Difference between revisions of "Spectral response"

From Planck Legacy Archive Wiki
Jump to: navigation, search
(HFI Spectral Response)
Line 18: Line 18:
  
 
FIXME: Add table from HFI_SPEC_TRANS_REPORT
 
FIXME: Add table from HFI_SPEC_TRANS_REPORT
 
=== Testing the text placement pre and post tables ===
 
This is a dummy section that I created to test a bug where the text after a table was turning up before the table. 
 
 
This will be deleted once I sort this problem out. 
 
 
This text should be before the first table, table XXX.
 
{| border = 1
 
|+Table XXX: MJy/sr/KCMB unit conversion table.
 
|-
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
 
|-
 
| 100 || 00 || 1a || 238.2871 ± 0.5039
 
|-
 
| 100 || 01 || 1b || 241.8530 ± 0.4899
 
|-
 
| 100 || 20 || 2a || 244.2375 ± 0.5301
 
|-
 
| 100 || 21 || 2b || 243.3572 ± 0.5621
 
|-
 
| 100 || 40 || 3a || 246.0715 ± 0.5254
 
|-
 
| 100 || 41 || 3b || 240.1739 ± 0.5075
 
|-
 
| 100 || 80 || 4a || 246.7316 ± 0.5607
 
|-
 
| 100 || 81 || 4b || 247.6289 ± 0.5442
 
|-
 
| 100 || 100 || avg || 244.0960 ± 0.2170
 
|-
 
|}
 
 
This text should be after the first table (XXX) and before the second (YYY)
 
 
{| border = 1
 
|+Table YYY: MJy/sr to Tb unit conversion.
 
|-
 
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
 
|-
 
| 100 || 100 || avg || 0.0032548074
 
|-
 
| 143 || 143 || avg || 0.0015916707
 
|-
 
| 217 || 217 || avg || 0.00069120334
 
|-
 
| 353 || 353 || avg || 0.00026120163
 
|-
 
| 545 || 545 || avg || 0.00010958025
 
|-
 
| 857 || 857 || avg || 4.4316316e-05
 
|}
 
 
This text is after the second table (YYY) and before the third (ZZZ).
 
 
{| border = 1
 
|+Table ZZZ: KCMB to ySZ unit conversion
 
|-
 
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
 
|-
 
| 100 || 00 || 1a || -0.2461 ± 0.0001
 
|-
 
| 100 || 01 || 1b || -0.2470 ± 0.0001
 
|-
 
| 100 || 20 || 2a || -0.2483 ± 0.0001
 
|-
 
| 100 || 21 || 2b || -0.2480 ± 0.0001
 
|-
 
| 100 || 40 || 3a || -0.2487 ± 0.0001
 
|-
 
| 100 || 41 || 3b || -0.2469 ± 0.0001
 
|-
 
| 100 || 80 || 4a || -0.2491 ± 0.0001
 
|-
 
| 100 || 81 || 4b || -0.2492 ± 0.0001
 
|-
 
| 100 || 100 || avg || -0.2481 ± 5.2679e-05
 
|}
 
 
This text is after all of the tables.
 
  
 
=== Unit Conversion Tables ===
 
=== Unit Conversion Tables ===
Line 104: Line 25:
  
 
{| border = 1
 
{| border = 1
|+Table XX: MJy/sr/KCMB unit conversion table.
+
|+Table 1: MJy/sr/KCMB unit conversion table.
 
|-
 
|-
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
Line 228: Line 149:
 
The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.  
 
The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.  
  
Table YY: MJy/sr to Tb unit conversion.
 
 
{| border = 1
 
{| border = 1
|+
+
|+ Table 2: MJy/sr to Tb unit conversion.
 
|-
 
|-
 
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
 
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
Line 251: Line 171:
 
The following is for the SZ coefficients.
 
The following is for the SZ coefficients.
  
 
 
Table ZZ: KCMB to ySZ unit conversion
 
 
{| border = 1
 
{| border = 1
|+
+
|+Table 3: KCMB to ySZ unit conversion
 
|-
 
|-
 
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
 
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
Line 381: Line 298:
  
 
{| border = 1
 
{| border = 1
|+ CC Table
+
|+ Table: 4: Powerlaw / Spectral Index Colour Correction Coefficient Table <div id="tab:CC"></div>
 
|-
 
|-
| Band (GHz) || BC || Det. || F'_CC_', S.I.: -2 || -1 || 0 || 1 || 2
+
|-
 +
| Band (GHz) || BC || Det. || F'_CC_', S.I.: -2 || -1 || 0 || 1 || 2 || 3 || 4
 
|-
 
|-
  
| 100 || 00 || 1a || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025
+
| 100 || 00 || 1a || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025 || 0.97303 ± 0.00334 || 0.94693 ± 0.00418
 
|-
 
|-
| 100 || 01 || 1b || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025
+
| 100 || 01 || 1b || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025 || 0.95048 ± 0.00330 || 0.91979 ± 0.00416
 
|-
 
|-
| 100 || 20 || 2a || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027
+
| 100 || 20 || 2a || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027 || 0.92957 ± 0.00359 || 0.89055 ± 0.00457
 
|-
 
|-
| 100 || 21 || 2b || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028
+
| 100 || 21 || 2b || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028 || 0.93578 ± 0.00374 || 0.89865 ± 0.00472
 
|-
 
|-
| 100 || 40 || 3a || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027
+
| 100 || 40 || 3a || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027 || 0.91919 ± 0.00357 || 0.87887 ± 0.00453
 
|-
 
|-
| 100 || 41 || 3b || 0.9887 ± 0.0009 || 1 || 1.0026 ± 0.0009 || 0.9964 ± 0.0017 || 0.9814 ± 0.0026
+
| 100 || 41 || 3b || 0.9887 ± 0.0009 || 1 || 1.0026 ± 0.0009 || 0.9964 ± 0.0017 || 0.9814 ± 0.0026 || 0.95797 ± 0.00344 || 0.92666 ± 0.00432
 
|-
 
|-
| 100 || 80 || 4a || 0.9980 ± 0.0010 || 1 || 0.9923 ± 0.0009 || 0.9751 ± 0.0019 || 0.9486 ± 0.0028
+
| 100 || 80 || 4a || 0.9980 ± 0.0010 || 1 || 0.9923 ± 0.0009 || 0.9751 ± 0.0019 || 0.9486 ± 0.0028 || 0.91377 ± 0.00383 || 0.87135 ± 0.00488
 
|-
 
|-
| 100 || 81 || 4b || 0.9995 ± 0.0009 || 1 || 0.9908 ± 0.0009 || 0.9722 ± 0.0018 || 0.9447 ± 0.0028
+
| 100 || 81 || 4b || 0.9995 ± 0.0009 || 1 || 0.9908 ± 0.0009 || 0.9722 ± 0.0018 || 0.9447 ± 0.0028 || 0.90909 ± 0.00373 || 0.86633 ± 0.00475
 
|-
 
|-
| 100 || 100 || avg || 0.9943 ± 0.0004 || 1 || 0.9964 ± 0.0004 || 0.9835 ± 0.0007 || 0.9617 ± 0.0011
+
| 100 || 100 || avg || 0.9943 ± 0.0004 || 1 || 0.9964 ± 0.0004 || 0.9835 ± 0.0007 || 0.9617 ± 0.0011 || 0.93158 ± 0.00144 || 0.89381 ± 0.00182
 
|-
 
|-
  
| 143 || 02 || 1a || 0.97263 ± 0.00024 || 1 || 1.01872 ± 0.00023 || 1.02801 ± 0.00045 || 1.02743 ± 0.00067
+
| 143 || 02 || 1a || 0.97263 ± 0.00024 || 1 || 1.01872 ± 0.00023 || 1.02801 ± 0.00045 || 1.02743 ± 0.00067 || 1.01688 ± 0.00089 || 0.99662 ± 0.00111
 
|-
 
|-
| 143 || 03 || 1b || 0.97677 ± 0.00025 || 1 || 1.01443 ± 0.00024 || 1.01949 ± 0.00047 || 1.01492 ± 0.00069
+
| 143 || 03 || 1b || 0.97677 ± 0.00025 || 1 || 1.01443 ± 0.00024 || 1.01949 ± 0.00047 || 1.01492 ± 0.00069 || 1.00082 ± 0.00091 || 0.97759 ± 0.00114
 
|-
 
|-
| 143 || 30 || 2a || 0.97272 ± 0.00026 || 1 || 1.01834 ± 0.00024 || 1.02703 ± 0.00047 || 1.02566 ± 0.00069
+
| 143 || 30 || 2a || 0.97272 ± 0.00026 || 1 || 1.01834 ± 0.00024 || 1.02703 ± 0.00047 || 1.02566 ± 0.00069 || 1.01422 ± 0.00092 || 0.99300 ± 0.00114
 
|-
 
|-
| 143 || 31 || 2b || 0.97820 ± 0.00024 || 1 || 1.01294 ± 0.00022 || 1.01653 ± 0.00044 || 1.01056 ± 0.00065
+
| 143 || 31 || 2b || 0.97820 ± 0.00024 || 1 || 1.01294 ± 0.00022 || 1.01653 ± 0.00044 || 1.01056 ± 0.00065 || 0.99516 ± 0.00086 || 0.97074 ± 0.00108
 
