HFI time response model

From Planck Legacy Archive Wiki
Revision as of 21:44, 19 June 2018 by Jtauber (talk | contribs)
Jump to: navigation, search

LFER4 model (PR1 /2013 release)[edit]

Here we describe the "Low frequency excess response" 4 model. If we write the input signal (power) on a bolometer as \label{bol_in} s_0(t)=e^{i\omega t}, the bolometer physical impedance can be written as \label{bol_out} s(t)=e^{i\omega t}F(\omega), where \omega is the angular frequency of the signal and F(\omega) is the complex intrinsic bolometer transfer function. For HFI the bolometer transfer function is modelled as the sum of four single pole low-pass filters: \label{bol_tf} F(\omega) = \sum_{i=0,4} \frac{a_i}{1 + i\omega\tau_i}. The modulation of the signal is performed with a square wave, written here as a composition of sine waves of decreasing amplitude: \label{sigmod} s'(t)=e^{i\omega t}F(\omega)\sum_{k=0}^{\infty} \frac{e^{i\omega_r(2k+1)t}-e^{-i\omega_r(2k+1)t}}{2i(2k+1)} , where we have used the Euler relation \sin x=(e^{ix}-e^{-ix})/2i and \omega_r is the angular frequency of the square wave. The modulation frequency is f_{\rm mod} = \omega_r/2\pi and was set to f_{\rm mod} = 90.18759 Hz in flight. This signal is then filtered by the complex electronic transfer function H(\omega). Setting \omega_k^+=\omega+(2k+1)\omega_r \omega_k^-=\omega-(2k+1)\omega_r we have \label{sigele} \Sigma(t)=\sum_{k=0}^\infty\frac{F(\omega)}{2i(2k+1)}\left[H(\omega_k^+)e^{i\omega_k^+t}-H(\omega_k^-)e^{i\omega_k^-t}\right] . This signal is then sampled at high frequency, (2 f_{\rm mod} N_{\rm S}). Here N_{\rm S} is one of the parameters of the HFI electronics and corresponds to the number of high frequency samples in each modulation semi-period. In order to obtain an output signal sampled every \pi/\omega_r seconds, we must integrate on a semiperiod, as done in the HFI readout. To also include a time shift \Delta t, the integral is calculated between n\pi/\omega_r+\Delta t and (n+1)\pi/\omega_r+\Delta t (with T=2 \pi/\omega_r period of the modulation). The time shift \Delta t is encoded in the HFI electronics by the parameter S_{\rm phase}, with the relation \Delta t = S_{\rm phase}/N_{\rm S}/f_{\rm mod} .

After integration, the n-sample of a bolometer can be written as \label{eqn:output} Y(t_n) = (-1)^n F(\omega) H'(\omega) e^{i t_n \omega} , where \label{tfele} H'(\omega) = \frac 12 \sum_{k=0}^\infty e^{-i(\frac{\pi\omega}{2\omega_r}+\omega\Delta t)} \Bigg[ \frac{H(\omega_k^+)e^{i\omega_k^+ \Delta t}}{(2k+1)\omega_k^+} \left(1-e^{\frac{i\omega_k^+\pi}{\omega_r}}\right) \\ - \frac{H(\omega_k^-)e^{i\omega_k^- \Delta t}}{(2k+1)\omega_k^-} \left(1-e^{\frac{i\omega_k^-\pi}{\omega_r}}\right) \Bigg].

The output signal in equation eqn:output can be demodulated (thus removing the (-1)n) and compared to the input signal in equation bol_in. The overall transfer function is composed of the bolometer transfer function and the effective electronics transfer function, H'(\omega): TF(\omega) = F(\omega) H'(\omega).

The shape of H(\omega) is obtained combining low- and high-pass filters with Sallen-Key topologies (with their respective time constants) and accounting also for the stray capacitance low-pass filter given by the bolometer impedance combined with the stray capacitance of the cables. The sequence of filters that define the electronic band-pass function H(\omega) = h_0*h_1*h_2*h_3*h_4*h_{5} are listed in the following table.

