2015 Catalogues

From Planck Legacy Archive Wiki
Revision as of 10:39, 5 February 2015 by Jtauber (talk | contribs)
Jump to: navigation, search


(2015) Second Catalogue of Compact Sources[edit]

The Second Planck Catalogue of Compact Sources will be available in the next stage of the 2015 Planck release, foreseen in March 2015.

(2015) Second SZ Catalogue[edit]

The Planck SZ catalogue is constructed as described in SZ catalogue and in sections 2 and 3 of Planck-2015-A27[1]. Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in section 4 of Planck-2015-A27[1].

The size of a detection is given in terms of the scale size, θs, and the flux is given in terms of the total integrated Comptonization parameter, Y = Y5R500. The parameters of the GNFW profile assumed by the detection pipelines are written in the headers of the catalogues. For the sake of convenience, the conversion factor from Y to Y500 is also provided in the header.

The union catalogue contains the coordinates of a detection, its signal-to-noise ratio, an estimate of Y and its uncertainty, together with a summary of the validation information, including external identification of a cluster and its redshift if they are available. The pipeline from which the information is taken is called the reference pipeline. If more than one pipeline makes the same detection, the information is taken from the the pipeline that makes the most significant detection. Where the redshift is known, we provide the SZ mass for the reference pipeline.

The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue. The full information on the degeneracy between θs and Y is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. It is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters. The individual catalogues also contain Planck measurements of the SZ mass observable, MSZ, as calculated using a Y-M scaling relation and an assumed redshift to break the Y-θs degeneracy. These are provided for each detection as functions of assumed redshift, in the range 0.01 < z < 1, along with the upper and lower 68% confidence limits.

The selection function of the union catalogue, the intersection catalogue and the individual catalogues are provided in additional files. The selection function files contains the probability of detection for clusters of given intrinsic parameters θ500 and Y500. The file includes the definition of the survey area in the form of a HEALPix mask, and is evaluated for a range of signal-to-noise thresholds between 4.5 and 10.

Union catalogue[edit]

The union catalogue is contained in HFI_PCCS_SZ-union_R2.08.fits.

Extension 0: Primary header, no data
FITS Keyword Data Type Units Description
INSTRUME String Instrument (HFI)
VERSION String Version of catalogue
DATE String Date file created: yyyy-mm-dd
ORIGIN String Name of organization responsible for the data (HFI-DPC)
TELESCOP String Telescope (PLANCK)
CREATOR String Pipeline version
DATE-OBS String Start date of the survey: yyyy-mm-dd
DATE-END String End date of the survey: yyyy-mm-dd
PROCVER String Data version
PP_ALPHA Real*4 GNFW pressure profile α parameter
PP_BETA Real*4 GNFW pressure profile β parameter
PP_GAMMA Real*4 GNFW pressure profile γ parameter
PP_C500 Real*4 GNFW pressure profile c500 parameter
PP_Y2YFH Real*4 Conversion factor from Y to Y500
Extension 1: BINTABLE, EXTNAME = PSZ2_UNION
Column Name Data Type Units Description
INDEX Int*4 Index used to cross-reference with individual catalogues
NAME String Source name (see note 1)
GLON Real*8 degrees Galactic longitude
GLAT Real*8 degrees Galactic latitude
RA Real*8 degrees Right ascension (J2000) transformed from (GLON,GLAT)
DEC Real*8 degrees Declination (J2000) transformed from (GLON,GLAT)
POS_ERR Real*4 arcmin Position uncertainty (95% confidence interval)
SNR Real*4 Signal-to-noise ratio of the detection
PIPELINE Int*4 Pipeline from which information is taken (reference pipeline): 1= MMF1; 2 = MMF3; 3 = PwS
PIPE_DET Int*4 Pipelines which detect this object (see note 2)
PCCS2 Bool Indicates whether detection matches with any in PCCS2 catalogues
PSZ Int*4 Index of matching detection in PSZ1, or -1 if new detection
IR_FLAG Int*1 Flag denoting heavy infrared contamination
Q_NEURAL Real*4 Neural network quality flag (see note 3)
Y5R500 Real*4 10-3 arcmin2 Mean marginal Y5R500 as determined by reference pipeline
Y5R500_ERR Real*4 10-3 arcmin2 Uncertainty on Y5R500 as determined by reference pipeline
VALIDATION Int*4 External validation status (see note 4)
REDSHIFT_ID String External identifier of cluster associated with redshift measurement (see note 5)
REDSHIFT Real*4 Redshift of cluster (see note 5)
MSZ Real*4 1014 Msol SZ mass proxy (see note 6)
MSZ_ERR_UP Real*4 1014 Msol Upper bound of 68% SZ mass proxy confidence interval (see note 6)
MSZ_ERR_LOW Real*4 1014 Msol Lower bound of 68% SZ mass proxy confidence interval (see note 6)
MCXC String Identifier of X-ray counterpart in the MCXC, if one is present
REDMAPPER String Identifier of optical counterpart in the RedMAPPer catalogue, if one is present
ACT String Identifier of SZ counterpart in the ACT catalogues, if one is present
SPT String Identifier of SZ counterpart in the SPT catalogues, if one is present
WISE_FLAG Int*4 Confirmation flag of WISE overdensity (see note 7)
AMI_EVIDENCE Real*4 Bayesian evidence for AMI counterpart detection (see note 8)
COSMO Bool Indicates whether detection is in the cosmology sample
COMMENT String Comments on this detection

