Difference between revisions of "Frequency maps angular power spectra"

From Planck Legacy Archive Wiki
Jump to: navigation, search
(Production process)
(Production process)
 
(77 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
{{DISPLAYTITLE:Sky temperature power spectra}}
 
<span style="color:Red">
 
<span style="color:Red">
  
= HFI detset maps power spectra =
+
== HFI maps power spectra ==
-----------------------------
+
Angular power spectra of cut sky CMB dominated maps are provided to allow independent cosmological analysis at high <math>\ell</math>.
<!-- http://www.sciops.esa.int/wikiSI/planckpla/index.php?title=Frequency_maps_angular_power_spectra&action=edit -->
 
  
<!-- <span style="color:red">EFH to add the purpose of these spectra and of the
+
===Product description===
associated covariance matrices, and a description of how they are obtained,
+
The auto and cross-spectra of the 13 [[Frequency Maps#Types of maps | detector set ]] (detset) maps at 100, 143  and 217 GHz, all analyzed on  the same 42.8% of the sky, are provided.
including the inputs used to build them (maps, beams, mask), </span>  -->
+
The mask used is apodized to reduce the power leakage from large scale to small scale (see input section). Except for the removal of the most contaminated pixels through masking, no attempt at astrophysical components separation has been performed.
  
Angular power spectra of cut sky CMB dominated maps are provided to allow
+
For each pair of detectors <math>X</math> and <math>Y</math>,  are provided,
independent cosmological analysis at high ell.
+
* the unbinned ''estimated'' power spectrum <math>\hat{C}^{XY}_\ell</math> for all <math>\ell</math> from 0 to 3508 (see [[#all_dscl|Figure 1]] below), as well as
 
 
==Product description==
 
 
 
The auto and cross-spectra of the 13 detector (set) maps at
 
100, 143  and 217GHz, all analyzed on  the same 42.8% of the sky, are provided.
 
The mask used is apodized to reduce the power leakage from large scale to small
 
scale (see input section). Except for the removal of the most contaminated
 
pixels through masking, no attempt at astrophysical components separation is
 
performed.
 
 
 
For each pair of detectors $X$ and $Y$,  are provided,
 
* the unbinned power spectrum $C^{XY}_\ell$ for all $\ell$ from 0 to 3508, as well as  
 
 
* the unbinned symmetric covariance matrix
 
* the unbinned symmetric covariance matrix
 
\begin{align}
 
\begin{align}
   M^{XY}_{\ell \ell'} \equiv \langle\Delta C^{XY}_\ell\Delta C^{XY}_{\ell'}\rangle
+
   \hat{M}^{XY}_{\ell \ell'} \equiv \langle\Delta \hat{C}^{XY}_\ell\Delta \hat{C}^{XY}_{\ell'}\rangle
 
   \label{eq:covmatCl}
 
   \label{eq:covmatCl}
 
\end{align}
 
\end{align}
for all $\ell$ on the same range.  
+
for all <math>\ell</math> on the same range. At the price of some extra hypotheses, that information can be used to build the likelihood of a given theoretical power spectrum <math>C_{\ell}</math> given the data, and therefore determine the best cosmological models fitting the data. Several examples of such high-<math>\ell</math> likelihoods are described, discussed and compared in {{PlanckPapers|planck2013-p08}}.
  
 
$
 
$
Line 36: Line 24:
 
\newcommand{\lmax}{\ell_{\mathrm{max}}}
 
\newcommand{\lmax}{\ell_{\mathrm{max}}}
 
$
 
$
Note that $M$ only describes the statistical covariance of the power spectrum
+
Note that <math>\hat{\bfM}</math> only describes the statistical covariance of the power spectrum
 
induced by the signal and noise of the input map on the cut sky begin analyzed.  
 
induced by the signal and noise of the input map on the cut sky begin analyzed.  
Most sources of systematic effects (such as uncertainty on the beam modeling) as well as post-processing steps (such as foreground subtraction) will increase the covariance. In the particular case of the uncertainty on the beam window functions $B(l)$,
+
Most sources of systematic effects (such as uncertainty on the beam modeling) as well as post-processing steps (such as foreground subtraction) will increase the covariance. In the particular case of the uncertainty on the beam window functions <math>B(l)</math>,
the [[The RIMO|RIMO]] provides for each pair $XY$ a set of eigen-vectors $\bfE^{XY}$ of $B^{XY}_{\ell}$ (see "HFI time response and beams paper"<cite>planck2013-p03c</cite>), where $\bfE^{XY}$ is a matrix with 5 rows and $\lmax+1$ columns (with $\lmax$ between 2500 and 4000 depending on the frequency of the detectors $X$ and $Y$). The extra contribution to the covariance of $C^{XY}_\ell$ is then  
+
the [[The RIMO|RIMO]] provides for each pair <math>XY</math> a set of eigen-vectors <math>E_{p}^{XY}(\ell)</math> of the relative error on <math>B^{XY}_{\ell}</math> (see {{PlanckPapers|planck2013-p03c|1|HFI time response and beams paper}}), defined for <math>p</math> in <math>[1,5]</math> and <math>\ell</math> in <math>[0, \lmax]</math> (with <math>\lmax</math> being 2500, 3000 or 4000 when the lowest of the nominal frequencies of the detectors <math>X</math> and <math>Y</math> is respectively 100, 143 or 217GHz). The extra contribution to the covariance of <math>C^{XY}_\ell</math> is then  
 
