Difference between revisions of "Foreground maps"

From Planck Legacy Archive Wiki
Jump to: navigation, search
Line 183: Line 183:
 
: Variations obtained without galaxy cluster masking.
 
: Variations obtained without galaxy cluster masking.
 
* COM_Lensing_Inhf_2048_R3.00         
 
* COM_Lensing_Inhf_2048_R3.00         
: Variation obtained using inhomogeneous noise filtering.
+
: Variations obtained using inhomogeneous noise filtering.
 
* COM_Lensing-Szdeproj_4096_R3.00     
 
* COM_Lensing-Szdeproj_4096_R3.00     
: Variations obtained from thermal Sunyaev-Zeldovich deprojected SMICA CMB map (TT only).
+
: Variation obtained from thermal Sunyaev-Zeldovich deprojected SMICA CMB map (TT only).
  
 
Each map represents an estimate of the CMB lensing potential on approximately 70% of the sky.   
 
Each map represents an estimate of the CMB lensing potential on approximately 70% of the sky.   
Line 199: Line 199:
 
| mask.fits.gz || HEALPix FITS format map, with <math>N_{\rm  side}=2048</math> || Lens reconstruction analysis mask.
 
| mask.fits.gz || HEALPix FITS format map, with <math>N_{\rm  side}=2048</math> || Lens reconstruction analysis mask.
 
|-
 
|-
| TT/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=4096</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (Temperature only).
+
| TT/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=4096</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (temperature only).
 
|-
 
|-
| PP/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=2048</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (Polarization only).
+
| PP/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=2048</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (polarization only).
 
|-
 
|-
 
| MV/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=4096</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (minimum variance estimate from temperature and polarization).
 
| MV/dat_klm.fits || HEALPix FITS format alm, with <math>L_{\rm  max}=4096</math> || Estimated lensing convergence <math> \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} </math> (minimum variance estimate from temperature and polarization).
Line 259: Line 259:
 
: - COM_Lensing-SimMap-Szdeproj_4096_R3.00 only provides the temperature-only reconstructions.
 
: - COM_Lensing-SimMap-Szdeproj_4096_R3.00 only provides the temperature-only reconstructions.
  
We further provide the input lensing potential realization for all 300 FFP10 simulations in
+
We further provide the input lensing convergence realizations of all 300 FFP10 simulations in
  
 
* COM_Lensing-SimMap-inputs_4096_R3.00
 
* COM_Lensing-SimMap-inputs_4096_R3.00

Revision as of 12:16, 11 July 2018

Astrophysical Components[edit]

Overview[edit]

This section describes the maps of astrophysical components produced from the Planck data. These products are derived from some or all of the nine frequency channel maps described above using different techniques and, in some cases, using other constraints from external data sets. Here we give a brief description of each product and how it is obtained, followed by a description of the FITS file containing the data and associated information. All the details can be found in Planck-2020-A4[1] and Planck-2020-A8[2].

Commander-derived astrophysical foreground maps[edit]

As discussed in detail in Planck-2020-A4[1], the main Planck 2018 frequency sky maps have significantly lower systematic errors than earlier versions. At the same time, these maps are also associated with a significant limitation, in that no robust single detector or detector set maps are available. As described in Planck-2020-A3[3], such maps do not contain the full signal content of the true sky. As a result, only full frequency maps are distributed and used in the 2018 analysis.

For polarization analysis, this is not a significant issue, and the 2018 polarization foreground products therefore supersede the 2015 release in all respects. However, for temperature analysis the lack of single-detector maps strongly limits the ability to extract CO line emission from the data set, and it is also not possible to exclude known detector outliers; see Planck-2015-A10[4] for details. For these reasons, we consider the parametric foreground products from 2015 to represent a more accurate description of the true sky than the corresponding 2018 version. As a result, we do not release parametric temperature foreground products from the 2018 data set, but rather recommend continued usage of the 2015 temperature model. For polarization, we recommend usage of the 2018 model.