Notes

  1. Format is PSZ2 Glll.ll±bb.b where (l,b) are the Galactic coordinates truncated to 2 decimal places.
  2. The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
  3. Neural network quality flag is 1-Qbad, following the definitions in Aghanim et al. 2014.
  4. Summary of the external validation, encoding the most robust external identification: 10 = ENO follow-up; 11 = RTT follow-up; 12 = PanSTARRs; 13 = RedMAPPer non-blind; 14 = SDSS high-z; 15 = AMI; 16 = WISE; 20 = legacy identification from the PSZ1; 21 = MCXC; 22 = SPT; 23 = ACT; 24 = RedMAPPer; 25 = legacy identification from PSZ1 with externally updated redshift; 30 = NED; -1 = no known external counterpart.
  5. Redshift source is the most robust external identification listed in the VALIDATION field.
  6. MSZ is the hydrostatic mass assuming the best-fit Y-M scaling relation of Arnaud 2010 as a prior. The uncertainties are statistical and based on the Planck measurement uncertainties only. Not included in the uncertainties are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.
  7. Assigned by visual inspection: 0 = no significant galaxy overdensity; 1 = possible galaxy overdensity; 2 = probable galaxy overdensity; 3 = significant galaxy overdensity detected; -1 = possible galaxy overdensity (affected by bright star artefacts); -2 = no significant galaxy overdensity (affected by bright star artefacts); -3 = no assessment possible (affected by bright star artefacts); -10 = not analysed.
  8. Defined in the paper.

Individual catalogues[edit]

The individual pipeline catalogues are contained in the FITS files

Their structure is as follows:

FITS file structure
Extension 0: Primary header, no data
FITS Keyword Data Type Units Description
INSTRUME String Instrument (HFI)
VERSION String Version of catalogue
DATE String Date file created: yyyy-mm-dd
ORIGIN String Name of organization responsible for the data (HFI-DPC)
TELESCOP String Telescope (PLANCK)
CREATOR String Pipeline version
DATE-OBS String Start time of the survey: yyyy-mm-dd
DATE-END String End time of the survey: yyyy-mm-dd
PROCVER String Data version
PP_ALPHA Real*4 GNFW pressure profile α parameter
PP_BETA Real*4 GNFW pressure profile β parameter
PP_GAMMA Real*4 GNFW pressure profile γ parameter
PP_C500 Real*4 GNFW pressure profile c500 parameter
PP_Y2YFH Real*4 Conversion factor from Y to Y500
Extension 1: BINTABLE, EXTNAME = PSZ2_INDIVIDUAL
Column Name Data Type Units Description
INDEX Int*4 Index from union catalogue
NAME String Source name (see note 1)
GLON Real*8 degrees Galactic longitude
GLAT Real*8 degrees Galactic latitude
RA Real*8 degrees Right ascension (J2000) transformed from (GLON, GLAT)
DEC Real*8 degrees Declination (J2000) transformed from (GLON, GLAT)
POS_ERR Real*4 arcmin Position uncertainty (95% confidence interval)
SNR Real*4 Signal-to-noise ratio of detection
TS_MIN Real*4 Minimum value of θs in grid in second extension HDU (see note 2)
TS_MAX Real*4 Maximum value of θs in grid in second extension HDU (see note 2)
Y_MIN Real*4 Minimum value of Y in grid in second extension HDU (see note 2)
Y_MAX Real*4 Maximum value of Y in grid in second extension HDU (see note 2)
Keyword Data Type Value Description
PIPELINE String Name of detection pipeline
Extension 2: IMAGE, EXTNAME = PSZ2_PROBABILITY (see note 2)
Keyword Data Type Value Description
NAXIS1 Integer 256 Dimension 1
NAXIS2 Integer 256 Dimension 2
NAXIS3 Integer Ndet Dimension 3 = Number of detections
Keyword Data Type Value Description
PIPELINE String Name of detection pipeline
Extension 3: IMAGE, EXTNAME = PSZ2_MSZ_ARRAY (see note 3)
Keyword Data Type Value Description
NAXIS1 Integer 100 Dimension 1
NAXIS2 Integer 4 Dimension 2
NAXIS3 Integer Ndet Dimension 3 = Number of detections
Keyword Data Type Value Description
PIPELINE String Name of detection pipeline