\begin{align}
 
\begin{align}
\bfM^{XY, \mathrm{beam}} = 4 \left(\bfE^{XY}\right)^t . \bfE^{XY},
+
  \hat{M}^{XY, \mathrm{beam}}_{\ell_1 \ell_2} = 4 \hat{C}^{XY}_{\ell_1} \hat{C}^{XY}_{\ell_2} \sum_{p=1}^{5} E^{XY}_p(\ell_1) E^{XY}_p(\ell_2).
 +
  \label{eq:covmatBeam}
 
\end{align}
 
\end{align}
where $\bfx^t$ is the transpose of $\bfx$.
 
 
==Production process==
 
  
<!-- <span style="color:Red">Description of the Pipeline used to generate the
+
<!--         ===================================================    -->
product. In particular any limitations and approximations used in the data
+
<div id="all_dscl">
processing should be listed. Avoiding detailed descriptions of methods and
+
[[File:all_dscl.png  | 500px  | center | thumb | '''Figure 1:''' The 91 auto- (dotted lines) and cross- (solid lines) angular power spectra <math>\hat{C}_\ell</math>, shown here after a binning of <math>\Delta \ell = 31</math>, grouped by frequencies. For instance the top left panel, tagged ''100x100 (3)'', contains the three spectra 100-ds1x100-ds2, 100-ds1x100-ds1 and 100-ds1x100-ds2. The auto spectra are contaminated at high <math>\ell</math> by the instrumental noise, and all of them may be affected by foreground contamination. The grey circles show the best Planck CMB high-<math>\ell</math> power spectrum described in the [[CMB spectrum & Likelihood Code | CMB spectrum & Likelihood Code section]]  ]]
referring to other parts of the ES and/or the relevant Planck papers for the
+
</div>
details. References however should be quite detailed (i.e. it is not enough to
+
<!--          ===================================================    -->
direct the user to a paper, but the relevant section in the paper should be
 
provided).</span> -->
 
  
  
<!-- (initial run 1731634056805856210, new run:1731634056820552023 ) -->
+
====Auto and Cross Power Spectra====
The spectra computed up to ell=3508 using PolSpice
+
The spectra computed up to <math>l=3508</math> using [http://prof.planck.fr/article141.html PolSpice]{{BibCite|Szapudi2001}}{{BibCite|Chon2004}}
(http://prof.planck.fr/article141.html,
+
are corrected from the effect of the cut sky, and from the nominal beam window function and average pixel function. The different steps of the calculation are
[http://adsabs.harvard.edu/abs/2001ApJ...548L.115S Szapudi, Prunet & Colombi (2001)],
+
* computation of the Spherical Harmonics coefficients of the masked input maps <math>\Delta T^X(p)</math> and of the input mask <math>w(p)</math>,
[http://adsabs.harvard.edu/abs/2004MNRAS.350..914C Chon et al (2004)])
 
are corrected from the effect of the cut sky, and from the nominal beam window  
 
function and average pixel function. The different steps of the calculation are
 
* computation of the Spherical Harmonics coefficients of the masked input maps $\Delta T^X(p)$ and of the input mask $w(p)$,
 
 
\begin{align}
 
\begin{align}
   \tilde{a}^X_{\ell m} = \sum_p \Omega_p\, \Delta T^X(p)\, w(p)\, Y^*_{\ell m}(p),
+
   \tilde{a}^X_{\ell m} = \sum_p \Omega_p\, \Delta T^X(p)\, w(p)\, Y^*_{\ell m}(p), \label{eq:almdef}
 
\end{align}
 
\end{align}
 
\begin{align}
 
\begin{align}
   \tilde{w}_{\ell m} = \sum_p \Omega_p\ w(p)\, Y^*_{\ell m}(p);
+
   \tilde{w}^{(n)}_{\ell m} = \sum_p \Omega_p\ w^n(p)\, Y^*_{\ell m}(p); \label{eq:wlmdef}
 
