with NVSS and the Planck lensing maps (since these two tracers capture most of the information, as compared to SDSS and WISE)

For all the three cases, the reconstruction is provided on approximately 85% of the sky, and they are produced using the LCB filter described in the Planck ISW paper (Section 5), described in detail in Barreiro et al. 2008 and Bonavera et al. 2016.

These ISW maps, together with their corresponding uncertainties maps and masks, are given in a file named COM_CompMap_ISW_0064_R2.00.fits. Its contents are described below.


Contents of the ISW maps file: COM_CompMap_ISW_0064_R2.00.fits
Extension Format Description Used data sets
0 HEALPix FITS format map with three components, N_{\rm side}=64, Ordering='Nest' Contains three components: i) ISW map [Kelvin], ii) Error map [Kelvin], iii) Mask map SEVEM DX11 CMB + NVSS + SDSS + WISE + Planck lensing.
1 HEALPix FITS format map with three components, N_{\rm side}=64, Ordering='Nest' Contains three components: i) ISW map [Kelvin], ii) Error map [Kelvin], iii) Mask map NVSS + SDSS + WISE + Planck lensing.
2 HEALPix FITS format map with three components, N_{\rm side}=64, Ordering='Nest' Contains three components: i) ISW map [Kelvin], ii) Error map [Kelvin], iii) Mask map SEVEM DX11 CMB + NVSS + Planck lensing.


2015 Low-frequency foregrounds maps (Planck only & Planck+WMAP) 1) CMB/free-free/Dust Nulled ILC at 28.4 GHz (Planck only)

Linear combination of Planck 28.4, 44.1, 143 and 353 GHz maps (all at 1 degree resolution), with weights listed in column w_2 of Table 1 in Planck-2015-A25[10]. These weights exactly null the CMB, almost exactly null free-free emission, and null thermal dust emission to high accuracy except along the inner Galactic plane,where the brightness is uncertain by around 20% due to variation in the dust spectrum. The normalisation leaves a beta = -3 power law at the same amplitude as in the Planck 28.4 GHz map. (As presented in Fig. 3a of Planck 2015 Results XXV.)

2) CMB/free-free/Dust Nulled ILC at 28.4 GHz (Planck + WMAP) Linear combination of WMAP K, Ka, and Q band, and Planck 28.4, 44.1, 143 and 353 GHz maps (all at 1 degree resolution), with weights listed in column w_3 of Table 1 in Planck-2015-A25[10]. These weights exactly null the CMB, almost exactly null free-free emission, and null thermal dust emission to high accuracy except along the inner Galactic plane, where the brightness is uncertain by around 20% due to variation in the dust spectrum. The normalisation leaves a beta = -3 power law at the same amplitude as in the Planck 28.4 GHz map. (As presented in Fig. 3b of Planck-2015-A25[10].)

Expand

Astrophysical components based on the 2013 data release

References[edit]