Notes

  1. Format PSZ2 Glll.ll±bb.bb where (l, b) are the Galactic coordinates truncated to 2 decimal places.
  2. Extension 2 contains a three-dimensional image with the two-dimensional probability distribution in θs and Y for each detection. The probability distributions are evaluated on a 256 × 256 linear grid between the limits specified in extension 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 × 256 × Ndet, where Ndet is the number of detections. The first dimension is θs and the second dimension is Y.
  3. Extension 3 contains a three-dimensional image with the information on the MSZ observable per cluster as a function of assumed redshift. The image dimensions are 100 × 4 × Ndet, where Ndet is the number of detections. The first dimension is the assumed redshift. The second dimension has size 4: the first element is the assumed redshift value corresponding to the MSZ values. The second element is the MSZ lower 68% confidence bound, the third element is the MSZ estimate and the fourth element is the MSZ upper 68% confidence bound, all in units of 1014 Msol. These uncertainties are based on the Planck measurement uncertainties only. Not included in the error estimates are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.

Selection function[edit]

The selection function for the union, intersection and individual pipeline catalogues are contained in the FITS files:

Their structure is as follows:

FITS file structure
Extension 0: Primary header, no data
FITS Keyword Data Type Units Description
INSTRUME String Instrument (HFI)
VERSION String Version of catalogue
DATE String Date file created: yyyy-mm-dd
ORIGIN String Name of organization responsible for the data (HFI-DPC)
TELESCOP String Telescope (PLANCK)
CREATOR String Pipeline version
DATE-OBS String Start time of the survey: yyyy-mm-dd
DATE-END String End time of the survey: yyyy-mm-dd
PROCVER String Data version
JOIN String Join type (UNION, INTERSEC, MMF1, MMF3, PwS)
MASK String Mask name (SURVEY, COSMOLOG)
Extension 1: BINTABLE, HEALPix map (see note 1)
FITS keyword Data Type Value Description
PIXTYPE String HEALPIX HEALPix pixelation
ORDERING String RING Pixel ordering
NSIDE Int*4 2048 HEALPix resolution parameter
NPIX Int*4 50331648 Number of pixels
COORDSYS String G Coordinate system
Extension 2: IMAGE, EXTNAME = SELFUNC (see note 2)
Keyword Data Type Value Description
NAXIS1 Integer 30 Dimension 1
NAXIS2 Integer 32 Dimension 2
NAXIS3 Integer 12 Dimension 3
Keyword Data Type Value Description
AXIS1 String CY500 Name of axis 1
AXIS2 String T500 Name of axis 2
AXIS3 String SNRCUT Name of axis 3
UNITS String PERCENT Units of selection function
COMPTYPE String DIFF Type of selection function (differential)
Extension 3: IMAGE, EXTNAME = YGRID (see note 3)
Keyword Data Type Value Description
NAXIS1 Integer 30 Dimension 1
Keyword Data Type Value Description
COL1 String CY500 Grid values of Y500
Extension 4: IMAGE, EXTNAME = TGRID (see note 4)
Keyword Data Type Value Description
NAXIS1 Integer 32 Dimension 1
Keyword Data Type Value Description
COL1 String T500 Grid values of θ500
Extension 5: IMAGE, EXTNAME = SNR_THRESH (see note 5)
Keyword Data Type Value Description
NAXIS1 Integer 12 Dimension 1
Keyword Data Type Value Description
COL1 String S/N Grid values of S/N threshold