|-
 
|-
| 143 || 50 || 3a || 0.96420 ± 0.00026 || 1 || 1.02753 ± 0.00025 || 1.04577 ± 0.00048 || 1.05402 ± 0.00071
+
| 143 || 50 || 3a || 0.96420 ± 0.00026 || 1 || 1.02753 ± 0.00025 || 1.04577 ± 0.00048 || 1.05402 ± 0.00071 || 1.05201 ± 0.00094 || 1.03976 ± 0.00117
 
|-
 
|-
| 143 || 51 || 3b || 0.97178 ± 0.00026 || 1 || 1.01941 ± 0.00024 || 1.02926 ± 0.00047 || 1.02918 ± 0.00069
+
| 143 || 51 || 3b || 0.97178 ± 0.00026 || 1 || 1.01941 ± 0.00024 || 1.02926 ± 0.00047 || 1.02918 ± 0.00069 || 1.01915 ± 0.00092 || 0.99948 ± 0.00114
 
|-
 
|-
| 143 || 82 || 4a || 0.97836 ± 0.00025 || 1 || 1.01212 ± 0.00024 || 1.01421 ± 0.00047 || 1.00611 ± 0.00069
+
| 143 || 82 || 4a || 0.97836 ± 0.00025 || 1 || 1.01212 ± 0.00024 || 1.01421 ± 0.00047 || 1.00611 ± 0.00069 || 0.98805 ± 0.00092 || 0.96062 ± 0.00116
 
|-
 
|-
| 143 || 83 || 4b || 0.97609 ± 0.00025 || 1 || 1.01513 ± 0.00023 || 1.02093 ± 0.00046 || 1.01721 ± 0.00068
+
| 143 || 83 || 4b || 0.97609 ± 0.00025 || 1 || 1.01513 ± 0.00023 || 1.02093 ± 0.00046 || 1.01721 ± 0.00068 || 1.00405 ± 0.00090 || 0.98188 ± 0.00113
 
|-
 
|-
| 143 || 10 || 5 || 0.99048 ± 0.00023 || 1 || 1.00048 ± 0.00022 || 0.99189 ± 0.00043 || 0.97451 ± 0.00064
+
| 143 || 10 || 5 || 0.99048 ± 0.00023 || 1 || 1.00048 ± 0.00022 || 0.99189 ± 0.00043 || 0.97451 ± 0.00064 || 0.94888 ± 0.00085 || 0.91575 ± 0.00107
 
|-
 
|-
| 143 || 42 || 6 || 0.98148 ± 0.00024 || 1 || 1.00943 ± 0.00023 || 1.00943 ± 0.00045 || 0.99996 ± 0.00067
+
| 143 || 42 || 6 || 0.98148 ± 0.00024 || 1 || 1.00943 ± 0.00023 || 1.00943 ± 0.00045 || 0.99996 ± 0.00067 || 0.98129 ± 0.00089 || 0.95395 ± 0.00111
 
|-
 
|-
| 143 || 60 || 7 || 0.99192 ± 0.00024 || 1 || 0.99900 ± 0.00023 || 0.98892 ± 0.00045 || 0.97009 ± 0.00067
+
| 143 || 60 || 7 || 0.99192 ± 0.00024 || 1 || 0.99900 ± 0.00023 || 0.98892 ± 0.00045 || 0.97009 ± 0.00067 || 0.94312 ± 0.00089 || 0.90883 ± 0.00113
 
|-
 
|-
| 143 || 70 || 8 || 0.98488 ± 0.00025 || 1 || 1.00574 ± 0.00024 || 1.00188 ± 0.00047 || 0.98858 ± 0.00069
+
| 143 || 70 || 8 || 0.98488 ± 0.00025 || 1 || 1.00574 ± 0.00024 || 1.00188 ± 0.00047 || 0.98858 ± 0.00069 || 0.96627 ± 0.00092 || 0.93573 ± 0.00116
 
|-
 
|-
| 143 || 143 || avg || 0.97935 ± 0.0000772811 || 1 || 1.01158 ± 0.0000731485 || 1.01364 ± 0.00014 || 1.00607 ± 0.00021
+
| 143 || 143 || avg || 0.97935 ± 0.0000772811 || 1 || 1.01158 ± 0.0000731485 || 1.01364 ± 0.00014 || 1.00607 ± 0.00021 || 0.98907 ± 0.00028 || 0.96318 ± 0.00036
 
|-
 
|-
  
| 217 || 04 || 1 || 1.01104 ± 0.000054 || 1 || 0.98146 ± 0.000054 || 0.95584 ± 0.00011 || 0.92373 ± 0.00017
+
| 217 || 04 || 1 || 1.01104 ± 0.000054 || 1 || 0.98146 ± 0.000054 || 0.95584 ± 0.00011 || 0.92373 ± 0.00017 || 0.88587 ± 0.00023 || 0.84309 ± 0.00031
 
|-
 
|-
| 217 || 22 || 2 || 1.01214 ± 0.000056 || 1 || 0.97999 ± 0.000057 || 0.95264 ± 0.00012 || 0.91866 ± 0.00018
+
| 217 || 22 || 2 || 1.01214 ± 0.000056 || 1 || 0.97999 ± 0.000057 || 0.95264 ± 0.00012 || 0.91866 ± 0.00018 || 0.87891 ± 0.00025 || 0.83436 ± 0.00032
 
|-
 
|-
| 217 || 52 || 3 || 1.01277 ± 0.000054 || 1 || 0.97995 ± 0.000054 || 0.95309 ± 0.00011 || 0.92006 ± 0.00017
+
| 217 || 52 || 3 || 1.01277 ± 0.000054 || 1 || 0.97995 ± 0.000054 || 0.95309 ± 0.00011 || 0.92006 ± 0.00017 || 0.88163 ± 0.00023 || 0.83866 ± 0.00031
 
|-
 
|-
| 217 || 84 || 4 || 1.01091 ± 0.000053 || 1 || 0.98175 ± 0.000054 || 0.95655 ± 0.00011 || 0.92496 ± 0.00017
+
| 217 || 84 || 4 || 1.01091 ± 0.000053 || 1 || 0.98175 ± 0.000054 || 0.95655 ± 0.00011 || 0.92496 ± 0.00017 || 0.88767 ± 0.00023 || 0.84549 ± 0.00031
 
|-
 
|-
| 217 || 11 || 5a || 0.99803 ± 0.000060 || 1 || 0.99318 ± 0.000059 || 0.97777 ± 0.00012 || 0.95421 ± 0.00018
+
| 217 || 11 || 5a || 0.99803 ± 0.000060 || 1 || 0.99318 ± 0.000059 || 0.97777 ± 0.00012 || 0.95421 ± 0.00018 || 0.92318 ± 0.00025 || 0.88554 ± 0.00032
 
|-
 
|-
| 217 || 12 || 5b || 0.99929 ± 0.000059 || 1 || 0.99202 ± 0.000058 || 0.97559 ± 0.00012 || 0.95120 ± 0.00018
+
| 217 || 12 || 5b || 0.99929 ± 0.000059 || 1 || 0.99202 ± 0.000058 || 0.97559 ± 0.00012 || 0.95120 ± 0.00018 || 0.91956 ± 0.00024 || 0.88156 ± 0.00031
 
|-
 
|-
| 217 || 43 || 6a || 0.99908 ± 0.000059 || 1 || 0.99220 ± 0.000058 || 0.97593 ± 0.00012 || 0.95167 ± 0.00018
+
| 217 || 43 || 6a || 0.99908 ± 0.000059 || 1 || 0.99220 ± 0.000058 || 0.97593 ± 0.00012 || 0.95167 ± 0.00018 || 0.92012 ± 0.00024 || 0.88214 ± 0.00032
 
|-
 
|-
| 217 || 44 || 6b || 0.99907 ± 0.000059 || 1 || 0.99219 ± 0.000058 || 0.97592 ± 0.00012 || 0.95169 ± 0.00018
+
| 217 || 44 || 6b || 0.99907 ± 0.000059 || 1 || 0.99219 ± 0.000058 || 0.97592 ± 0.00012 || 0.95169 ± 0.00018 || 0.92028 ± 0.00024 || 0.88257 ± 0.00031
 
|-
 
|-
| 217 || 61 || 7a || 1.00045 ± 0.000056 || 1 || 0.99121 ± 0.000055 || 0.97430 ± 0.00011 || 0.94973 ± 0.00017
+
| 217 || 61 || 7a || 1.00045 ± 0.000056 || 1 || 0.99121 ± 0.000055 || 0.97430 ± 0.00011 || 0.94973 ± 0.00017 || 0.91817 ± 0.00023 || 0.88046 ± 0.00030
 
|-
 
|-
| 217 || 62 || 7b || 0.99824 ± 0.000059 || 1 || 0.99328 ± 0.000058 || 0.97826 ± 0.00012 || 0.95537 ± 0.00018
+
| 217 || 62 || 7b || 0.99824 ± 0.000059 || 1 || 0.99328 ± 0.000058 || 0.97826 ± 0.00012 || 0.95537 ± 0.00018 || 0.92529 ± 0.00024 || 0.88885 ± 0.00031
 
|-
 
|-
| 217 || 71 || 8a || 0.99810 ± 0.000060 || 1 || 0.99293 ± 0.000059 || 0.97713 ± 0.00012 || 0.95308 ± 0.00018
+
| 217 || 71 || 8a || 0.99810 ± 0.000060 || 1 || 0.99293 ± 0.000059 || 0.97713 ± 0.00012 || 0.95308 ± 0.00018 || 0.92152 ± 0.00025 || 0.88334 ± 0.00032
 
