Catalogues

From Planck Legacy Archive Wiki
Revision as of 15:55, 7 February 2013 by Amoneti (talk | contribs)
Jump to: navigation, search

Planck Catalogue of Compact Sources[edit]

The PCCS source list in each frequency is structured as a FITS binary table having one row for each detected source.

The FITS primary header will have the following structure:

FITS primary header
FITS Keyword Data Type Units Description
INSTRUME String LFI or HFI
VERSION String Version of PCCS
DATE String Date file created:yyyy-mm-dd
ORIGIN String Name of organization responsible for the data (LFI-DPCHFI-DPC)
TELESCOP String PLANCK
CREATOR String Pipeline Version
DATE-OBS String days Start-up time of the survey: yyyy-mm-dd
DATE-END String days Ending time of the survey: yyyy-mm-dd


The Fits extension is composed by several columns described below:

FITS header
Column Name Data Type Units Description
Identification
NAME String Source name – see Note 1
Source Position
GLON Real*8 degrees Galactic longitude based on extraction algorithm
GLAT Real*8 degrees Galactic latitude based on extraction algorithm
RA Real*8 degrees Right ascension (J2000) transformed from (GLON,GLAT)
DEC Real*8 degrees Declination (J2000) transformed from (GLON,GLAT)
Photometry
DETFLUX Real*4 mJy Flux density of source as determined by detection method
DETFLUX_ERR Real*4 mJy Uncertainty (1 sigma) in derived flux density from detection method
APERFLUX Real*4 mJy Flux density of source as determined from the aperture photometry
APERFLUX_ERR Real*4 mJy Uncertainty (1 sigma) in derived flux density from the aperture photometry
PSFFLUX Real*4 mJy Flux density of source as determined from PSF fitting
PSFFLUX_ERR Real*4 mJy Uncertainty (1 sigma) in derived flux density from PSF fitting
GAUFLUX Real*4 mJy Flux density of source as determined from 2-D Gaussian fitting
GAUFLUX_ERR Real*4 mJy Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting
GAU_SEMI1 Real*4 arcmin Gaussian fit along axis 1
GAU_SEMI1_ERR Real*4 arcmin Uncertainty (1 sigma) in derived Gaussian fit along axis 1
GAU_SEMI2 Real*4 arcmin Gaussian fit along axis 2
GAU_SEMI2_ERR Real*4 arcmin Uncertainty (1 sigma) in derived Gaussian fit along axis 2
GAU_THETA Real*4 deg Gaussian fit orientation angle counting anti-clockwise from the x -axis
GAU_THETA_ERR Real*4 deg Uncertainty (1 sigma) in derived gaussian fit orientation angle
GAU_FWHM_EFF Real*4 arcmin Gaussian fit effective FWHM
Flags and validation
EXTENDED Integer*2 Flag indicated that source is extended
CIRRUS_N Integer*4 Number of sources detected at 857 GHz within HFI TBC degrees
EXT_VAL Integer*2 Flag indicated external validation - see Note 2
ERCSC String Name of the ERCSC counterpart if any
ONLY 857 GHz Catalogue
APERFLUX_217 Real*4 mJy Source flux density at 217 GHz (best estimation) of the object detected at 857
APERFLUX_ERR_217 Real*4 mJy Uncertainty in source flux density
APERFLUX_353 Real*4 mJy Source flux density at 353 GHz (best estimation) of the object detected at 857
APERFLUX_ERR_353 Real*4 mJy Uncertainty in source flux density
APERFLUX_545 Real*4 mJy Source flux density at 545 GHz (best estimation) of the object detected at 857
APERFLUX_ERR_545 Real*4 mJy Uncertainty in source flux density

Note 1.- Source name designations consist of a prefix and a positional qualifier, the latter is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (l,b) values are truncated. The prefix used in the single band portion of the PCCS is PLCKddd PCCS catalogue at ddd GHz.

For example, a source detected at (l,b) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PLCK545 G120.23±04.23.

Note 2.- The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.

Note 3.- The EXT_VAL flag has the value of 0, 1, or 2, based on the following conditions:

  • 2 – The source has a clear counterpart in one of the catalogues considered as ancillary data.
  • 1 – The source has NOT a clear counterpart in one of the catalogues considered as ancillary data but it has been detected by the internal multi-frequency method.
  • 0 – The source has NOT a clear counterpart in one of the catalogues considered as ancillary data and it has NOT been detected by the internal multi-frequency method.


SZ catalogues[edit]

Mark or Nabila to give brief description

AMo to add file structure

Flexible Image Transfer Specification

(Planck) Low Frequency Instrument

(Planck) High Frequency Instrument

Data Processing Center

Full-Width-at-Half-Maximum

To be confirmed

Early Release Compact Source Catalog

Sunyaev-Zel'dovich