Notes

  1. Extension 1 contains a mask defining the survey region, given by an Nside = 2048 ring-ordered HEALPix map in GALACTIC coordinates. Pixels in the survey region have the value 1.0 while pixels outside of the survey region have value 0.0.
  2. Extension 2 contains a three-dimensional image containing the survey completeness probability distribution for various S/N thresholds. The information is stored in an image of size 30 × 32 × 12. The first dimension is Y500, the second dimension is θ500 and the third dimension is the signal-to-noise threshold. The units are percent and lie in the range 0-100 and denote the detection probability of a cluster in the given (Y500, θ500) bin.
  3. Extension 3 contains the Y500 grid values for the completeness data cube in the second extension. It has length 30 and spans the range from 1.12480 × 10-4 arcmin2 to 7.20325 × 10-2 arcmin2 in logarithmic steps.
  4. Extension 4 contains the θ500 grid values for the completeness data cube in the second extension. It has length 32 and spans the range from 0.9416 arcmin to 35.31 arcmin in logarithmic steps.
  5. Extension 5 contains the signal-to-noise threshold grid values for the completeness data cube in the second extension. It has length 12 and contains thresholds from 4.5 to 10.0 in steps of 0.5.

Planck Catalogue of Galactic Cold Clumps[edit]

The Planck Catalogue of Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds. The sources have been identified in Planck data as sources colder than their environment. It has been buit using the 48 months Planck data at 857, 545, and 353 GHz combined with the 3 THz IRAS data, as it is described in Planck-2015-A28[2].

The all-sky distribution of the PGCC sources is shown below on top of the 857 GHz emission shown in logarithmic scale between 10-2 to 102 MJy/sr.

All-sky distribution of the PGCC sources.

Sources are divided into three categories based on the reliability of the flux density estimates in IRAS 3 THz and Planck 857, 545, and 353 GHz bands.

  • FLUX_QUALITY=1 : sources with flux density estimates S/N > 1 in all bands ;
  • FLUX_QUALITY=2 : sources with flux density estimates S/N > 1 only in 857, 545, and 353 GHz Planck bands, considered as very cold source candidates ;
  • FLUX_QUALITY=3 : sources without any reliable flux density estimates, listed as poor candidates.

The all-sky distributions of the PGCC sources per FLUX_QUALITY category are shown below on top of the 857 GHz map in grey scale shown in logarithmic scale between 10-2 to 102 MJy/sr.

All-sky distribution of the PGCC sources with FLUX_QUALITY=1.
All-sky distribution of the PGCC sources with FLUX_QUALITY=2.
All-sky distribution of the PGCC sources with FLUX_QUALITY=3.

Distance estimates have been obtained on 5574 PGCC sources using seven different methods/technics, as described in Planck-2015-A28[2]. A flag is raised to quantify the quality of the distance estimates, defined as follows:

  • DIST_QUALITY=0 : No distance estimate ;
  • DIST_QUALITY=1 : Single distance estimate ;
  • DIST_QUALITY=2 : Multiple distance estimates which are consistent within 1[math]\sigma[/math] ;
  • DIST_QUALITY=3 : Multiple distance estimates which are not consistent within 1[math]\sigma[/math] ;
  • DIST_QUALITY=4 : Single upper limits.

The all-sky distribution of the sources with robust distance estimates is shown below.

All-sky distribution of the 4655 PGCC sources for which a distance estimate with a DIST_QUALITY flag equal to 1 or 2 is available. The various types of distance estimates are defined as follows : kinematic (purple), optical extinction (blue), near-infrared extinction (green), molecular complex association (orange), and Herschel HKP-GCC (red). We also show the distribution of the 664 sources with an upper-limit estimate (DIST_QUALITY=4) provided by the near-infrared extinction method (light green). Molecular complexes are outlined with black contours.