|-
 
|-
| 217 || 72 || 8b || 0.99984 ± 0.000057 || 1 || 0.99161 ± 0.000056 || 0.97493 ± 0.00011 || 0.95048 ± 0.00017
+
| 217 || 72 || 8b || 0.99984 ± 0.000057 || 1 || 0.99161 ± 0.000056 || 0.97493 ± 0.00011 || 0.95048 ± 0.00017 || 0.91897 ± 0.00023 || 0.88126 ± 0.00030
 
|-
 
|-
| 217 || 217 || avg || 1.00607 ± 0.000018 || 1 || 0.98586 ± 0.000018 || 0.96403 ± 0.000036 || 0.93508 ± 0.000055
+
| 217 || 217 || avg || 1.00607 ± 0.000018 || 1 || 0.98586 ± 0.000018 || 0.96403 ± 0.000036 || 0.93508 ± 0.000055 || 0.89977 ± 0.0000762557 || 0.85897 ± 0.0000999621
 
|-
 
|-
  
| 353 || 05 || 1 || 1.00515 ± 0.000041 || 1 || 0.98729 ± 0.000041 || 0.96731 ± 0.000083 || 0.94058 ± 0.00013
+
| 353 || 05 || 1 || 1.00515 ± 0.000041 || 1 || 0.98729 ± 0.000041 || 0.96731 ± 0.000083 || 0.94058 ± 0.00013 || 0.90776 ± 0.00018 || 0.86965 ± 0.00023
 
|-
 
|-
| 353 || 13 || 2 || 1.00617 ± 0.000042 || 1 || 0.98602 ± 0.000043 || 0.96453 ± 0.000087 || 0.93604 ± 0.00013
+
| 353 || 13 || 2 || 1.00617 ± 0.000042 || 1 || 0.98602 ± 0.000043 || 0.96453 ± 0.000087 || 0.93604 ± 0.00013 || 0.90128 ± 0.00019 || 0.86111 ± 0.00024
 
|-
 
|-
| 353 || 23 || 3a || 1.00498 ± 0.000052 || 1 || 0.98835 ± 0.000051 || 0.97024 ± 0.000100 || 0.94602 ± 0.00015
+
| 353 || 23 || 3a || 1.00498 ± 0.000052 || 1 || 0.98835 ± 0.000051 || 0.97024 ± 0.000100 || 0.94602 ± 0.00015 || 0.91620 ± 0.00021 || 0.88141 ± 0.00027
 
|-
 
|-
| 353 || 24 || 3b || 1.00404 ± 0.000042 || 1 || 0.98875 ± 0.000043 || 0.97046 ± 0.000088 || 0.94549 ± 0.00014
+
| 353 || 24 || 3b || 1.00404 ± 0.000042 || 1 || 0.98875 ± 0.000043 || 0.97046 ± 0.000088 || 0.94549 ± 0.00014 || 0.91438 ± 0.00019 || 0.87780 ± 0.00025
 
|-
 
|-
| 353 || 32 || 4a || 1.01332 ± 0.000040 || 1 || 0.98071 ± 0.000042 || 0.95573 ± 0.000085 || 0.92551 ± 0.00013
+
| 353 || 32 || 4a || 1.01332 ± 0.000040 || 1 || 0.98071 ± 0.000042 || 0.95573 ± 0.000085 || 0.92551 ± 0.00013 || 0.89056 ± 0.00018 || 0.85151 ± 0.00024
 
|-
 
|-
| 353 || 33 || 4b || 1.01220 ± 0.000041 || 1 || 0.98127 ± 0.000043 || 0.95631 ± 0.000088 || 0.92561 ± 0.00014
+
| 353 || 33 || 4b || 1.01220 ± 0.000041 || 1 || 0.98127 ± 0.000043 || 0.95631 ± 0.000088 || 0.92561 ± 0.00014 || 0.88977 ± 0.00019 || 0.84951 ± 0.00025
 
|-
 
|-
| 353 || 53 || 5a || 1.00016 ± 0.000043 || 1 || 0.99191 ± 0.000043 || 0.97608 ± 0.000088 || 0.95292 ± 0.00013
+
| 353 || 53 || 5a || 1.00016 ± 0.000043 || 1 || 0.99191 ± 0.000043 || 0.97608 ± 0.000088 || 0.95292 ± 0.00013 || 0.92307 ± 0.00018 || 0.88730 ± 0.00024
 
|-
 
|-
| 353 || 54 || 5b || 0.99946 ± 0.000044 || 1 || 0.99213 ± 0.000044 || 0.97600 ± 0.000090 || 0.95198 ± 0.00014
+
| 353 || 54 || 5b || 0.99946 ± 0.000044 || 1 || 0.99213 ± 0.000044 || 0.97600 ± 0.000090 || 0.95198 ± 0.00014 || 0.92072 ± 0.00019 || 0.88306 ± 0.00025
 
|-
 
|-
| 353 || 63 || 6a || 1.00364 ± 0.000052 || 1 || 0.98856 ± 0.000052 || 0.96957 ± 0.00011 || 0.94351 ± 0.00016
+
| 353 || 63 || 6a || 1.00364 ± 0.000052 || 1 || 0.98856 ± 0.000052 || 0.96957 ± 0.00011 || 0.94351 ± 0.00016 || 0.91103 ± 0.00023 || 0.87296 ± 0.00030
 
|-
 
|-
| 353 || 64 || 6b || 0.99521 ± 0.000048 || 1 || 0.99812 ± 0.000049 || 0.98954 ± 0.000098 || 0.97439 ± 0.00015
+
| 353 || 64 || 6b || 0.99521 ± 0.000048 || 1 || 0.99812 ± 0.000049 || 0.98954 ± 0.000098 || 0.97439 ± 0.00015 || 0.95298 ± 0.00021 || 0.92575 ± 0.00027
 
|-
 
|-
| 353 || 45 || 7 || 1.01512 ± 0.000058 || 1 || 0.97828 ± 0.000056 || 0.95040 ± 0.00011 || 0.91695 ± 0.00017
+
| 353 || 45 || 7 || 1.01512 ± 0.000058 || 1 || 0.97828 ± 0.000056 || 0.95040 ± 0.00011 || 0.91695 ± 0.00017 || 0.87863 ± 0.00023 || 0.83621 ± 0.00030
 
|-
 
|-
| 353 || 85 || 8 || 1.01821 ± 0.000045 || 1 || 0.97446 ± 0.000047 || 0.94216 ± 0.000098 || 0.90384 ± 0.00016
+
| 353 || 85 || 8 || 1.01821 ± 0.000045 || 1 || 0.97446 ± 0.000047 || 0.94216 ± 0.000098 || 0.90384 ± 0.00016 || 0.86040 ± 0.00022 || 0.81279 ± 0.00030
 
|-
 
|-
| 353 || 353 || avg || 1.00811 ± 0.000016 || 1 || 0.98449 ± 0.000017 || 0.96190 ± 0.000034 || 0.93276 ± 0.000052
+
| 353 || 353 || avg || 1.00811 ± 0.000016 || 1 || 0.98449 ± 0.000017 || 0.96190 ± 0.000034 || 0.93276 ± 0.000052 || 0.89776 ± 0.0000716970 || 0.85770 ± 0.0000943816
 
|-
 
|-
  
| 545 || 14 || 1 || 1.00706 ± 0.00018 || 1 || 0.98297 ± 0.00011 || 0.95694 ± 0.00017 || 0.92302 ± 0.00023
+
| 545 || 14 || 1 || 1.00706 ± 0.00018 || 1 || 0.98297 ± 0.00011 || 0.95694 ± 0.00017 || 0.92302 ± 0.00023 || 0.88254 ± 0.00027 || 0.83687 ± 0.00032
 
|-
 
|-
| 545 || 34 || 2 || 0.99997 ± 0.00016 || 1 || 0.98982 ± 0.000097 || 0.97015 ± 0.00016 || 0.94196 ± 0.00021
+
| 545 || 34 || 2 || 0.99997 ± 0.00016 || 1 || 0.98982 ± 0.000097 || 0.97015 ± 0.00016 || 0.94196 ± 0.00021 || 0.90642 ± 0.00025 || 0.86485 ± 0.00029
 
|-
 
|-
| 545 || 55 || 3 || 1.00355 ± 0.00031 || 1 || 0.98686 ± 0.00018 || 0.96491 ± 0.00029 || 0.93512 ± 0.00037
+
| 545 || 55 || 3 || 1.00355 ± 0.00031 || 1 || 0.98686 ± 0.00018 || 0.96491 ± 0.00029 || 0.93512 ± 0.00037 || 0.89862 ± 0.00043 || 0.85665 ± 0.00048
 
|-
 
|-
| 545 || 73 || 4 || 1.00276 ± 0.00019 || 1 || 0.98774 ± 0.00011 || 0.96673 ± 0.00018 || 0.93790 ± 0.00023
+
| 545 || 73 || 4 || 1.00276 ± 0.00019 || 1 || 0.98774 ± 0.00011 || 0.96673 ± 0.00018 || 0.93790 ± 0.00023 || 0.90233 ± 0.00028 || 0.86123 ± 0.00032
 
|-
 
|-
| 545 || 545 || avg || 1.00316 ± 0.000100 || 1 || 0.98693 ± 0.000060 || 0.96474 ± 0.000100 || 0.93445 ± 0.00013
+
| 545 || 545 || avg || 1.00316 ± 0.000100 || 1 || 0.98693 ± 0.000060 || 0.96474 ± 0.000100 || 0.93445 ± 0.00013 || 0.89725 ± 0.00015 || 0.85444 ± 0.00018
 
|-
 
|-
  
| 857 || 25 || 1 || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025
+
| 857 || 25 || 1 || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025 || 0.97303 ± 0.00334 || 0.94693 ± 0.00418
 
|-
 
|-
| 857 || 35 || 2 || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025
+
| 857 || 35 || 2 || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025 || 0.95048 ± 0.00330 || 0.91979 ± 0.00416
 
|-
 
|-
| 857 || 65 || 3 || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027
+
| 857 || 65 || 3 || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027 || 0.92957 ± 0.00359 || 0.89055 ± 0.00457
 
|-
 
|-
| 857 || 74 || 4 || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028
+
| 857 || 74 || 4 || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028 || 0.93578 ± 0.00374 || 0.89865 ± 0.00472
 
|-
 
|-
| 857 || 857 || avg || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027
+
| 857 || 857 || avg || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027 || 0.91919 ± 0.00357 || 0.87887 ± 0.00453
 
|-
 
|-
 +
|}
 +
  
 
=== Colour Correction, Modified Blackbody ===
 
=== Colour Correction, Modified Blackbody ===
Line 517: Line 437:
  
