CMB spectra and likelihood code

From Planck Legacy Archive Wiki
Revision as of 13:40, 16 July 2018 by Jtauber (talk | contribs)
Jump to: navigation, search


2018 CMB spectra[edit]

General description[edit]

TT[edit]

The Planck best-fit CMB temperature power spectrum, shown in the figure below, covers the wide range of multipoles ℓ = 2-2508. Over the multipole range ℓ = 2-29, the power spectrum is derived from the "Commander" component-separation algorithm applied to the combination of Planck 2018 temperature data between 30 and 857 GHz, the 9-year WMAP sky maps, and the 408-MHz Haslam et al. (1982) survey, including 86% of the sky (Planck-2020-A6[1]). The asymmetric error bars associated with this spectrum are the 68% confidence limits and include the uncertainties due to foreground subtraction.

For multipoles equal or greater than ℓ = 30, instead, the spectrum is derived from the "Plik" cross-half-mission likelihood Planck-2020-A5[2], with foreground and other nuisance parameters fixed to a best fit assuming the base-ΛCDM cosmology. Associated 1σ errors include beam uncertainties. Both Commander and Plik are described in more detail in the sections below.

Screen Shot 2018-07-16 at 05.51.48.png

TE, EE, and EB, BB[edit]

The Planck best-fit CMB polarization and temperature-polarization cross-correlation power spectra, shown in the figure below, cover the multipole range ℓ = 2-1996. In the multipole range 2 ≤ l ≤ 29, we plot the power spectra estimates from the SimAll likelihood (though only the EE spectrum is used in the baseline parameter analysis at l ≤ 29), see Planck-2020-A6[1]). .

Screen Shot 2018-07-16 at 05.52.35.png
Screen Shot 2018-07-16 at 05.52.24.png


In the range ℓ = 2-29, we also release the BB, and EB power spectra derived from the same maps. Error bars are given as the 68% confidence intervals as derived from the Fisher information matrix of the estimates. Analogously to the TT case, the ℓ ≥ 30 spectrum is derived from the Plik likelihood Planck-2020-A3[3] by optimally combining the spectra in the frequency range 100-217 GHz, and correcting them for unresolved foregrounds using the best-fit foreground solution from a Planck TT,TE,EE+lowP ΛCDM run.

Best-fit model[edit]

We also provide best-fit LCDM CMB power spectra from the baseline Planck TT,TE,EE+lowE+lensing. The spectra must be divided by the best-fit Planck map-based calibration parameter squared, calPlanck**2, to be compared to the coadded CMB spectra. The best-fit calPlanck value can be found in the file "COM_PowerSpect_CMB-base-plikHM_TTTEEE-lowl-lowE-lensing-minimum_R3.01.txt".

Production process[edit]

The Plik high-multipole likelihood (described in detail in Planck-2020-A5[2]) is a Gaussian approximation of the probability distributions of the TT, EE, and TE angular power spectra, with semi-analytic covariance matrices calculated assuming a fiducial cosmology. It includes multipoles in the range 30 to 2508 for TT and 30 to 1996 for TE and EE and is constructed from half-mission cross-spectra measured from the 100-, 143-, and 217-GHz HFI frequency maps. For more details see Planck-2020-A6[1].


Inputs[edit]

The T T likelihood uses four half-mission cross-spectra with different multipole cuts to avoid multipole regions where noise dominates due to the limited resolution of the beams and to en-sure foreground contamination is correctly handled by our fore-ground model: 100 × 100 ( ℓ = 30–1197); 143 × 143 (ℓ = 30– 1996); 143 × 217 (ℓ = 30–2508); and 217 × 217 (ℓ = 30–2508). The TE and EE likelihoods also include the 100 × 143 and 100 × 217 cross-spectra to improve the signal-to-noise ratio, and have different multipole cuts: 100 × 100 (ℓ = 30–999); 100 × 143 (ℓ = 30–999); 100 × 217 (ℓ = 505–999); 143 × 143 (ℓ = 30– 1996); 143 × 217 (ℓ = 505–1996); and 217 × 217 (ℓ = 505– 1996).

File names and meta-data[edit]

The CMB spectra and their uncertainties are distributed in ASCII text files named COM_PowerSpect_CMB_nn_R3.01.fits, where nn stands for the type of spectrum the file contains:

  • COM_PowerSpect_CMB-EE-full_R3.01.txt
  • COM_PowerSpect_CMB-TE-full_R3.01.txt
  • COM_PowerSpect_CMB-TT-full_R3.01.txt
  • COM_PowerSpect_CMB-low-ell-BB-full_R3.01.txt
  • COM_PowerSpect_CMB-low-ell-EB-full_R3.01.txt

In addition we provide one file containing all the parameters of the Plik runs which yielded the spectra. This file is named

  • COM_PowerSpect_CMB-base-plikHM_TTTEEE-lowl-lowE-lensing-minimum_R3.01.txt

The theoretical spectrum of the best-fit model itself is provided in a separate file named

  • COM_PowerSpect_CMB-base-plikHM_TTTEEE-lowl-lowE-lensing-minimum-theory_R3.01.txt

The data file columns give D = ℓ(ℓ+1)C / 2π in units of μK2, and the lower and upper 68% uncertainties.