HFI electronics filter sequence. Here we define s = i \omega.
Filter Parameters Function
0. Stray capacitance low-pass filter \tau_{\rm stray}= R_{\rm bolo} C_{\rm stray} h_0 = \frac{1}{1.0+\tau_{\rm stray}*s}
1. Low-pass filter R_1=1k\Omega
C_1=100nF
h_1 = \frac{2.0+R_1*C_1*s}{2.0*(1.0+R_1*C_1*s)}
2. Sallen-Key high-pass filter R_2=51k\Omega
C_2=1\muF
h_2= \frac{(R_2*C_2*s)^2}{(1.0+R_2*C_2*s)^2}3
3. Sign reverse with gain h_3=-5.1
4. Single pole low-pass filter with gain R_4=10k\Omega
C_4=10nF
h_4= \frac{1.5}{1.0+R_4*C_4*s}
5. Single pole high-pass filter coupled to a Sallen-Key low-pass filter R_9=18.7k\Omega
R_{12}=37.4k\Omega
C=10.0nF
R_{78}=510k\Omega
C_{18}=1.0\muF
K_3 = R_9^2*R_{78}*R_{12}^2*C^2*C_{18}
K_2 = R_9*R_{12}^2*R_{78}*C^2+R_{9}^2*R_{12}^2*C^2+R_9*R_{12}^2*R_{78}*C_{18}*C
K_1 =R_9*R_{12}^2*C+R_{12}*R_{78}*R_9*C_{18}
h_{5} = \frac{2.0*R_{12}*R_9*R_{78}*C_{18}*s}{s^3*K_3 + s^2*K_2+ s*K_1 + R_{12}*R_9 }

Parameters of LFER4 model[edit]

The LFER4 model has are a total of 10 parameters for each bolometer (A_1,A_2,A_3,A_4,\tau_1,\tau_2,\tau_3,\tau_4,S_{\rm phase},\tau_{\rm stray}) nine of which are independent. The free parameters of the LFER4 model are determined using in-flight data in the following ways:

  • S_{\rm phase} is fixed at the value of the REU setting;
  • \tau_{\rm stray} is measured during the QEC test of the CPV phase;
  • A_1, \tau_1, A_2, \tau_2 are fit by forcing the compactness of the scanning beam;
  • A_3, \tau_3, A_{4} \tau_4 are fit by forcing agreement of Survey 2 and Survey 1 maps;
  • the overall normalization of the LFER4 model is forced to be 1.0 at the signal frequency of the dipole.

The details of determining the model parameters are given in (reference P03c paper) and the best-fit parameters are listed below.