 
{| border = 1
 
{| border = 1
|+ Title
+
|+ Table 5: CO unit conversion coefficients for the various HFI detectors and channel-averages
 
|-
 
|-
 
| Band (GHz) || BC || Det. || CO line || F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] || F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s]
 
| Band (GHz) || BC || Det. || CO line || F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] || F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s]
Line 713: Line 633:
 
|-
 
|-
 
| 857 || 857 || avg || J9-8 || 4998.3 ± 131.9 || 88290.3 ± 821.8
 
| 857 || 857 || avg || J9-8 || 4998.3 ± 131.9 || 88290.3 ± 821.8
|-
+
|}
  
 
=== Planet Colour Correction ===
 
=== Planet Colour Correction ===

Revision as of 17:43, 7 February 2013

HFI Spectral Response[edit]

This section outlines the unit conversion and colour correction protocol for Planck/HFI. Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper). Some of the checks on the unit conversion and colour correction coefficients will be described here also. Planet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section). There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here. The PLA UcCC subsection is primarily to introduce the software tools.

The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file [FIXME].

FIXME: insert figure.

The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges. The figure below demonstrates the stability in the integral once a sufficient data range has been employed. The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.

FIXME: insert figure showing integral flattening once the range hs extended sufficiently out of band.

The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average. Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region. The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky map. Future analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).

FIXME: include detector weight histogram plots.

The following table presents basic characteristics of the HFI detector spectral repsonse, inclusing optical efficiency, effective frequency, etc.

FIXME: Add table from HFI_SPEC_TRANS_REPORT

Unit Conversion Tables[edit]

This section presents unit conversion coefficients for the HFI detectors (and LFI in some instances), including uncertainty estimates based on the uncertainty of the HFI detector spectral response. The derivation of the unit conversion coefficients is provided in planck2013-p02d.


Table 1: MJy/sr/KCMB unit conversion table.
Band (GHz) BC Det. U_C [MJy/sr/K'_CMB_']
100 00 1a 238.2871 ± 0.5039
100 01 1b 241.8530 ± 0.4899
100 20 2a 244.2375 ± 0.5301
100 21 2b 243.3572 ± 0.5621
100 40 3a 246.0715 ± 0.5254
100 41 3b 240.1739 ± 0.5075
100 80 4a 246.7316 ± 0.5607
100 81 4b 247.6289 ± 0.5442
100 100 avg 244.0960 ± 0.2170
143 02 1a 366.4108 ± 0.1726
143 03 1b 369.5905 ± 0.1823
143 30 2a 366.7249 ± 0.1788
143 31 2b 370.7001 ± 0.1703
143 50 3a 360.0418 ± 0.1892
143 51 3b 365.9529 ± 0.1835
143 82 4a 371.3469 ± 0.1811
143 83 4b 369.0953 ± 0.1758
143 10 5 380.1162 ± 0.1659
143 42 6 373.3413 ± 0.1744
143 60 7 381.2511 ± 0.1745
143 70 8 376.1461 ± 0.1777
143 143 avg 371.7327 ± 0.0558
217 04 1 486.0322 ± 0.0252
217 22 2 486.4008 ± 0.0262
217 52 3 486.8924 ± 0.0257
217 84 4 486.0164 ± 0.0248
217 11 5a 479.8049 ± 0.0286
217 12 5b 480.4364 ± 0.0280
217 43 6a 480.3416 ± 0.0281
217 44 6b 480.3544 ± 0.0284
217 61 7a 481.0486 ± 0.0265
217 62 7b 480.0012 ± 0.0283
217 71 8a 479.8096 ± 0.0289
217 72 8b 480.7686 ± 0.0271
217 217 avg 483.6874 ± 0.0084
353 05 1 288.4183 ± 0.0150
353 13 2 287.8701 ± 0.0158
353 23 3a 289.2493 ± 0.0176
353 24 3b 289.1951 ± 0.0159
353 32 4a 286.6167 ± 0.0155
353 33 4b 286.5976 ± 0.0161
353 53 5a 289.9808 ± 0.0157
353 54 5b 289.9004 ± 0.0161
353 63 6a 288.8151 ± 0.0190
353 64 6b 292.8348 ± 0.0179
353 45 7 285.3414 ± 0.0192
353 85 8 283.5120 ± 0.0177
353 353 avg 287.4517 ± 0.0061
545 14 1 57.0831 ± 0.0343
545 34 2 58.8825 ± 0.0320
545 55 3 57.8794 ± 0.0595
545 73 4 58.0595 ± 0.0368
545 545 avg 58.0356 ± 0.0199
857 25 1 2.1891 ± 0.0391
857 35 2 2.3457 ± 0.0323
857 65 3 2.2133 ± 0.0363
857 74 4 2.4022 ± 0.0402
857 857 avg 2.2681 ± 0.0188

The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.

Table 2: MJy/sr to Tb unit conversion.
Band (GHz) BC Det. U_C [K'_RJ_'/(MJy/sr)]
100 100 avg 0.0032548074
143 143 avg 0.0015916707
217 217 avg 0.00069120334
353 353 avg 0.00026120163
545 545 avg 0.00010958025
857 857 avg 4.4316316e-05


The following is for the SZ coefficients.

Table 3: KCMB to ySZ unit conversion
Band (GHz) BC Det. U_C [y'_SZ_'/K'_CMB_']
100 00 1a -0.2461 ± 0.0001
100 01 1b -0.2470 ± 0.0001
100 20 2a -0.2483 ± 0.0001
100 21 2b -0.2480 ± 0.0001
100 40 3a -0.2487 ± 0.0001
100 41 3b -0.2469 ± 0.0001
100 80 4a -0.2491 ± 0.0001
100 81 4b -0.2492 ± 0.0001
100 100 avg -0.2481 ± 5.2679e-05
143 02 1a -0.3550 ± 0.0001
143 03 1b -0.3574 ± 0.0001
143 30 2a -0.3555 ± 0.0001
143 31 2b -0.3582 ± 0.0001
143 50 3a -0.3502 ± 0.0001
143 51 3b -0.3548 ± 0.0001
143 82 4a -0.3596 ± 0.0001
143 83 4b -0.3569 ± 0.0001
143 10 5 -0.3656 ± 0.0001
143 42 6 -0.3604 ± 0.0001
143 60 7 -0.3666 ± 0.0001
143 70 8 -0.3629 ± 0.0001
143 143 avg -0.3592 ± 4.2195e-05
217 04 1 4.3470 ± 0.0090
217 22 2 4.0275 ± 0.0081
217 52 3 4.1184 ± 0.0082
217 84 4 4.4334 ± 0.0094
217 11 5a 7.4840 ± 0.0288
217 12 5b 6.9766 ± 0.0244
217 43 6a 7.0507 ± 0.0249
217 44 6b 7.0169 ± 0.0249
217 61 7a 6.7975 ± 0.0228
217 62 7b 7.6995 ± 0.0307
217 71 8a 7.2564 ± 0.0273
217 72 8b 6.8621 ± 0.0231
217 217 avg 5.1531 ± 0.0042
353 05 1 0.1623 ± 1.7570e-05
353 13 2 0.1620 ± 1.7967e-05
353 23 3a 0.1623 ± 2.2104e-05
353 24 3b 0.1628 ± 1.8225e-05
353 32 4a 0.1589 ± 1.6673e-05
353 33 4b 0.1594 ± 1.7566e-05
353 53 5a 0.1645 ± 1.8971e-05
353 54 5b 0.1649 ± 1.9322e-05
353 63 6a 0.1630 ± 2.2397e-05
353 64 6b 0.1665 ± 2.1640e-05
353 45 7 0.1582 ± 2.4010e-05
353 85 8 0.1571 ± 1.8646e-05
353 353 avg 0.1611 ± 7.0587e-06
545 14 1 0.0688 ± 3.9623e-05
545 34 2 0.0696 ± 3.6313e-05
545 55 3 0.0690 ± 6.9471e-05
545 73 4 0.0690 ± 4.2375e-05
545 545 avg 0.0692 ± 2.2699e-05
857 25 1 0.0378 ± 0.0006
857 35 2 0.0382 ± 0.0004
857 65 3 0.0378 ± 0.0005
857 74 4 0.0382 ± 0.0005
857 857 avg 0.0380 ± 0.0003

Colour Correction, Powerlaw spectra[edit]

The following table presents colour correction coefficients for HFI (and LFI) detectors and bands. Following the table, plots are also included demonstrating the variation in colour correction coefficients within a frequency band, over a range of spectral indices.