The catalogue is contained in the FITS file HFI_PCCS_GCC_R2.02.fits. It structure is as follows:

FITS file structure
Identification
FITS Keyword Data Type Units Description
NAME String Source Name
SNR real*8 Maximum S/N over the 857, 545, and 353 GHz Planck cold residual maps
SNR_857 real*8 S/N of the cold residual detection at 857 GHz
SNR_545 real*8 S/N of the cold residual detection at 545 GHz
SNR_353 real*8 S/N of the cold residual detection at 353 GHz
Source position
FITS Keyword Data Type Units Description
GLON real*8 deg Galactic longitude based on morphology fitting
GLAT real*8 deg Galactic latitude based on morphology fitting
RA real*8 deg Right ascension (J2000) in degrees transformed from (GLON, GLAT)
DEC real*8 deg Declination (J2000) in degrees transformed from (GLON, GLAT)
Morphology
FITS Keyword Data Type Units Description
GAU_MAJOR_AXIS real*8 arcmin FWHM along the major axis of the elliptical Gaussian
GAU_MAJOR_AXIS_SIG real*8 arcmin 1[math]\sigma[/math] uncertainty on the FWHM along the major axis
GAU_MINOR_AXIS real*8 arcmin FWHM along the minor axis of the elliptical Gaussian
GAU_MINOR_AXIS_SIG real*8 arcmin 1[math]\sigma[/math] uncertainty on the FWHM along the minor axis
GAU_POSITION_ANGLE real*8 rad Position angle of the elliptical gaussian (see note 1)
GAU_POSITION_ANGLE_SIG real*8 rad 1[math]\sigma[/math] uncertainty on the position angle
Photometry
FITS Keyword Data Type Units Description
FLUX_3000_CLUMP real*8 Jy Flux density of the clump at 3 THz
FLUX_3000_CLUMP_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the clump at 3 THz
FLUX_857_CLUMP real*8 Jy Flux density of the clump at 857 GHz
FLUX_857_CLUMP_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the clump at 857 GHz
FLUX_545_CLUMP real*8 Jy Flux density of the clump at 545 GHz
FLUX_545_CLUMP_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the clump at 545 GHz
FLUX_353_CLUMP real*8 Jy Flux density of the clump at 353 GHz
FLUX_353_CLUMP_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the clump at 353 GHz
FLUX_3000_WBKG real*8 Jy Flux density of the warm background at 3 THz (see note 2)
FLUX_3000_WBKG_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of warm background at 3 THz
FLUX_857_WBKG real*8 Jy Flux density of the warm background at 857 GHz
FLUX_857_WBKG_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the warm background at 857 GHz
FLUX_545_WBKG real*8 Jy Flux density of the warm background at 545 GHz
FLUX_545_WBKG_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the warm background at 545 GHz
FLUX_353_WBKG real*8 Jy Flux density of the warm background at 353 GHz
FLUX_353_WBKG_SIG real*8 Jy 1[math]\sigma[/math] uncertainty on the flux density of the warm background at 353 GHz
FLUX_QUALITY int*4 1-3 Category of flux density reliability (see note 3)
FLUX_BLENDING int*4 0/1 1 if blending issue with flux density estimate (see note 4)
FLUX_BLENDING_IDX int*8 Catalogue index of the closest source responsible for blending
FLUX_BLENDING_ANG_DIST real*8 arcmin Angular distance to the closest source responsible for blending
FLUX_BLENDING_BIAS_3000 real*8 % Relative bias of the flux density at 3000 GHz due to blending
FLUX_BLENDING_BIAS_857 real*8 % Relative bias of the flux density at 857 GHz due to blending
FLUX_BLENDING_BIAS_545 real*8 % Relative bias of the flux density at 545 GHz due to blending
FLUX_BLENDING_BIAS_353 real*8 % Relative bias of the flux density at 353 GHz due to blending
Distance
FITS Keyword Data Type Units Description
DIST_KINEMATIC real*8 kpc Distance estimate [1] using kinematics
DIST_KINEMATIC_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [1] using kinematics
DIST_OPT_EXT_DR7 real*8 kpc Distance estimate [2] using optical extinction on SDSS DR7
DIST_OPT_EXT_DR7_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [2] using optical extinction on SDSS DR7
DIST_OPT_EXT_DR9 real*8 kpc Distance estimate [3] using optical extinction on SDSS DR9