Two Commander-based polarization foreground products are provided for the Planck 2018 releaes, namely synchrotron and thermal dust emission. For synchrotron emission, a spatially constant spectral index of β=-3.1 is adopted. For thermal dust emission, the dust temperature is fixed to that derived from the corresponding 2018 intensity analysis, while the spectral index is fitted directly from the polarization measurements, smoothed to 3 degrees FWHM. For both synchrotron and thermal dust emission, we provide results derived from both the full-mission data set, and from the half-mission and odd-even splits.

In addition to the real observations, we also provide 300 end-to-end noise simulations processed through the algorithm with the same spectral parameters as derived from the data for each of the data splits. The filenames of these simulations have the following format:

  • dx12_v3_commander_{synch,dust}_noise_{full,hm1,hm2,oe1,oe2}_00???_raw.fits

Inputs[edit]

The following data products are used for the full-mission polarization analysis (corresponding data are used for the data split products):

Outputs[edit]

Synchrotron emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 40 arcmin
Reference frequency: 30 GHz
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 μK_RJ Stokes Q posterior maximum
U_STOKES Real*4 μK_RJ Stokes U posterior maximum
Thermal dust emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-commander_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 5 arcmin
Reference frequency: 353 GHz
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 uK_RJ Full-mission Stokes Q posterior maximum
U_STOKES Real*4 uK_RJ Full-mission Stokes U posterior maximum

SMICA-derived astrophysical foreground maps[edit]

Two SMICA-based polarization foreground products are provided, namely synchrotron and thermal dust emission. These are derived using the usual SMICA spectral matching method, tuned specifically for the reconstruction of two polarized foregrounds. Specifically, three coherent components (plus noise) are fitted at the spectral level with the first one constrained to have CMB emissivity. No assumptions are made regarding the other two components: they are not assumed to have a specific emissivity or angular spectrum, nor are they assumed to be uncorrelated. This leaves a degenerate model but that degeneracy can be entirely fixed after the spectral fit by assuming that synchrotron emission is negligible at 353 GHz and that thermal dust emission is negligible at 30 GHz. For both synchrotron and thermal dust emission, we provide results derived from both the full-mission data set, and from the half-mission and odd-even splits.

In addition to the real observations, we also provide 300 end-to-end noise simulations processed through the algorithm with the same spectral parameters as derived from the data for each of the data splits. The filenames of these simulations have the following format:

  • dx12_v3_smica_{synch,dust}_noise_{full,hm1,hm2,oe1,oe2}_00???_raw.fits

Inputs[edit]

The following data products are used for the full-mission polarization analysis (corresponding data are used for the data split products):

Outputs[edit]

Synchrotron emission[edit]
Full-mission file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_synchrotron-smica_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 40 arcmin
Reference frequency: Integrated 30 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 mK_RJ Stokes Q posterior maximum
U_STOKES Real*4 mK_RJ Stokes U posterior maximum
Thermal dust emission[edit]
Full-mission file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_full.fits
First half-mission split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_hm1.fits
Second half-mission split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_hm2.fits
Odd ring split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_oe1.fits
Even ring split file name: COM_CompMap_QU_thermaldust-smica_2048_R3.00_oe2.fits
Nside = 2048
Angular resolution = 12 arcmin
Reference frequency: Integrated 353 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
Q_STOKES Real*4 mK_RJ Full-mission Stokes Q posterior maximum
U_STOKES Real*4 mK_RJ Full-mission Stokes U posterior maximum

GNILC thermal dust maps[edit]

The 2018 GNILC thermal dust products are provided as single files that include both intensity and polarization, 3x3 IQU noise covariance matrices per pixel, and as well as local smoothing scale for the variable resolution map. The structure of the data files is the following:

Uniform resolution file name: COM_CompMap_IQU_thermaldust-gnilc-unires_2048_R3.00.fits
Variable resolution file name: COM_CompMap_IQU_thermaldust-gnilc-varres_2048_R3.00.fits
Nside = 2048
Angular resolution = 80 arcmin FWHM, or variable
Reference frequency: Integrated 353 GHz band; no colour corrections have been applied
HDU -- COMP-MAP
Column Name Data Type Units Description
I_STOKES Real*4 K_cmb Stokes I estimate
Q_STOKES Real*4 K_cmb Stokes Q estimate
U_STOKES Real*4 K_cmb Stokes U estimate
II_COV Real*4 K_cmb^2 Covariance matrix II element
IQ_COV Real*4 K_cmb^2 Covariance matrix IQ element
IU_COV Real*4 K_cmb^2 Covariance matrix IU element
QQ_COV Real*4 K_cmb^2 Covariance matrix QQ element
QU_COV Real*4 K_cmb^2 Covariance matrix QU element
UU_COV Real*4 K_cmb^2 Covariance matrix UU element
FWHM Real*4 arcmin Local FWHM smoothing scale

2018 Lensing maps[edit]

We distribute several variations of lensing potential estimates presented in Planck-2020-A8[2] as part of the 2018 data release, together with matching simulation packages.

There are 4 lensing data packages:

  • COM_Lensing_4096_R3.00
Baseline lensing potential estimates from SMICA DX12 CMB maps. Provided are temperature-only (TT), polarization-only (PP) and minimum variance (MV) estimates.
  • COM_Lensing_Sz_4096_R3.00
Variations obtained without galaxy cluster masking.
  • COM_Lensing_Inhf_2048_R3.00
Variations obtained using inhomogeneous noise filtering.
  • COM_Lensing-Szdeproj_4096_R3.00
Variation obtained from thermal Sunyaev-Zeldovich deprojected SMICA CMB map (TT only).

Each map represents an estimate of the CMB lensing potential on approximately 70% of the sky. The lensing estimates from COM_Lensing_4096_R3.00 also forms the basis for the Planck 2018 lensing likelihood.

These data packages have the following common file structure:

Contents of Lensing data package COM_Lensing_4096_R3.00
Filename Format Description
mask.fits.gz HEALPix FITS format map, with [math]N_{\rm side}=2048[/math] Lens reconstruction analysis mask.
TT/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (temperature only).
PP/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=2048[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (polarization only).
MV/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (minimum variance estimate from temperature and polarization).
TT/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Temperature-only reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math], for the fiducial cosmology used in Planck-2020-A8[2].
PP/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Polarization-only reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math], for the fiducial cosmology used in Planck-2020-A8[2]..
MV/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Minimum-variance reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math], for the fiducial cosmology used in Planck-2020-A8[2].

with slight variations:

- in COM_Lensing_Inhf_2048_R3.00, all HEALPix FITS format alm files have [math]L_{\rm max}=2048[/math].
- COM_Lensing-Szdeproj_4096_R3.00 only provides the temperature-only reconstruction.

The matching 4 lensing simulation packages are

  • COM_Lensing-SimMap_4096_R3.00
  • COM_Lensing-SimMap_Sz_4096_R3.00
  • COM_Lensing-SimMap_Inhf_2048_R3.00
  • COM_Lensing-SimMap-Szdeproj_4096_R3.00

with the following content:

Contents of Lensing data package COM_Lensing-SimMap_4096_R3.00
Filenames Format Description
/inputs/mask.fits.gz compressed HEALPix FITS format map, with [math]N_{\rm side}=2048[/math] Lens reconstruction analysis mask.
/inputs/FFP10_wdipole_lenspotentialCls.dat ASCII text file, with columns = ([math]L[/math], [math]C_L^{TT} [/math], [math]C_L^{EE} [/math],[math]C_L^{BB} [/math],[math]C_L^{TE} [/math],[math]C_L^{\phi\phi} [/math],[math]C_L^{T\phi} [/math],[math]C_L^{E\phi} [/math]) Input unlensed CMB spectra of the fiducial cosmology used in Planck-2020-A8[2].
TT/sim_klm_{???}.fits 300 HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (temperature only) of all 300 FFP10 simulations used in Planck-2020-A8[2].
PP/sim_klm_{???}.fits 300 HEALPix FITS format alm, with [math]L_{\rm max}=2048[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (polarization only) of all 300 FFP10 simulations used in Planck-2020-A8[2].
MV/sim_klm_{???}.fits 300 HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (minimum variance estimate from temperature and polarization) of all 300 FFP10 simulations used in Planck-2020-A8[2].
TT/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (temperature only).
PP/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=2048[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (polarization only).
MV/dat_klm.fits HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Estimated lensing convergence [math] \hat{\kappa}_{LM} = \frac{1}{2} L(L+1)\hat{\phi}_{LM} [/math] (minimum variance estimate from temperature and polarization).
TT/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Temperature-only reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math] for the fiducial cosmology used in Planck-2020-A8[2].
PP/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Polarization-only reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math] for the fiducial cosmology used in Planck-2020-A8[2]..
MV/nlkk.dat ASCII text file, with columns = ([math]L[/math], [math]N_L [/math], [math]C_L+N_L[/math]) Minimum-variance reconstruction approximate noise [math]N_L[/math] (and signal+noise, [math]C_L+N_L[/math]) power spectrum of [math] \hat{\kappa}_{LM} [/math] for the fiducial cosmology used in Planck-2020-A8[2].

with the same slight variations:

- in COM_Lensing-SimMap_Inhf_2048_R3.00, all HEALPix FITS format alm files have [math]L_{\rm max}=2048[/math].
- COM_Lensing-SimMap-Szdeproj_4096_R3.00 only provides the temperature-only reconstructions.

We further provide the input lensing convergence realizations of all 300 FFP10 simulations in

  • COM_Lensing-SimMap-inputs_4096_R3.00

with contents

Contents of Lensing data package COM_Lensing-SimMap-inputs_4096_R3.00
Filenames Format Description
/inputs/clkk.dat ASCII text file, with columns = ([math]L[/math], [math]C_L^{\kappa\kappa}[/math]) Input lensing convergence CMB spectrum of the fiducial cosmology used in Planck-2020-A8[2].
sky_klm_{???}.fits 300 HEALPix FITS format alm, with [math]L_{\rm max}=4096[/math] Input lensing convergence [math] {\kappa}_{LM} = \frac{1}{2} L(L+1){\phi}_{LM} [/math] realizations of all 300 FFP10 simulations used in Planck-2020-A8[2].

2018 Lensing-induced B-mode map[edit]

We distribute the Planck map of the lensing-induced B-modes presented in Planck-2015-XLI[5]. The Stokes parameter maps of the lensing B-modes are produced by combining the lensing potential map extracted from the SMICA CMB temperature map with E-mode data from the SMICA CMB polarization maps. The SMICA temperature and polarization products are described in Planck-2015-A09[6]. The lensing-induced B-mode polarization maps are used in cross-correlation with the SMICA CMB polarization maps to obtain a lensing B-mode power spectrum measurement from approximately 70% of the sky.

We provide both raw products, which can be utilized to generate products adapted to one's specific needs in term of mask, filtering, etc., and "ready-to-use" products for cross-correlation study purposes.

Raw products[edit]

We deliver the non-normalized lensing-induced Stokes parameter maps, labelled [math] \bar{Q}^{\rm{lens}} [/math] and [math] \bar{U}^{\rm{lens}} [/math], which form the basis of the final lensing B-mode estimator defined in equation (6) of the paper. They are defined as

[math] \begin{eqnarray} \bar Q^{\rm{lens}}({\bf n}) &=& \widetilde Q^{E}({\bf n}) \cdot \nabla \widetilde \phi({\bf n}), \\ \bar U^{\rm{lens}}({\bf n}) &=& \widetilde U^{E}({\bf n}) \cdot \nabla \widetilde \phi({\bf n}), \end{eqnarray} [/math]

where [math] \widetilde Q^{E} [/math] and [math] \widetilde U^{E} [/math] are the filtered pure E-mode polarization maps given in equation (5), and [math] \widetilde \phi[/math] is the filtered lensing potential estimate.