LFER4 model parameters
Bolometer A_1 \tau_1 (s) A_2 \tau_2 (s) A_3 \tau_3 (s) A_4 \tau_4 (s) \tau_{\rm stray} (s) S_{\rm phase} (s)
100-1a 0.392 0.01 0.534 0.0209 0.0656 0.0513 0.00833 0.572 0.00159 0.00139
100-1b 0.484 0.0103 0.463 0.0192 0.0451 0.0714 0.00808 0.594 0.00149 0.00139
100-2a 0.474 0.00684 0.421 0.0136 0.0942 0.0376 0.0106 0.346 0.00132 0.00125
100-2b 0.126 0.00584 0.717 0.0151 0.142 0.0351 0.0145 0.293 0.00138 0.00125
100-3a 0.744 0.00539 0.223 0.0147 0.0262 0.0586 0.00636 0.907 0.00142 0.00125
100-3b 0.608 0.00548 0.352 0.0155 0.0321 0.0636 0.00821 0.504 0.00166 0.00125
100-4a 0.411 0.0082 0.514 0.0178 0.0581 0.0579 0.0168 0.37 0.00125 0.00125
100-4b 0.687 0.0113 0.282 0.0243 0.0218 0.062 0.00875 0.431 0.00138 0.00139
143-1a 0.817 0.00447 0.144 0.0121 0.0293 0.0387 0.0101 0.472 0.00142 0.00125
143-1b 0.49 0.00472 0.333 0.0156 0.134 0.0481 0.0435 0.27 0.00149 0.00125
143-2a 0.909 0.0047 0.0763 0.017 0.00634 0.1 0.00871 0.363 0.00148 0.00125
143-2b 0.912 0.00524 0.0509 0.0167 0.0244 0.0265 0.0123 0.295 0.00146 0.00125
143-3a 0.681 0.00419 0.273 0.00956 0.0345 0.0348 0.0115 0.317 0.00145 0.00125
143-3b 0.82 0.00448 0.131 0.0132 0.0354 0.0351 0.0133 0.283 0.00161 0.000832
143-4a 0.914 0.00569 0.072 0.0189 0.00602 0.0482 0.00756 0.225 0.00159 0.00125
143-4b 0.428 0.00606 0.508 0.00606 0.0554 0.0227 0.00882 0.084 0.00182 0.00125
143-5 0.491 0.00664 0.397 0.00664 0.0962 0.0264 0.0156 0.336 0.00202 0.00139
143-6 0.518 0.00551 0.409 0.00551 0.0614 0.0266 0.0116 0.314 0.00153 0.00111
143-7 0.414 0.00543 0.562 0.00543 0.0185 0.0449 0.00545 0.314 0.00186 0.00139
217-5a 0.905 0.00669 0.0797 0.0216 0.00585 0.0658 0.00986 0.342 0.00157 0.00111
217-5b 0.925 0.00576 0.061 0.018 0.00513 0.0656 0.0094 0.287 0.00187 0.00125
217-6a 0.844 0.00645 0.0675 0.0197 0.0737 0.0316 0.0147 0.297 0.00154 0.00125
217-6b 0.284 0.00623 0.666 0.00623 0.0384 0.024 0.0117 0.15 0.00146 0.00111
217-7a 0.343 0.00548 0.574 0.00548 0.0717 0.023 0.0107 0.32 0.00152 0.00139
217-7b 0.846 0.00507 0.127 0.0144 0.0131 0.0479 0.0133 0.311 0.00151 0.00139
217-8a 0.496 0.00722 0.439 0.00722 0.0521 0.0325 0.0128 0.382 0.00179 0.00111
217-8b 0.512 0.00703 0.41 0.00703 0.0639 0.0272 0.0139 0.232 0.00173 0.00125
217-1 0.0136 0.00346 0.956 0.00346 0.0271 0.0233 0.00359 1.98 0.00159 0.00111
217-2 0.978 0.00352 0.014 0.0261 0.00614 0.042 0.00194 0.686 0.0016 0.00125
217-3 0.932 0.00355 0.0336 0.00355 0.0292 0.0324 0.00491 0.279 0.00174 0.00125
217-4 0.658 0.00135 0.32 0.00555 0.0174 0.0268 0.00424 0.473 0.00171 0.00111
353-3a 0.554 0.00704 0.36 0.00704 0.0699 0.0305 0.0163 0.344 0.0017 0.00125
353-3b 0.219 0.00268 0.671 0.00695 0.0977 0.0238 0.0119 0.289 0.00157 0.00111
353-4a 0.768 0.00473 0.198 0.00993 0.0283 0.0505 0.00628 0.536 0.00181 0.00125
353-4b 0.684 0.00454 0.224 0.0108 0.0774 0.08 0.0149 0.267 0.00166 0.00111
353-5a 0.767 0.00596 0.159 0.0124 0.0628 0.0303 0.0109 0.357 0.00156 0.00111
353-5b 0.832 0.00619 0.126 0.0111 0.0324 0.035 0.0096 0.397 0.00166 0.00111
353-6a 0.0487 0.00176 0.855 0.006 0.0856 0.0216 0.0105 0.222 0.00199 0.00125
353-6b 0.829 0.00561 0.127 0.00561 0.0373 0.0252 0.00696 0.36 0.00228 0.00111
353-1 0.41 0.000743 0.502 0.00422 0.0811 0.0177 0.0063 0.329 0.00132 0.00097
353-2 0.747 0.00309 0.225 0.00726 0.0252 0.0447 0.00267 0.513 0.00154 0.00097
353-7 0.448 0.0009 0.537 0.0041 0.0122 0.0273 0.00346 0.433 0.00178 0.00125
353-8 0.718 0.00223 0.261 0.00608 0.0165 0.038 0.00408 0.268 0.00177 0.00111
545-1 0.991 0.00293 0.00743 0.026 0.00139 2.6 0 0 0.00216 0.00111
545-2 0.985 0.00277 0.0128 0.024 0.00246 2.8 0 0 0.00187 0.00097
545-4 0.972 0.003 0.0277 0.025 0.000777 2.5 0 0 0.00222 0.00111
857-1 0.974 0.00338 0.0229 0.025 0.00349 2.2 0 0 0.00176 0.00111
857-2 0.84 0.00148 0.158 0.00656 0.00249 3.2 0 0 0.0022 0.00125
857-3 0.36 4.22e-05 0.627 0.0024 0.0111 0.017 0.002 1.9 0.00152 0.00126
857-4 0.278 0.0004 0.719 0.00392 0.00162 0.09 0.00152 0.8 0.00149 0.000558

(Planck) High Frequency Instrument

Readout Electronic Unit

Calibration and Performance Verification