DIST_OPT_EXT_DR9_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [3] using optical extinction on SDSS DR9
DIST_NIR_EXT_IRDC real*8 kpc Distance estimate [4] using near-infrared extinction towards IRDCs
DIST_NIR_EXT_IRDC_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [4] using near-infrared extinction towards IRDCs
DIST_NIR_EXT real*8 kpc Distance estimate [5] using near-infrared extinction
DIST_NIR_EXT_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [5] using near-infrared extinction
DIST_MOLECULAR_COMPLEX real*8 kpc Distance estimate [6] using molecular complex association
DIST_MOLECULAR_COMPLEX_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [6] using molecular complex association
DIST_HKP_GCC real*8 kpc Distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
DIST_HKP_GCC_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
DIST_OPTION int*4 0-7 Option of the best distance estimate used in other physical properties
DIST_QUALITY int*4 0-4 Quality Flag of the consistency between distance estimates (see note 5)
DIST real*8 kpc Best distance estimate used for further physical properties
DIST_SIG real*8 kpc 1[math]\sigma[/math] uncertainty on the best distance estimate
Temperature
FITS Keyword Data Type Units Description
TEMP_CLUMP real*8 K Temperature of the clump with [math]\beta[/math] as a free parameter
TEMP_CLUMP_SIG real*8 K 1[math]\sigma[/math] uncertainty on the clump temperature with [math]\beta[/math] free
TEMP_CLUMP_LOW1 real*8 K Lower 68% confidence limit of the clump temperature with [math]\beta[/math] free
TEMP_CLUMP_UP1 real*8 K Upper 68% confidence limit of the clump temperature with [math]\beta[/math] free
BETA_CLUMP real*8 Spectral index [math]\beta[/math] of the clump
BETA_CLUMP_SIG real*8 1[math]\sigma[/math] uncertainty (from MCMC) on the emissivity spectral index [math]\beta[/math] of the clump
BETA_CLUMP_LOW1 real*8 Lower 68% confidence limit of the emissivity spectral index [math]\beta[/math] of the clump
BETA_CLUMP_UP1 real*8 Upper 68% confidence limit of the emissivity spectral index [math]\beta[/math] of the clump
TEMP_BETA2_CLUMP real*8 K Temperature of the clump with [math]\beta[/math] = 2
TEMP_BETA2_CLUMP_SIG real*8 K 1[math]\sigma[/math] uncertainty on the temperature of the clump with [math]\beta[/math] = 2
TEMP_BETA2_CLUMP_LOW1 real*8 K Lower 68% confidence limit of the clump temperature with [math]\beta[/math] = 2
TEMP_BETA2_CLUMP_UP1 real*8 K Upper 68% confidence limit of the clump temperature with [math]\beta[/math] = 2
TEMP_WBKG real*8 K Temperature of the warm background with [math]\beta[/math] as a free parameter (see note 6)
TEMP_WBKG_SIG real*8 K 1[math]\sigma[/math] dispersion of the warm background temperature with [math]\beta[/math] free
TEMP_WBKG_LOW1 real*8 K Lower 68% confidence limit of the warm background temperature with [math]\beta[/math] free
TEMP_WBKG_UP1 real*8 K Upper 68% confidence limit of the warm background temperature with [math]\beta[/math] free
BETA_WBKG real*8 Spectral index [math]\beta[/math] of the warm background (see note 6)
BETA_WBKG_SIG real*8 1[math]\sigma[/math] uncertainty (from MCMC) of the emissivity spectral index [math]\beta[/math] of the warm background
BETA_WBKG_LOW1 real*8 Lower 68% confidence limit of the emissivity spectral index [math]\beta[/math] of the warm background
BETA_WBKG_UP1 real*8 Upper 68% confidence limit of the emissivity spectral index [math]\beta[/math] of the warm background
TEMP_BETA2_WBKG real*8 K Temperature of the warm background with [math]\beta[/math] = 2
TEMP_BETA2_WBKG_SIG real*8 K 1[math]\sigma[/math] uncertainty on the temperature of the warm background with [math]\beta[/math] = 2
TEMP_BETA2_WBKG_LOW1 real*8 K Lower 68% confidence limit of the warm background temperature with [math]\beta[/math] = 2
TEMP_BETA2_WBKG_UP1 real*8 K Upper 68% confidence limit of the warm background temperature with [math]\beta[/math] = 2