2018 Likelihood[edit]

The 2018 Likelihood code will be released at a later time.

Previous Releases: (2015) and (2013) CMB spectrum and Likelihood[edit]

Expand

2015 CMB spectrum and Likelihood

Expand

2013 CMB spectrum and Likelihood


References[edit]

  1. Jump up to: 1.01.11.2 Planck 2018 results. VI. Cosmological parameters, Planck Collaboration, 2020, A&A, 641, A6.
  2. Jump up to: 2.02.1 Planck 2018 results. V. CMB Power Spectra and Likelihoods, Planck Collaboration, 2020, A&A, 641, A5.
  3. Jump up Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, Planck Collaboration, 2020, A&A, 641, A3.
  4. Jump up to: 4.04.14.24.34.44.5 Planck 2015 results. X. Diffuse component separation: Foreground maps, Planck Collaboration, 2016, A&A, 594, A10.
  5. Jump up to: 5.005.015.025.035.045.055.065.075.085.095.105.115.125.135.145.155.165.17 Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of cosmological parameters, Planck Collaboration, 2016, A&A, 594, A11.
  6. Jump up to: 6.06.16.26.36.46.5 Planck 2015 results. XIII. Cosmological parameters, Planck Collaboration, 2016, A&A, 594, A13.
  7. Jump up to: 7.007.017.027.037.047.057.067.077.087.097.107.117.12 Planck 2013 results. XV. CMB power spectra and likelihood, Planck Collaboration, 2014, A&A, 571, A15.
  8. Jump up Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beam processing, Planck Collaboration, 2016, A&A, 594, A7.
  9. Jump up Planck 2015 results. XII. Full Focal Plane Simulations, Planck Collaboration, 2016, A&A, 594, A12.
  10. Jump up to: 10.010.1 Planck 2015 results. XV. Gravitational Lensing, Planck Collaboration, 2016, A&A, 594, A15.
  11. Jump up to: 11.011.111.2 Planck 2013 results. XI. Component separation, Planck Collaboration, 2014, A&A, 571, A11.
  12. Jump up to: 12.012.112.212.3 Planck 2013 results. XVI. Cosmological parameters, Planck Collaboration, 2014, A&A, 571, A16.
  13. Jump up to: 13.013.113.2 Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Planck Collaboration, 2014, A&A, 571, A17.
  14. Jump up to: 14.014.114.2 The Atacama Cosmology Telescope: likelihood for small-scale CMB data, J. Dunkley, E. Calabrese, J. Sievers, G. E. Addison, N. Battaglia, E. S. Battistelli, J. R. Bond, S. Das, M. J. Devlin, R. Dunner, J. W. Fowler, M. Gralla, A. Hajian, M. Halpern, M. Hasselfield, A. D. Hincks, R. Hlozek, J. P. Hughes, K. D. Irwin, A. Kosowsky, T. Louis, T. A. Marriage, D. Marsden, F. Menanteau, K. Moodley, M. Niemack, M. R. Nolta, L. A. Page, B. Partridge, N. Sehgal, D. N. Spergel, S. T. Staggs, E. R. Switzer, H. Trac, E. Wollack, ArXiv e-prints, (2013).
  15. Jump up to: 15.015.1 A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, R. Keisler, C. L. Reichardt, K. A. Aird, B. A. Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H. M. Cho, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, J. Dudley, E. M. George, N. W. Halverson, G. P. Holder, W. L. Holzapfel, S. Hoover, Z. Hou, J. D. Hrubes, M. Jo, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. Luong-Van, J. J. McMahon, J. Mehl, S. S. Meyer, M. Millea, J. J. Mohr, T. E. Montroy, T. Natoli, S. Padin, T. Plagge, C. Pryke, J. E. Ruhl, K. K. Schaffer, L. Shaw, E. Shirokoff, H. G. Spieler, Z. Staniszewski, A. A. Stark, K. Story, A. van Engelen, K. Vanderlinde, J. D. Vieira, R. Williamson, O. Zahn, ApJ, 743, 28, (2011).
  16. Jump up to: 16.016.1 A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations, C. L. Reichardt, L. Shaw, O. Zahn, K. A. Aird, B. A. Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H. M. Cho, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, J. Dudley, E. M. George, N. W. Halverson, G. P. Holder, W.L. Holzapfel, S. Hoover, Z. Hou, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. Luong-Van, J. J. McMahon, J. Mehl, S. S. Meyer, M. Millea, J. J. Mohr, T. E. Montroy, T. Natoli, S. Padin, T. Plagge, C. Pryke, J. E. Ruhl, K. K. Schaffer, E. Shirokoff, H. G. Spieler, Z. Staniszewski, A. A. Stark, K. Story, A. van Engelen, K. Vanderlinde, J. D. Vieira, R. Williamson, ApJ, 755, 70, (2012).
  17. Jump up Planck 2013 results. VII. HFI time response and beams, Planck Collaboration, 2014, A&A, 571, A7.

Cosmic Microwave background

(Planck) High Frequency Instrument

Flexible Image Transfer Specification

(Planck) Low Frequency Instrument

Sunyaev-Zel'dovich

Full-Width-at-Half-Maximum