Table: 4: Powerlaw / Spectral Index Colour Correction Coefficient Table

Band (GHz) BC Det. F'_CC_', S.I.: -2 -1 0 1 2 3 4
100 00 1a 0.9864 ± 0.0009 1 1.0055 ± 0.0009 1.0027 ± 0.0017 0.9918 ± 0.0025 0.97303 ± 0.00334 0.94693 ± 0.00418
100 01 1b 0.9925 ± 0.0009 1 0.9994 ± 0.0008 0.9908 ± 0.0017 0.9743 ± 0.0025 0.95048 ± 0.00330 0.91979 ± 0.00416
100 20 2a 0.9943 ± 0.0009 1 0.9963 ± 0.0009 0.9831 ± 0.0018 0.9606 ± 0.0027 0.92957 ± 0.00359 0.89055 ± 0.00457
100 21 2b 0.9929 ± 0.0010 1 0.9977 ± 0.0009 0.9860 ± 0.0019 0.9651 ± 0.0028 0.93578 ± 0.00374 0.89865 ± 0.00472
100 40 3a 0.9972 ± 0.0009 1 0.9933 ± 0.0009 0.9772 ± 0.0018 0.9523 ± 0.0027 0.91919 ± 0.00357 0.87887 ± 0.00453
100 41 3b 0.9887 ± 0.0009 1 1.0026 ± 0.0009 0.9964 ± 0.0017 0.9814 ± 0.0026 0.95797 ± 0.00344 0.92666 ± 0.00432
100 80 4a 0.9980 ± 0.0010 1 0.9923 ± 0.0009 0.9751 ± 0.0019 0.9486 ± 0.0028 0.91377 ± 0.00383 0.87135 ± 0.00488
100 81 4b 0.9995 ± 0.0009 1 0.9908 ± 0.0009 0.9722 ± 0.0018 0.9447 ± 0.0028 0.90909 ± 0.00373 0.86633 ± 0.00475
100 100 avg 0.9943 ± 0.0004 1 0.9964 ± 0.0004 0.9835 ± 0.0007 0.9617 ± 0.0011 0.93158 ± 0.00144 0.89381 ± 0.00182
143 02 1a 0.97263 ± 0.00024 1 1.01872 ± 0.00023 1.02801 ± 0.00045 1.02743 ± 0.00067 1.01688 ± 0.00089 0.99662 ± 0.00111
143 03 1b 0.97677 ± 0.00025 1 1.01443 ± 0.00024 1.01949 ± 0.00047 1.01492 ± 0.00069 1.00082 ± 0.00091 0.97759 ± 0.00114
143 30 2a 0.97272 ± 0.00026 1 1.01834 ± 0.00024 1.02703 ± 0.00047 1.02566 ± 0.00069 1.01422 ± 0.00092 0.99300 ± 0.00114
143 31 2b 0.97820 ± 0.00024 1 1.01294 ± 0.00022 1.01653 ± 0.00044 1.01056 ± 0.00065 0.99516 ± 0.00086 0.97074 ± 0.00108
143 50 3a 0.96420 ± 0.00026 1 1.02753 ± 0.00025 1.04577 ± 0.00048 1.05402 ± 0.00071 1.05201 ± 0.00094 1.03976 ± 0.00117
143 51 3b 0.97178 ± 0.00026 1 1.01941 ± 0.00024 1.02926 ± 0.00047 1.02918 ± 0.00069 1.01915 ± 0.00092 0.99948 ± 0.00114
143 82 4a 0.97836 ± 0.00025 1 1.01212 ± 0.00024 1.01421 ± 0.00047 1.00611 ± 0.00069 0.98805 ± 0.00092 0.96062 ± 0.00116
143 83 4b 0.97609 ± 0.00025 1 1.01513 ± 0.00023 1.02093 ± 0.00046 1.01721 ± 0.00068 1.00405 ± 0.00090 0.98188 ± 0.00113
143 10 5 0.99048 ± 0.00023 1 1.00048 ± 0.00022 0.99189 ± 0.00043 0.97451 ± 0.00064 0.94888 ± 0.00085 0.91575 ± 0.00107
143 42 6 0.98148 ± 0.00024 1 1.00943 ± 0.00023 1.00943 ± 0.00045 0.99996 ± 0.00067 0.98129 ± 0.00089 0.95395 ± 0.00111
143 60 7 0.99192 ± 0.00024 1 0.99900 ± 0.00023 0.98892 ± 0.00045 0.97009 ± 0.00067 0.94312 ± 0.00089 0.90883 ± 0.00113
143 70 8 0.98488 ± 0.00025 1 1.00574 ± 0.00024 1.00188 ± 0.00047 0.98858 ± 0.00069 0.96627 ± 0.00092 0.93573 ± 0.00116
143 143 avg 0.97935 ± 0.0000772811 1 1.01158 ± 0.0000731485 1.01364 ± 0.00014 1.00607 ± 0.00021 0.98907 ± 0.00028 0.96318 ± 0.00036
217 04 1 1.01104 ± 0.000054 1 0.98146 ± 0.000054 0.95584 ± 0.00011 0.92373 ± 0.00017 0.88587 ± 0.00023 0.84309 ± 0.00031
217 22 2 1.01214 ± 0.000056 1 0.97999 ± 0.000057 0.95264 ± 0.00012 0.91866 ± 0.00018 0.87891 ± 0.00025 0.83436 ± 0.00032
217 52 3 1.01277 ± 0.000054 1 0.97995 ± 0.000054 0.95309 ± 0.00011 0.92006 ± 0.00017 0.88163 ± 0.00023 0.83866 ± 0.00031
217 84 4 1.01091 ± 0.000053 1 0.98175 ± 0.000054 0.95655 ± 0.00011 0.92496 ± 0.00017 0.88767 ± 0.00023 0.84549 ± 0.00031
217 11 5a 0.99803 ± 0.000060 1 0.99318 ± 0.000059 0.97777 ± 0.00012 0.95421 ± 0.00018 0.92318 ± 0.00025 0.88554 ± 0.00032
217 12 5b 0.99929 ± 0.000059 1 0.99202 ± 0.000058 0.97559 ± 0.00012 0.95120 ± 0.00018 0.91956 ± 0.00024 0.88156 ± 0.00031
217 43 6a 0.99908 ± 0.000059 1 0.99220 ± 0.000058 0.97593 ± 0.00012 0.95167 ± 0.00018 0.92012 ± 0.00024 0.88214 ± 0.00032
217 44 6b 0.99907 ± 0.000059 1 0.99219 ± 0.000058 0.97592 ± 0.00012 0.95169 ± 0.00018 0.92028 ± 0.00024 0.88257 ± 0.00031
217 61 7a 1.00045 ± 0.000056 1 0.99121 ± 0.000055 0.97430 ± 0.00011 0.94973 ± 0.00017 0.91817 ± 0.00023 0.88046 ± 0.00030
217 62 7b 0.99824 ± 0.000059 1 0.99328 ± 0.000058 0.97826 ± 0.00012 0.95537 ± 0.00018 0.92529 ± 0.00024 0.88885 ± 0.00031
217 71 8a 0.99810 ± 0.000060 1 0.99293 ± 0.000059 0.97713 ± 0.00012 0.95308 ± 0.00018 0.92152 ± 0.00025 0.88334 ± 0.00032
217 72 8b 0.99984 ± 0.000057 1 0.99161 ± 0.000056 0.97493 ± 0.00011 0.95048 ± 0.00017 0.91897 ± 0.00023 0.88126 ± 0.00030
217 217 avg 1.00607 ± 0.000018 1 0.98586 ± 0.000018 0.96403 ± 0.000036 0.93508 ± 0.000055 0.89977 ± 0.0000762557 0.85897 ± 0.0000999621
353 05 1 1.00515 ± 0.000041 1 0.98729 ± 0.000041 0.96731 ± 0.000083 0.94058 ± 0.00013 0.90776 ± 0.00018 0.86965 ± 0.00023
353 13 2 1.00617 ± 0.000042 1 0.98602 ± 0.000043 0.96453 ± 0.000087 0.93604 ± 0.00013 0.90128 ± 0.00019 0.86111 ± 0.00024
353 23 3a 1.00498 ± 0.000052 1 0.98835 ± 0.000051 0.97024 ± 0.000100 0.94602 ± 0.00015 0.91620 ± 0.00021 0.88141 ± 0.00027
353 24 3b 1.00404 ± 0.000042 1 0.98875 ± 0.000043 0.97046 ± 0.000088 0.94549 ± 0.00014 0.91438 ± 0.00019 0.87780 ± 0.00025
353 32 4a 1.01332 ± 0.000040 1 0.98071 ± 0.000042 0.95573 ± 0.000085 0.92551 ± 0.00013 0.89056 ± 0.00018 0.85151 ± 0.00024
353 33 4b 1.01220 ± 0.000041 1 0.98127 ± 0.000043 0.95631 ± 0.000088 0.92561 ± 0.00014 0.88977 ± 0.00019 0.84951 ± 0.00025
353 53 5a 1.00016 ± 0.000043 1 0.99191 ± 0.000043 0.97608 ± 0.000088 0.95292 ± 0.00013 0.92307 ± 0.00018 0.88730 ± 0.00024
353 54 5b 0.99946 ± 0.000044 1 0.99213 ± 0.000044 0.97600 ± 0.000090 0.95198 ± 0.00014 0.92072 ± 0.00019 0.88306 ± 0.00025
353 63 6a 1.00364 ± 0.000052 1 0.98856 ± 0.000052 0.96957 ± 0.00011 0.94351 ± 0.00016 0.91103 ± 0.00023 0.87296 ± 0.00030
353 64 6b 0.99521 ± 0.000048 1 0.99812 ± 0.000049 0.98954 ± 0.000098 0.97439 ± 0.00015 0.95298 ± 0.00021 0.92575 ± 0.00027
353 45 7 1.01512 ± 0.000058 1 0.97828 ± 0.000056 0.95040 ± 0.00011 0.91695 ± 0.00017 0.87863 ± 0.00023 0.83621 ± 0.00030
353 85 8 1.01821 ± 0.000045 1 0.97446 ± 0.000047 0.94216 ± 0.000098 0.90384 ± 0.00016 0.86040 ± 0.00022 0.81279 ± 0.00030
353 353 avg 1.00811 ± 0.000016 1 0.98449 ± 0.000017 0.96190 ± 0.000034 0.93276 ± 0.000052 0.89776 ± 0.0000716970 0.85770 ± 0.0000943816
545 14 1 1.00706 ± 0.00018 1 0.98297 ± 0.00011 0.95694 ± 0.00017 0.92302 ± 0.00023 0.88254 ± 0.00027 0.83687 ± 0.00032
545 34 2 0.99997 ± 0.00016 1 0.98982 ± 0.000097 0.97015 ± 0.00016 0.94196 ± 0.00021 0.90642 ± 0.00025 0.86485 ± 0.00029
545 55 3 1.00355 ± 0.00031 1 0.98686 ± 0.00018 0.96491 ± 0.00029 0.93512 ± 0.00037 0.89862 ± 0.00043 0.85665 ± 0.00048
545 73 4 1.00276 ± 0.00019 1 0.98774 ± 0.00011 0.96673 ± 0.00018 0.93790 ± 0.00023 0.90233 ± 0.00028 0.86123 ± 0.00032
545 545 avg 1.00316 ± 0.000100 1 0.98693 ± 0.000060 0.96474 ± 0.000100 0.93445 ± 0.00013 0.89725 ± 0.00015 0.85444 ± 0.00018
857 25 1 0.9864 ± 0.0009 1 1.0055 ± 0.0009 1.0027 ± 0.0017 0.9918 ± 0.0025 0.97303 ± 0.00334 0.94693 ± 0.00418
857 35 2 0.9925 ± 0.0009 1 0.9994 ± 0.0008 0.9908 ± 0.0017 0.9743 ± 0.0025 0.95048 ± 0.00330 0.91979 ± 0.00416
857 65 3 0.9943 ± 0.0009 1 0.9963 ± 0.0009 0.9831 ± 0.0018 0.9606 ± 0.0027 0.92957 ± 0.00359 0.89055 ± 0.00457
857 74 4 0.9929 ± 0.0010 1 0.9977 ± 0.0009 0.9860 ± 0.0019 0.9651 ± 0.0028 0.93578 ± 0.00374 0.89865 ± 0.00472
857 857 avg 0.9972 ± 0.0009 1 0.9933 ± 0.0009 0.9772 ± 0.0018 0.9523 ± 0.0027 0.91919 ± 0.00357 0.87887 ± 0.00453