\end{align}
 
\end{align}
where the sum is done over all sky pixels $p$,
+
where the sum is done over all sky pixels <math>p</math>, <math>\Omega_p</math> is the pixel area, and <math>n</math> is either 1 or 2;
* the sky (cross or auto) pseudo-power spectrum and mask power spectrum are computed from the $a_{\ell m}$,
+
* the sky (cross or auto) pseudo-power spectrum and mask power spectrum are computed from the <math>\tilde{a}_{\ell m}</math> and <math>\tilde{w}_{\ell m}</math>,
 
\begin{align}
 
\begin{align}
   \tilde{C}^{XY}_\ell =  \sum_{\ell m} \tilde{a}^X_{ m} \tilde{a}^{Y^*}_{\ell m}  / (2 \ell + 1),
+
   \tilde{C}^{XY}_\ell =  \sum_{\ell m} \tilde{a}^X_{ m} \tilde{a}^{Y^*}_{\ell m}  / (2 \ell + 1), \label{eq:alm2cl}
 
\end{align}
 
\end{align}
 
\begin{align}
 
\begin{align}
   \tilde{W}_\ell =  \sum_{\ell m} \tilde{w}_{ m} \tilde{w}^*_{\ell m}  / (2 \ell + 1);
+
   \tilde{W}^{(n)}_\ell =  \sum_{\ell m} \tilde{w}^{(n)}_{ m} {\tilde{w}^{(n)}}^*_{\ell m}  / (2 \ell + 1); \label{eq:wlm2wl}
 
\end{align}
 
\end{align}
 
* the sky and mask angular correlation function are computed from the respective power spectra,
 
* the sky and mask angular correlation function are computed from the respective power spectra,
Line 83: Line 63:
 
\end{align}
 
\end{align}
 
\begin{align}
 
\begin{align}
   \tilde{\xi}_W(\theta) = \sum_\ell \frac{2\ell+1}{4\pi} \tilde{W}_{\ell} P_\ell(\theta);
+
   \tilde{\xi}_W(\theta) = \sum_\ell \frac{2\ell+1}{4\pi} \tilde{W}^{(1)}_{\ell} P_\ell(\theta),
 
\end{align}
 
\end{align}
 +
where <math>P_\ell</math> is the Legendre Polynomial of order <math>\ell</math>;
 
* the ratio of the sky angular correlation by the mask correlation provides the cut sky corrected angular correlation,
 
* the ratio of the sky angular correlation by the mask correlation provides the cut sky corrected angular correlation,
 
\begin{align}
 
\begin{align}
   \xi(\theta) = \tilde{\xi}(\theta) / \tilde{\xi}_W(\theta);
+
   \xi(\theta) = \tilde{\xi}(\theta) / \tilde{\xi}_W(\theta); \label{eq:xi_deconv}
 
\end{align}
 
\end{align}
 
* the sky angular correlation function which is then turned into a angular power spectrum,
 
* the sky angular correlation function which is then turned into a angular power spectrum,
 
\begin{align}
 
\begin{align}
   {C}_\ell =  2\pi \sum_i w_i \xi(\theta_i) P_\ell(\theta_i) \label{eq:xi2cl}
+
   {C'}_\ell =  2\pi \sum_i w_i \xi(\theta_i) P_\ell(\theta_i), \label{eq:xi2cl}
 
\end{align}
 
\end{align}
* the resulting power spectrum is corrected from the nominal beam window function $B_\ell$ and average pixel window function $w_{\mathrm{pix}}$,
+
where <math>w_i</math> are the weights of the Gauss-Legendre quadrature, for <math>\theta</math> in <math>[0, \pi]</math>;
 +
* the resulting power spectrum is corrected from the nominal beam window function <math>B_\ell</math> and average pixel window function <math>w_{\mathrm{pix}}(\ell)</math>, to provide the final Spice estimator <math>\hat{C}_\ell</math>,
 
\begin{align}
 
\begin{align}
   \hat{C}_\ell = {C}_\ell / \left( B^2_\ell w^2_{\mathrm{pix}} \right).
+
   \hat{C}_\ell = {C'}_\ell / \left( B^2_\ell w^2_{\mathrm{pix}}(\ell) \right). \label{eq:clfinal}
 
\end{align}
 
\end{align}
  
 +
====Covariance Matrices====
 +
The covariance matrix for the pair <math>XY</math> is computed by PolSpice
 +
using the formalism described in{{BibCite|Efstathiou2004}}<!--[http://adsabs.harvard.edu/abs/2004MNRAS.349..603E Efstathiou (2004)]-->, also sketched in the appendix
 +
of {{PlanckPapers|planck2013-p08|1|CMB power spectra and likelihood paper}}, assuming the instrumental noise to be white and uniform.
  