We also provide the normalization transfer function [math] \mathcal{B}_\ell [/math] defined in equation (12), as well as the "B70" mask [math] M({\bf n}) [/math] that retains 69% of the sky before apodization, and its apodized version [math] \tilde{M}({\bf n}) [/math], which has an effective sky fraction [math] f_{\rm{sky}}^{\rm{eff}} = 65\% [/math].

As an example of the utilization of these products, the lensing B-mode maps that are shown in figure 4 are generated from

[math] Q^{\rm{lens}} \pm i U^{\rm{lens}} = \sum_{\ell m} \left( G_\ell \mathcal{B}_\ell^{-1} \int d{\bf n} {\, }_{\pm 2}Y_{\ell m}^*({\bf n}) \left(\bar{Q}^{\rm{lens}} \pm i \bar{U}^{\rm{lens}} \right) \right) {\, }_{\pm 2}Y_{\ell m}({\bf n}) [/math],

where [math]G_\ell[/math] is a Gaussian filter of 60 arcmin FWHM (introduced for highlighting large angular scales, although it can be removed or replaced by any other filter). This can be practically done by ingesting [math]\bar{Q}^{\rm{lens}} [/math] and [math] \bar{U}^{\rm{lens}} [/math] in the HEALPix "smoothing" routine, and using the product [math] G_\ell\mathcal{B}_\ell^{-1} [/math] as an input filtering function.

The lensing-induced Stokes parameter maps are provided without being masked for the user's convenience (in particular, it allows for various filtering to be tested). However, whenever they are utilized in view of obtaining scientific outcomes, they should be masked using the B70 mask, which is also provided.

Specific products[edit]

We provide the lensing B-mode spherical harmonic coefficient estimate [math] B_{\ell m}^{\rm{lens}} [/math] over approximately 70% of the sky.

It can also be constructed using the raw products described above from

[math] B_{\ell m}^{\rm{lens}} = f_{10 \rightarrow 2000} \, \mathcal{B}_\ell^{-1} \, \, {\, }_{\pm 2}\mathcal{Y} \left[ \tilde{M}({\bf n}) \left( \bar{Q}^{\rm{lens}}({\bf n}) \pm i \bar{U}^{\rm{lens}}({\bf n}) \right) \right] [/math],

where [math] f_{10 \rightarrow 2000} [/math] is a band-pass filter that retain the multipole range [math] 10 \le \ell \le 2000 [/math], and [math] {\, }_{\pm2}\mathcal{Y} [/math] is a short-hand notation for transforming a map into spin-weighted spherical harmonic coefficients [math] {\, }_{+2}a_{\ell m}[/math], [math]{\, }_{-2}a_{\ell m} [/math] and forming [math]1/(2i)\left({\, }_{+2}a_{\ell m} - {\, }_{-2}a_{\ell m}\right)[/math]. This can be done using, e.g., the HEALPix "anafast" tool.

The lensing B-mode power spectrum estimate [math] \hat{C}_\ell^{BB^{\rm{lens}}} [/math] is obtained by forming the cross-correlation power spectrum of [math] B_{\ell m}^{\rm{lens}} [/math] and the B-mode data from the SMICA polarization maps [math] B_{\ell m} [/math]:

[math] \hat{C}_\ell^{BB^{\rm{lens}}} = \frac{\left(f_{\rm{sky}}^{\rm{eff}}\right)^{-1}}{2 \ell +1} G_\ell^{-2} \sum_m B_{\ell m}^* B_{\ell m}^{\rm{lens}}[/math],

where [math] G_\ell [/math] is the 5 arcmin Gaussian beam that convolves the SMICA CMB maps.