Colour Correction, Modified Blackbody[edit]

This section will present colour correction coefficients relevant for a variety of dust spectra...

CO unit conversion[edit]

This section presents the CO unit conversion coefficcients.

Table 5: CO unit conversion coefficients for the various HFI detectors and channel-averages
Band (GHz) BC Det. CO line F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s]
100 00 1a J1-0 10.87 ± 0.29 16.96 ± 0.75
100 01 1b J1-0 12.61 ± 0.27 16.40 ± 0.71
100 20 2a J1-0 14.69 ± 0.50 14.08 ± 0.61
100 21 2b J1-0 12.01 ± 0.39 17.50 ± 0.63
100 40 3a J1-0 16.36 ± 0.57 14.52 ± 0.64
100 41 3b J1-0 11.78 ± 0.48 13.78 ± 0.51
100 80 4a J1-0 19.09 ± 0.63 18.64 ± 0.79
100 81 4b J1-0 16.11 ± 0.57 17.57 ± 0.80
100 100 avg J1-0 14.78 ± 0.21 15.55 ± 0.26
143 02 1a J1-0 0.0613 ± 0.0031 0.0022 ± 5.0163e-05
143 03 1b J1-0 0.0437 ± 0.0022 0.0017 ± 5.5805e-05
143 30 2a J1-0 0.0523 ± 0.0027 0.0020 ± 0.0001
143 31 2b J1-0 0.0557 ± 0.0028 0.0022 ± 0.0001
143 50 3a J1-0 0.0881 ± 0.0045 0.0030 ± 2.3871e-05
143 51 3b J1-0 0.0737 ± 0.0036 0.0023 ± 0.0001
143 82 4a J1-0 0.0489 ± 0.0024 0.0018 ± 8.9210e-05
143 83 4b J1-0 0.0493 ± 0.0024 0.0019 ± 9.4426e-05
143 10 5 J1-0 0.0210 ± 0.0012 0.0012 ± 0.0001
143 42 6 J1-0 0.0579 ± 0.0029 0.0020 ± 0.0003
143 60 7 J1-0 0.0099 ± 0.0005 0.0005 ± 2.4544e-05
143 70 8 J1-0 0.0404 ± 0.0023 0.0018 ± 8.5655e-05
143 143 avg J1-0 0.0470 ± 0.0008 0.0018 ± 4.4951e-05
143 02 1a J2-1 0.0 ± 0.0 0.0 ± 0.0
143 03 1b J2-1 0.0 ± 0.0 0.0 ± 0.0
143 30 2a J2-1 0.0 ± 0.0 0.0 ± 0.0
143 31 2b J2-1 0.0 ± 0.0 0.0 ± 0.0
143 50 3a J2-1 0.0 ± 0.0 0.0 ± 0.0
143 51 3b J2-1 0.0 ± 0.0 0.0 ± 0.0
143 82 4a J2-1 0.0 ± 0.0 0.0 ± 0.0
143 83 4b J2-1 0.0 ± 0.0 0.0 ± 0.0
143 10 5 J2-1 0.0 ± 0.0 0.0 ± 0.0
143 42 6 J2-1 0.0 ± 0.0 0.0 ± 0.0
143 60 7 J2-1 0.0 ± 0.0 0.0 ± 0.0
143 70 8 J2-1 0.0 ± 0.0 0.0 ± 0.0
143 143 avg J2-1 0.0 ± 0.0 0.0 ± 0.0
217 04 1 J2-1 50.22 ± 0.36 34.42 ± 0.21
217 22 2 J2-1 42.47 ± 0.30 32.73 ± 0.21
217 52 3 J2-1 51.23 ± 0.35 37.37 ± 0.23
217 84 4 J2-1 47.75 ± 0.35 30.87 ± 0.19
217 11 5a J2-1 43.97 ± 0.29 35.85 ± 0.22
217 12 5b J2-1 43.68 ± 0.34 38.54 ± 0.22
217 43 6a J2-1 38.92 ± 0.30 41.21 ± 0.25
217 44 6b J2-1 40.75 ± 0.36 33.33 ± 0.21
217 61 7a J2-1 45.50 ± 0.31 41.57 ± 0.26
217 62 7b J2-1 43.58 ± 0.29 33.19 ± 0.20
217 71 8a J2-1 45.30 ± 0.31 41.48 ± 0.25
217 72 8b J2-1 41.78 ± 0.31 34.16 ± 0.21
217 217 avg J2-1 45.85 ± 0.11 35.37 ± 0.07
353 05 1 J3-2 170.3 ± 1.3 82.5 ± 0.4
353 13 2 J3-2 174.0 ± 1.3 130.8 ± 0.7
353 23 3a J3-2 185.4 ± 1.6 133.3 ± 0.8
353 24 3b J3-2 200.7 ± 1.5 166.6 ± 0.9
353 32 4a J3-2 172.9 ± 1.4 121.0 ± 0.7
353 33 4b J3-2 140.9 ± 1.3 125.2 ± 0.7
353 53 5a J3-2 150.3 ± 1.2 138.1 ± 0.7
353 54 5b J3-2 159.8 ± 1.1 143.9 ± 0.8
353 63 6a J3-2 148.9 ± 1.2 143.0 ± 0.9
353 64 6b J3-2 166.4 ± 1.5 167.1 ± 1.0
353 45 7 J3-2 196.9 ± 1.4 110.9 ± 0.6
353 85 8 J3-2 185.3 ± 1.4 99.9 ± 0.6
353 353 avg J3-2 175.1 ± 0.5 117.1 ± 0.2
545 14 1 J4-3 256.5 ± 2.5 47.8 ± 0.9
545 34 2 J4-3 268.3 ± 2.4 83.9 ± 1.0
545 55 3 J4-3 258.3 ± 3.2 59.7 ± 1.7
545 73 4 J4-3 230.7 ± 2.4 35.5 ± 1.1
545 545 avg J4-3 252.5 ± 1.4 56.9 ± 0.6
545 14 1 J5-4 2216.1 ± 11.8 1144.5 ± 6.3
545 34 2 J5-4 2281.8 ± 12.3 1422.4 ± 7.6
545 55 3 J5-4 2349.2 ± 13.4 1845.6 ± 10.4
545 73 4 J5-4 2473.6 ± 13.7 1492.2 ± 8.1
545 545 avg J5-4 2322.2 ± 7.3 1356.1 ± 4.3
857 25 1 J6-5 7794.4 ± 160.0 3264.7 ± 81.0
857 35 2 J6-5 6702.0 ± 111.9 1700.5 ± 43.7
857 65 3 J6-5 6978.7 ± 144.5 1417.9 ± 60.8
857 74 4 J6-5 7565.4 ± 145.4 1439.8 ± 57.3
857 857 avg J6-5 7217.3 ± 71.4 2016.6 ± 30.4
857 25 1 J7-6 72291.9 ± 1440.7 61488.8 ± 1186.4
857 35 2 J7-6 62775.8 ± 995.9 64156.9 ± 969.1
857 65 3 J7-6 82316.7 ± 1523.9 57721.9 ± 1029.5
857 74 4 J7-6 87556.9 ± 1619.8 63467.8 ± 1119.9
857 857 avg J7-6 74876.2 ± 694.6 61406.7 ± 545.5
857 25 1 J8-7 168443.0 ± 3337.6 136686.1 ± 2671.9
857 35 2 J8-7 145623.5 ± 2313.6 117751.3 ± 1825.7
857 65 3 J8-7 154861.1 ± 2861.8 126685.2 ± 2320.6
857 74 4 J8-7 125207.4 ± 2288.6 123683.8 ± 2230.9
857 857 avg J8-7 151726.7 ± 1398.9 126570.5 ± 1151.8
857 25 1 J9-8 4941.8 ± 242.8 102261.9 ± 2036.6
857 35 2 J9-8 5619.9 ± 238.2 80172.8 ± 1263.2
857 65 3 J9-8 6897.2 ± 301.2 100933.8 ± 1853.0
857 74 4 J9-8 144.7 ± 232.1 51734.0 ± 988.8
857 857 avg J9-8 4998.3 ± 131.9 88290.3 ± 821.8