  1. Jump up to: 1.01.1 Planck 2018 results. IV. Diffuse component separation, Planck Collaboration, 2020, A&A, 641, A4.
  2. Jump up to: 2.002.012.022.032.042.052.062.072.082.092.102.112.122.132.142.152.162.172.182.192.202.212.222.232.242.252.262.272.28 Planck 2018 results. VIII. Lensing, Planck Collaboration, 2020, A&A, 641, A8.
  3. Jump up Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, Planck Collaboration, 2020, A&A, 641, A3.
  4. Jump up Planck 2015 results. X. Diffuse component separation: Foreground maps, Planck Collaboration, 2016, A&A, 594, A10.
  5. Jump up Planck 2015 results. XIII. Cosmological parameters, Planck Collaboration, 2016, A&A, 594, A13.
  6. Jump up Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect, Planck Collaboration, 2016, A&A, 594, A22.
  7. Jump up to: 7.07.17.27.37.47.57.67.7 Planck intermediate results. XLI. A map of lensing-induced B-modes, Planck Collaboration Int. XLI A&A, 596, A102, (2016).
  8. Jump up Planck 2015 results. XI. Diffuse component separation: CMB maps, Planck Collaboration, 2016, A&A, 594, A9.
  9. Jump up Planck 2015 results. XXI. The integrated Sachs-Wolfe effect, Planck Collaboration, 2016, A&A, 594, A21.
  10. Jump up to: 10.010.110.2 Planck 2015 results. XXV. Diffuse low frequency Galactic foregrounds, Planck Collaboration, 2016, A&A, 594, A25.
  11. Jump up to: 11.011.111.211.311.411.511.611.7 Planck 2013 results. XI. Component separation, Planck Collaboration, 2014, A&A, 571, A11.
  12. Jump up Component separation methods for the PLANCK mission, S. M. Leach, J.-F. Cardoso, C. Baccigalupi, R. B. Barreiro, M. Betoule, J. Bobin, A. Bonaldi, J. Delabrouille, G. de Zotti, C. Dickinson, H. K. Eriksen, J. González-Nuevo, F. K. Hansen, D. Herranz, M. Le Jeune, M. López-Caniego, E. Martínez-González, M. Massardi, J.-B. Melin, M.-A. Miville-Deschênes, G. Patanchon, S. Prunet, S. Ricciardi, E. Salerno, J. L. Sanz, J.-L. Starck, F. Stivoli, V. Stolyarov, R. Stompor, P. Vielva, A&A, 491, 597-615, (2008).
  13. Jump up Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data, R. Fernández-Cobos, P. Vielva, R. B. Barreiro, E. Martínez-González, MNRAS, 420, 2162-2169, (2012).
  14. Jump up Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator, B. Casaponsa, R. B. Barreiro, A. Curto, E. Martínez-González, P. Vielva, MNRAS, 411, 2019-2025, (2011).
  15. Jump up to: 15.015.1 Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Planck Collaboration, 2014, A&A, 571, A23.
  16. Jump up to: 16.016.1 Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Planck Collaboration, 2014, A&A, 571, A19.
  17. Jump up to: 17.017.1 Planck 2013 results. XII. All-sky model of thermal dust emission, Planck Collaboration, 2014, A&A, 571, A12.
  18. Jump up Calibrating Milky Way dust extinction using cosmological sources, E. Mörtsell, A&A, 550, A80, (2013).
  19. Jump up The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release, D. P. Schneider, P. B. Hall, G. T. Richards, M. A. Strauss, D. E. Vanden Berk, S. F. Anderson, W. N. Brandt, X. Fan, S. Jester, J. Gray, J. E. Gunn, M. U. SubbaRao, A. R. Thakar, C. Stoughton, A. S. Szalay, B. Yanny, D. G. York, N. A. Bahcall, J. Barentine, M. R. Blanton, H. Brewington, J. Brinkmann, R. J. Brunner, F. J. Castander, I. Csabai, J. A. Frieman, M. Fukugita, M. Harvanek, D. W. Hogg, Z. Ivezic, S. M. Kent, S. J. Kleinman, G. R. Knapp, R. G. Kron, J. Krzesinski, D. C. Long, R. H. Lupton, A. Nitta, J. R. Pier, D. H. Saxe, Y. Shen, S. A. Snedden, D. H. Weinberg, J. Wu, ApJ, 134, 102-117, (2007).
  20. Jump up Planck 2013 results. XIII. Galactic CO emission, Planck Collaboration, 2014, A&A, 571, A13.
  21. Jump up to: 21.021.121.221.321.421.5 Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Planck Collaboration, 2014, A&A, 571, A17.

Flexible Image Transfer Specification

Full-Width-at-Half-Maximum

Cosmic Microwave background

(Hierarchical Equal Area isoLatitude Pixelation of a sphere, <ref name="Template:Gorski2005">HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ApJ, 622, 759-771, (2005).

(Planck) Low Frequency Instrument

Sunyaev-Zel'dovich

(Planck) High Frequency Instrument

Planck Legacy Archive

reduced IMO