Physical properties
FITS Keyword Data Type Units Description
NH2 real*8 cm-2 Column density [math]N_{H_2}[/math] of the clump
NH2_SIG real*8 cm-2 1[math]\sigma[/math] uncertainty on the column density
NH2_LOW[1,2,3] real*8 cm-2 Lower 68%, 95% and 99% confidence limit of the column density
NH2_UP[1,2,3] real*8 cm-2 Upper 68%, 95% and 99% confidence limit of the column density
MASS real*8 [math]M_{o}[/math] Mass estimate of the clump
MASS_SIG real*8 [math]M_{o}[/math] 1[math]\sigma[/math] uncertainty on the mass estimate of the clump
MASS_LOW[1,2,3] real*8 [math]M_{o}[/math] Lower 68%, 95% and 99% confidence limit of the mass estimate
MASS_UP[1,2,3] real*8 [math]M_{0}[/math] Upper 68%, 95% and 99% confidence limit of the mass estimate
DENSITY real*8 cm-3 Mean density of the clump
DENSITY_SIG real*8 cm-3 1[math]\sigma[/math] uncertainty on the mean density estimate of the clump
DENSITY_LOW[1,2,3] real*8 cm-3 Lower 68%, 95% and 99% confidence limit of the mean density estimate
DENSITY_UP[1,2,3] real*8 cm-3 Upper 68%, 95% and 99% confidence limit of the mean density estimate
SIZE real*8 pc Physical size of the clump
SIZE_SIG real*8 pc 1[math]\sigma[/math] uncertainty on the physical size estimate of the clump
SIZE_LOW[1,2,3] real*8 pc Lower 68%, 95% and 99% confidence limit of the physical size estimate
SIZE_UP[1,2,3] real*8 pc Upper 68%, 95% and 99% confidence limit of the physical size estimate
LUMINOSITY real*8 Lo Luminosity of the clump
LUMINOSITY_SIG real*8 Lo 1[math]\sigma[/math] uncertainty on the luminosity estimate of the clump
LUMINOSITY_LOW[1,2,3] real*8 Lo Lower 68%, 95% and 99% confidence limit of the luminosity estimate
LUMINOSITY_UP[1,2,3] real*8 Lo Upper 68%, 95% and 99% confidence limit of the luminosity estimate
Flags
FITS Keyword Data Type Units Description
XFLAG_LMC int*4 0/1 1 if part of the LMC
XFLAG_SMC int*4 0/1 1 if part of the SMC
XFLAG_ECC int*4 0/1 1 if present in the ECC
XFLAG_PCCS_857 int*4 0/1 1 if present in the PCCS 857 GHz band
XFLAG_PCCS_545 int*4 0/1 1 if present in the PCCS 545 GHz band
XFLAG_PCCS_353 int*4 0/1 1 if present in the PCCS 353 GHz band
XFLAG_PCCS_217 int*4 0/1 1 if present in the PCCS 217 GHz band
XFLAG_PCCS_143 int*4 0/1 1 if present in the PCCS 143 GHz band
XFLAG_PCCS_100 int*4 0/1 1 if present in the PCCS 100 GHz band
XFLAG_PCCS_70 int*4 0/1 1 if present in the PCCS 70 GHz band
XFLAG_PCCS_44 int*4 0/1 1 if present in the PCCS 44 GHz band
XFLAG_PCCS_30 int*4 0/1 1 if present in the PCCS 30 GHz band
XFLAG_PSZ int*4 0/1 1 if present in the PCCS PSZ
XFLAG_PHZ int*4 0/1 1 if present in the PCCS HZ
XFLAG_HKP_GCC int*4 0/1 1 if present in the Herschel HKP-GCC


Notes:

  • 1: The position angle of the 2D ellipse is defined as the angle between the axis parallele to the Galactic plane and the major axis, counted clockwise.
  • 2: The warm bakcground flux densities are computed using the same solid angle as for the clumps flux densities, but on the warm conponent map.
  • 3: See text above for a full description of the FLUX_QUALITY flag, for which 1 is best.
  • 4: This relative bias due to blending provides a rough estimate of the factor that should be applied on the clumpds flux densities to get a corrected estimate. It has been obtained on a very simple modelling of clumps morphology and the local environment. It has therefore to be taken very carefully.
  • 5: See text above for a full description of the DIST_QUALITY flag.
  • 6: Temperature and spectral index of the warm background are based on the warm background flux density estimates obtained on the same solid angle used for clumps

References[edit]

Sunyaev-Zel'dovich

(Hierarchical Equal Area isoLatitude Pixelation of a sphere, <ref name="Template:Gorski2005">HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ApJ, 622, 759-771, (2005).

Flexible Image Transfer Specification

(Planck) High Frequency Instrument

Data Processing Center

Full-Width-at-Half-Maximum