Planet Colour Correction[edit]

As the planets within our solar system are used as calibration verification, and their spectra may deviate from the nominal Rayleigh-Jeans spectral profile, colour correction coefficients have been determined for each of the planets observed by Planck. This involves a model spectrum for each planet over the Planck Bands (cite rel. models here), and an understanding of the model uncertainties, and spectral uncertainties in order to determine the planet colour correction coefficient uncertainties. The table below summarizes the results for the planet colour correction coefficients.

FIXME: get into proper table format...

Band, BC, det., CC_SI=-2, CCE_SI=-2, CC_Mars1, CCE_Mars1, CC_Mars2, CE_Mars2, CC_Mars3, CCE_Mars3, CC_Jup, CCE_Jup, CC_Sat, CCE_Sat, CC_Ur, CCE_Ur, CC_Nep, CCE_Nep
100 00 1a       0.99179524     0.0024569372       0.99136628     0.0028896212       0.99177756     0.0027920234       0.99136832     0.0028653367       0.99192571     0.0058583181       0.99226270     0.0051635052       0.99629477      0.0023507110        1.0000696     0.0023383064
100 01 1b       0.97434212     0.0023504173       0.97375068     0.0027664805       0.97430734     0.0026726654       0.97375361     0.0027429981       0.97441599     0.0056352787       0.97488177     0.0049649349       0.98002947     0.0022491406       0.98428882     0.0022335515
100 20 2a       0.96064335     0.0024812887       0.95985742     0.0028602119       0.96059429     0.0027710572       0.95986171     0.0028382682       0.96071444     0.0056396086       0.96134048     0.0049820244       0.96809857     0.0023651134       0.97276578     0.0023474124
100 21 2b       0.96513920     0.0026154215       0.96440156     0.0029987856       0.96509400     0.0029095399       0.96440543     0.0029770927       0.96521685     0.0057557103       0.96580167     0.0050993873       0.97217979     0.0024991748       0.97658077     0.0024855546
100 40 3a       0.95227079     0.0024217183       0.95141328     0.0028267431       0.95221319     0.0027357225       0.95141775     0.0028039782       0.95231097     0.0056369281       0.95298905     0.0049778541       0.96021386     0.0023229208       0.96555618     0.0023034938
100 41 3b       0.98139440     0.0024512185       0.98083549     0.0028571474       0.98136600     0.0027636093       0.98083842     0.0028339286       0.98151075     0.0057414268       0.98195360     0.0050633475       0.98700251     0.0023420047       0.99141841     0.0023273952
100 80 4a       0.94863992     0.0025572022       0.94773453     0.0029459918       0.94857907     0.0028574219       0.94773941     0.0029242937       0.94868107     0.0056758085       0.94939951     0.0050287996       0.95702542     0.0024475671       0.96255867     0.0024264874
100 81 4b       0.94472176     0.0024347784       0.94378680     0.0028136068       0.94465704     0.0027263078       0.94379172     0.0027919631       0.94474695     0.0055351329       0.94548546     0.0048926320       0.95329271     0.0023286029       0.95886516     0.0023080312
100 100 avg       0.96201584     0.0010140989       0.96125413     0.0017473936       0.96196792     0.0016180539       0.96125815     0.0017102511       0.96208289     0.0052173339       0.96268641     0.0044916060       0.96922184     0.0010542270       0.97410782     0.0010439924
143 02 1a        1.0274279    0.00069310170        1.0273780     0.0010929967        1.0274933    0.00097577618        1.0273952     0.0010617994        1.0277801     0.0040870736        1.0280921     0.0032092061        1.0303270    0.00062520368        1.0310322    0.00063324809
143 03 1b        1.0149215    0.00070866545        1.0147696     0.0010951536        1.0149853    0.00098107888        1.0147886     0.0010647845        1.0153107     0.0040423422        1.0157214     0.0031761456        1.0191177    0.00064083408        1.0196698    0.00064901275
143 30 2a        1.0256655    0.00071856612        1.0255947     0.0011051012        1.0257319    0.00098966074        1.0256126     0.0010743671        1.0260326     0.0040969243        1.0263760     0.0032170282        1.0288763    0.00064839386        1.0296126    0.00065702576
143 31 2b        1.0105600    0.00066156375        1.0103726     0.0010564197        1.0106237    0.00094037912        1.0103925     0.0010254397        1.0109642     0.0040132254        1.0114212     0.0031483366        1.0152188    0.00059867200        1.0157617    0.00060634902
143 50 3a        1.0540337    0.00079658097        1.0542126     0.0011819005        1.0540996     0.0010655460        1.0542247     0.0011511021        1.0542895     0.0042420340        1.0543570     0.0033359408        1.0539499    0.00071486962        1.0550431    0.00072497723
143 51 3b        1.0291866    0.00073197786        1.0291488     0.0011223489        1.0292516     0.0010059919        1.0291656     0.0010913951        1.0295330     0.0041396701        1.0298255     0.0032517812        1.0319238    0.00066040360        1.0326979    0.00066937901
143 82 4a        1.0061120    0.00070379842        1.0058677     0.0010944281        1.0061800    0.00097869910        1.0058899     0.0010635565        1.0065635     0.0040824417        1.0070911     0.0032056372        1.0116784    0.00063675289        1.0122041    0.00064498270
143 83 4b        1.0172157    0.00070622867        1.0170853     0.0010920808        1.0172783    0.00097799480        1.0171036     0.0010617064        1.0175901     0.0040386342        1.0179738     0.0031726240        1.0210933    0.00063851040        1.0217136    0.00064697273
143 10 5       0.97451281    0.00060130694       0.97403771     0.0010077414       0.97457462    0.00089211065       0.97406349    0.00097678507       0.97503467     0.0038957642       0.97578047     0.0030560406       0.98294909    0.00054954842       0.98306051    0.00055596656
143 42 6       0.99996107    0.00066668980       0.99968416     0.0010573354        1.0000246    0.00094266271       0.99970596     0.0010267065        1.0004048     0.0039909943        1.0009555     0.0031324957        1.0058087    0.00060469278        1.0062450    0.00061218052
143 60 7       0.97009182    0.00063299289       0.96958024     0.0010194157       0.97015385    0.00090626054       0.96960689    0.00098909047       0.97063066     0.0039043560       0.97140874     0.0030625003       0.97902883    0.00057634869       0.97905402    0.00058285699
143 70 8       0.98857904    0.00067452972       0.98820410     0.0010585037       0.98864304    0.00094536517       0.98822818     0.0010282681       0.98906878     0.0039713907       0.98971077     0.0031178738       0.99575904    0.00061283887       0.99604248    0.00062011604
143 143 avg        1.0070824    0.00021374022        1.0068614    0.00086409244        1.0071466    0.00071705691        1.0068821    0.00082483224        1.0075044     0.0040076546        1.0079914     0.0031228747        1.0122118    0.00021344720        1.0127057    0.00021557979
217 04 1       0.92372890    0.00014543105       0.92335527    0.00024240533       0.92408488    0.00019744716       0.92346228    0.00023023603       0.92564528     0.0015701413       0.94180278     0.0010131918       0.93820450    0.00012696036       0.95279110    0.00012462523
217 22 2       0.91865604    0.00014914031       0.91825965    0.00024397324       0.91902960    0.00019988489       0.91837207    0.00023202445       0.92064935     0.0015605936       0.93711772     0.0010080980       0.93393990    0.00013062592       0.94633963    0.00012956498
217 52 3       0.92005792    0.00014369930       0.91966886    0.00024222673       0.92041646    0.00019655457       0.91977696    0.00022986870       0.92194761     0.0015838572       0.93736052     0.0010206916       0.93487937    0.00012579592       0.94856537    0.00012450449
217 84 4       0.92495519    0.00014512127       0.92458715    0.00024358886       0.92530546    0.00019787179       0.92469247    0.00023121651       0.92680837     0.0015890382       0.94232617     0.0010241088       0.93919854    0.00012648258       0.95255081    0.00012451968
217 11 5a       0.95420528    0.00016517233       0.95395616    0.00026105946       0.95451165    0.00021582053       0.95404671    0.00024877594       0.95583734     0.0016393437       0.97066825     0.0010566672       0.96523516    0.00014388767       0.97794116    0.00014047459
217 12 5b       0.95119915    0.00015741187       0.95093690    0.00025282959       0.95150918    0.00020776743       0.95102877    0.00024059837       0.95285521     0.0016138199       0.96830417     0.0010403248       0.96255440    0.00013733322       0.97546140    0.00013434738