The products are contained in a single gzipped tarball named COM_Lensing-Bmode_R2.01.tgz. Its contents are described below.


Contents of Lensing B-mode package
Filename Format Description
bar_q_lens_map.fits HEALPix FITS format map in Galactic coordinates with [math] N_{\rm side} = 2048 [/math] Contains the non-normalized lensing-induced Q Stokes parameter map [math] \bar Q^{\rm{lens}}({\bf n}) [/math].
bar_u_lens_map.fits HEALPix FITS format map in Galactic coordinates with [math] N_{\rm side} = 2048 [/math] Contains the non-normalized lensing-induced U Stokes parameter map [math] \bar U^{\rm{lens}}({\bf n}) [/math].
mask.fits HEALPix FITS format map in Galactic coordinates with [math] N_{\rm side} = 2048 [/math] The B70 mask (apodized version).
mask_noapo.fits HEALPix FITS format map in Galactic coordinates with [math] N_{\rm side} = 2048 [/math] The B70 mask without apodization.
transfer_function_b_l.dat ASCII text file, with columns = ([math]\ell[/math], [math] \mathcal{B}_\ell [/math]) The transfer function of the lensing B-mode estimator.
lensing_bmode_b_lm.fits HEALPix FITS format alm, with [math] \ell_{\rm max} = 2000 [/math] Contains the lensing B-mode harmonic coefficients [math] B_{\ell m}^{\rm{lens}} [/math].
lensing_bmode_bandpowers.dat ASCII text file, with columns = ([math]\ell_{\rm min}[/math], [math]\ell_{\rm b} [/math], [math]\ell_{\rm max} [/math], [math] \hat{C}_{\ell_{\rm b}}^{BB^{\rm{lens}}} [/math], [math] \Delta \hat{C}_{\ell_{\rm b}}^{BB^{\rm{lens}}} [/math] ) The lensing B-mode bandpower estimate on approximativily 70% of the sky and over the multipole range from 10 to 2000 shown in figure 10 of Planck-2015-XLI[5] (for plotting purposes only).

Previous Releases: (2015) and (2013) Foreground Maps[edit]

Expand

Astrophysical components based on the 2015 data release

Expand

Astrophysical components based on the 2013 data release

References[edit]

  1. Jump up to: 1.01.1 Planck 2018 results. IV. Diffuse component separation, Planck Collaboration, 2020, A&A, 641, A4.
  2. Jump up to: 2.002.012.022.032.042.052.062.072.082.092.102.112.122.13 Planck 2018 results. VIII. Lensing, Planck Collaboration, 2020, A&A, 641, A8.
  3. Jump up Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, Planck Collaboration, 2020, A&A, 641, A3.
  4. Jump up to: 4.04.14.2 Planck 2015 results. X. Diffuse component separation: Foreground maps, Planck Collaboration, 2016, A&A, 594, A10.
  5. Jump up to: 5.05.15.25.35.45.55.65.75.85.9 Planck intermediate results. XLI. A map of lensing-induced B-modes, Planck Collaboration Int. XLI A&A, 596, A102, (2016).
  6. Jump up to: 6.06.16.2 Planck 2015 results. XI. Diffuse component separation: CMB maps, Planck Collaboration, 2016, A&A, 594, A9.
  7. Jump up to: 7.07.17.27.3 Planck 2015 results. XXV. Diffuse low frequency Galactic foregrounds, Planck Collaboration, 2016, A&A, 594, A25.
  8. Jump up Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations', Planck Collaboration Int. XXIX, A&A, 586, A132, (2016).
  9. Jump up Planck 2015 results. XV. Gravitational Lensing, Planck Collaboration, 2016, A&A, 594, A15.
  10. Jump up Planck 2015 results. XIII. Cosmological parameters, Planck Collaboration, 2016, A&A, 594, A13.
  11. Jump up Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect, Planck Collaboration, 2016, A&A, 594, A22.
  12. Jump up Planck 2015 results. XXI. The integrated Sachs-Wolfe effect, Planck Collaboration, 2016, A&A, 594, A21.
  13. Jump up to: 13.013.113.213.313.413.513.613.7 Planck 2013 results. XI. Component separation, Planck Collaboration, 2014, A&A, 571, A11.
  14. Jump up Component separation methods for the PLANCK mission, S. M. Leach, J.-F. Cardoso, C. Baccigalupi, R. B. Barreiro, M. Betoule, J. Bobin, A. Bonaldi, J. Delabrouille, G. de Zotti, C. Dickinson, H. K. Eriksen, J. González-Nuevo, F. K. Hansen, D. Herranz, M. Le Jeune, M. López-Caniego, E. Martínez-González, M. Massardi, J.-B. Melin, M.-A. Miville-Deschênes, G. Patanchon, S. Prunet, S. Ricciardi, E. Salerno, J. L. Sanz, J.-L. Starck, F. Stivoli, V. Stolyarov, R. Stompor, P. Vielva, A&A, 491, 597-615, (2008).
  15. Jump up Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data, R. Fernández-Cobos, P. Vielva, R. B. Barreiro, E. Martínez-González, MNRAS, 420, 2162-2169, (2012).
  16. Jump up Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator, B. Casaponsa, R. B. Barreiro, A. Curto, E. Martínez-González, P. Vielva, MNRAS, 411, 2019-2025, (2011).
  17. Jump up to: 17.017.1 Planck 2013 results. XXIII. Isotropy and statistics of the CMB, Planck Collaboration, 2014, A&A, 571, A23.
  18. Jump up to: 18.018.1 Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, Planck Collaboration, 2014, A&A, 571, A19.
  19. Jump up to: 19.019.1 Planck 2013 results. XII. All-sky model of thermal dust emission, Planck Collaboration, 2014, A&A, 571, A12.
  20. Jump up Calibrating Milky Way dust extinction using cosmological sources, E. Mörtsell, A&A, 550, A80, (2013).
  21. Jump up The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release, D. P. Schneider, P. B. Hall, G. T. Richards, M. A. Strauss, D. E. Vanden Berk, S. F. Anderson, W. N. Brandt, X. Fan, S. Jester, J. Gray, J. E. Gunn, M. U. SubbaRao, A. R. Thakar, C. Stoughton, A. S. Szalay, B. Yanny, D. G. York, N. A. Bahcall, J. Barentine, M. R. Blanton, H. Brewington, J. Brinkmann, R. J. Brunner, F. J. Castander, I. Csabai, J. A. Frieman, M. Fukugita, M. Harvanek, D. W. Hogg, Z. Ivezic, S. M. Kent, S. J. Kleinman, G. R. Knapp, R. G. Kron, J. Krzesinski, D. C. Long, R. H. Lupton, A. Nitta, J. R. Pier, D. H. Saxe, Y. Shen, S. A. Snedden, D. H. Weinberg, J. Wu, ApJ, 134, 102-117, (2007).
  22. Jump up Planck 2013 results. XIII. Galactic CO emission, Planck Collaboration, 2014, A&A, 571, A13.
  23. Jump up to: 23.023.123.223.323.423.5 Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Planck Collaboration, 2014, A&A, 571, A17.

Flexible Image Transfer Specification

Full-Width-at-Half-Maximum

Cosmic Microwave background

(Hierarchical Equal Area isoLatitude Pixelation of a sphere, <ref name="Template:Gorski2005">HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ApJ, 622, 759-771, (2005).

Sunyaev-Zel'dovich

Planck Legacy Archive

(Planck) Low Frequency Instrument

(Planck) High Frequency Instrument

reduced IMO