217 43 6a       0.95166719    0.00016000513       0.95140712    0.00025615709       0.95197683    0.00021074547       0.95149881    0.00024382949       0.95328677     0.0016297876       0.96784827     0.0010497778       0.96297893    0.00013941718       0.97494109    0.00013675603
217 44 6b       0.95169507    0.00015570745       0.95143404    0.00025362596       0.95200265    0.00020740357       0.95152524    0.00024108688       0.95330789     0.0016386924       0.96815314     0.0010553470       0.96297302    0.00013603545       0.97583895    0.00013324272
217 61 7a       0.94972963    0.00015239450       0.94946246    0.00025207770       0.95003715    0.00020563156       0.94955374    0.00023950395       0.95132855     0.0016287555       0.96583873     0.0010486024       0.96112182    0.00013270037       0.97286646    0.00013022047
217 62 7b       0.95537121    0.00016113948       0.95512752    0.00026061348       0.95566714    0.00021411649       0.95521510    0.00024801275       0.95688048     0.0016560033       0.97050533     0.0010660058       0.96606477    0.00014036063       0.97712304    0.00013754722
217 71 8a       0.95308368    0.00016110231       0.95282877    0.00025768691       0.95339507    0.00021184558       0.95292085    0.00024523592       0.95473572     0.0016464027       0.96936560     0.0010603617       0.96433301    0.00014032034       0.97700981    0.00013781597
217 72 8b       0.95048294    0.00015373978       0.95021787    0.00025301486       0.95079048    0.00020692295       0.95030911    0.00024053889       0.95210122     0.0016220164       0.96627247     0.0010445368       0.96184275    0.00013405319       0.97499412    0.00013086004
217 217 avg       0.93586113    4.7378428e-05       0.93553554    0.00020323701       0.93619662    0.00014455406       0.93563585    0.00018794390       0.93763539     0.0016001360       0.95291335     0.0010263908       0.94897105    4.1318756e-05       0.96194977    4.0574860e-05
353 05 1       0.94058043    0.00011332546       0.94098217    0.00011441096       0.94141295    0.00011288488       0.94116837    0.00011387941       0.94555005    0.00037131159       0.94844667    0.00017398739       0.95501386    9.6672425e-05       0.94252929    0.00010244836
353 13 2       0.93604223    0.00011766864       0.93646791    0.00011892386       0.93692586    0.00011730590       0.93666550    0.00011836793       0.94132594    0.00037197986       0.94433250    0.00017722200       0.95137461    0.00010038591       0.93875196    0.00010586665
353 23 3a       0.94601822    0.00013419995       0.94638004    0.00013494525       0.94677116    0.00013354759       0.94654860    0.00013446058       0.95047817    0.00037504681       0.95303302    0.00018638046       0.95908115    0.00011497526       0.94912779    0.00012047238
353 24 3b       0.94549039    0.00012107755       0.94587698    0.00012181912       0.94628057    0.00012041895       0.94605316    0.00012132239       0.95024077    0.00037357867       0.95295610    0.00017785405       0.95904147    0.00010291203       0.94782372    0.00010895011
353 32 4a       0.92550628    0.00011168432       0.92590043    0.00011280360       0.92638226    0.00011127256       0.92609866    0.00011226930       0.93061868    0.00036489332       0.93335202    0.00017140080       0.94131248    9.5161783e-05       0.93060586    0.00010232233
353 33 4b       0.92560740    0.00011535949       0.92601983    0.00011647515       0.92650963    0.00011494353       0.92622343    0.00011594320       0.93090737    0.00036576470       0.93376284    0.00017381066       0.94174044    9.8456132e-05       0.92965716    0.00010437055
353 53 5a       0.95292376    0.00012188150       0.95331003    0.00012272894       0.95368671    0.00012128687       0.95347921    0.00012222428       0.95752576    0.00037744312       0.96032758    0.00018013350       0.96572763    0.00010391665       0.95318252    0.00010850519
353 54 5b       0.95198172    0.00012562110       0.95239373    0.00012634361       0.95278451    0.00012493622       0.95257109    0.00012584674       0.95690100    0.00037545442       0.95986476    0.00018092809       0.96530501    0.00010679503       0.95260819    0.00011099594
353 63 6a       0.94350543    0.00014632473       0.94391092    0.00014710047       0.94433192    0.00014560840       0.94409518    0.00014658422       0.94846347    0.00038237367       0.95136826    0.00019551997       0.95766012    0.00012481655       0.94499853    0.00012943610
353 64 6b       0.97439004    0.00014454517       0.97469099    0.00014551843       0.97494197    0.00014385611       0.97481163    0.00014494673       0.97777798    0.00039581401       0.97992890    0.00019859126       0.98317463    0.00012209450       0.97339239    0.00012809685
353 45 7       0.91695423    0.00012676198       0.91738734    0.00012748245       0.91791853    0.00012616718       0.91760559    0.00012702172       0.92260648    0.00036124111       0.92566524    0.00017782391       0.93439356    0.00010927645       0.92339661    0.00011439164
353 85 8       0.90384202    0.00012261582       0.90433854    0.00012348863       0.90494364    0.00012202853       0.90458747    0.00012296857       0.91038829    0.00036092882       0.91389086    0.00017417894       0.92373414    0.00010434520       0.91163173    0.00011010402
353 353 avg       0.93323585    4.4062606e-05       0.93365358    4.7070290e-05       0.93411831    4.4557970e-05       0.93385153    4.6199076e-05       0.93848877    0.00035164656       0.94145185    0.00014110258       0.94870194    3.7658049e-05       0.93676117    3.9614753e-05
545 14 1       0.92302463    0.00016861905       0.92461756    0.00016804803       0.92501464    0.00016771153       0.92493336    0.00016787094       0.91708546    0.00015851497       0.80636759    0.00014498146       0.94179218    0.00015444168       0.95363288    0.00015667609
545 34 2       0.94195694    0.00016871427       0.94336773    0.00016811001       0.94370224    0.00016774858       0.94364108    0.00016791952       0.93574149    0.00015708569       0.82275030    0.00014416656       0.95787017    0.00015381168       0.97068422    0.00015578950
545 55 3       0.93512338    0.00027655893       0.93656096    0.00027600560       0.93691226    0.00027552445       0.93684341    0.00027578629       0.93104992    0.00025985046       0.81875193    0.00023124526       0.95176550    0.00025712338       0.96419783    0.00025990306
545 73 4       0.93789657    0.00018106184       0.93929799    0.00018048351       0.93963862    0.00018012702       0.93957268    0.00018030030       0.93488316    0.00016869839       0.82191908    0.00015426500       0.95404589    0.00016606602       0.96719779    0.00016790120
545 545 avg       0.93456594    9.9769955e-05       0.93603315    9.9429455e-05       0.93639001    9.9225109e-05       0.93632077    9.9322420e-05       0.92946031    9.3581163e-05       0.81720996    8.5125376e-05       0.95148319    9.1245529e-05       0.96409014    9.2283397e-05
857 25 1       0.96944437    0.00027856680       0.97151258    0.00027804692       0.97174365    0.00027784061       0.97174163    0.00027791474       0.98864826    0.00027967852       0.98899431    0.00027826822       0.98269193    0.00026752947       0.98870019    0.00026951231
857 35 2       0.98810255    0.00024194320       0.98982374    0.00024124537       0.99000266    0.00024103289       0.99000374    0.00024109823        1.0063799    0.00024222636        1.0057014    0.00024149148       0.99824571    0.00023048839        1.0042322    0.00023213953
857 65 3       0.97322233    0.00026529861       0.97521786    0.00026471472       0.97543817    0.00026450752       0.97543677    0.00026457792       0.99181933    0.00026601798       0.99151029    0.00026515330       0.98582708    0.00025417843       0.99174350    0.00025613279
857 74 4        1.0083172    0.00030474985        1.0094396    0.00030389953        1.0095398    0.00030362975        1.0095443    0.00030371607        1.0238004    0.00030485468        1.0254106    0.00030369029        1.0138754    0.00029033788        1.0204622    0.00029266176
857 857 avg       0.98090289    0.00013617145       0.98273089    0.00013584940       0.98292739    0.00013573943       0.98292724    0.00013577595       0.99918265    0.00013645470       0.99923102    0.00013587987       0.99210006    0.00013026850       0.99815419    0.00013122817


Conclusions[edit]

Summary remarks here...

(Planck) High Frequency Instrument

(Planck) Low Frequency Instrument

Planck Legacy Archive

Cosmic Microwave background

Sunyaev-Zel'dovich