The covariance matrix is computed by PolSpice
+
$
using the formalism described in [http://adsabs.harvard.edu/abs/2004MNRAS.349..603E Efstathiou (2004)], also sketched in the appendix
+
\newcommand{\hC}{\hat C}
of "CMB power spectra and likelihood paper"<cite>planck2013-p08</cite>, assuming the instrumental noise to be white and uniform.
+
$
 +
One note that a good approximation of the covariance matrix <math>\tilde{M}</math> of the pseudo <math>\tilde{C}_{\ell}</math> is related to the underlying ''estimated'' auto- and cross-spectra <math>\hC_{\ell}</math> through
 +
\begin{align}
 +
\tilde{M}_{\ell_1\ell_2} \equiv \langle\Delta \tilde{C}^{XY}_{\ell_1}\Delta \tilde{C}^{XY}_{\ell_2}\rangle =
 +
\left( \left(\hC^{XX}_{\ell_1} \hC^{YY}_{\ell_1} \hC^{XX}_{\ell_2} \hC^{YY}_{\ell_2}\right)^{1/2}
 +
    + \hC^{XY}_{\ell_1} \hC^{XY}_{\ell_2} \right)
 +
  \sum_{\ell_3} \frac{2\ell_3+1}{4\pi} \tilde{W}^{(2)}_{\ell_3} \left(    
 +
    \begin{array}{ccc}
 +
        \! \ell_1\! & \ell_2\!  & \ell_3\!  \\
 +
        \! 0    \! & 0    \!  & 0    \!
 +
      \end{array}
 +
  \right)^2,
 +
\label{eq:covpseudo}
 +
\end{align}
 +
where  <math>\tilde{W}^{(2)}_{\ell}</math> is the power spectrum of the square of the pixel mask (Eqs. \ref{eq:wlmdef} and \ref{eq:wlm2wl} for <math>n=2</math>). The covariance matrix <math>\hat{M}</math>
 +
of the Spice estimator is then computed by applying Eqs. \ref{eq:cl2xi}, \ref{eq:xi_deconv}, \ref{eq:xi2cl} and \ref{eq:clfinal} on each row and column of <math>\tilde{M}</math>.
  
The products described here, spectra $C(l)$ and covariances $M_{\ell \ell'}$  can be used to
 
estimate the high-$\ell$ likelihood of a given theoretical model given the data available.
 
  
==Inputs==
+
<!-- The products described here, spectra <math>{\hat C}_{\ell}</math> and covariances <math>{\hat M}_{\ell \ell'}</math>  can be used to  
<!-- <span style="color:Red">A list (and brief description to the extent possible) of
+
estimate the high-<math>\ell</math> likelihood of a given theoretical model given the data available. -->
the input data used to generate this product (down to file names), as well as
 
any external ancillary data sets which were used.</span> -->
 
Input data:
 
  
<!-- ===Mask=== -->
+
===Inputs===
* Mask:
+
; Maps
<!--The pixel mask CL43 is the product of the so-called GA43 Galactic mask
+
: The input maps are the 13 HFI detset (see [[Frequency_Maps#Types_of_maps | ''Type of maps'']] section for details) maps available at 100, 143 and 217 GHz. These are the same as the ones used for high-ell part of the [[CMB spectrum & Likelihood Code | likelihood code]], but that code applies  different masks for each cross-spectra in order to minimize further the foreground contamination.
apodized to 2degrees, with a point source mask apodized at 30arcmin combining
+
; Sky mask
the sources detected by HFI at any frequency between 100 and 353GHz with the SZ and ERCSC sources catalog. -->
+
: All maps were analyzed on the 42.8% of the sky defined by the apodized mask ''HFI_PowerSpect_Mask_2048_R1.10.fits'', which masks out Galactic Plane and point sources (see {{PlanckPapers|planck2013-p08}}), and which is shown in [[#mask_Cl|Figure 2]] below
All maps were analyzed on the fsky=42.8% of the sky defined by the apodized CL43 mask, which masks out Galactic and point sources contamination (see <cite>planck2013-p08</cite>). It is available as a FITS file under the name HFI_PowerSpect_Mask_2048_R1.10.fits
 
  
<!-- ===Maps=== -->
+
<div id="mask_Cl">
* Maps
+
[[File:mask_Cl.png  | 500px  | center | thumb | '''Figure 2:''' Apodized pixel mask used for HFI power spectrum estimation ]]
The input maps are the 13 HFI detector (set) maps available at 100, 143 and 217GHz. These are the same as the ones used for high-ell part of the
+
</div>
[[CMB spectrum & Likelihood Code | Planck Likelihood Code]],
 
but that code applies  different masks for each cross-spectra in order to minimize further the foreground contamination.
 
  
<!-- ===Beam Window Function=== -->
+
; Beam Window Function
* Beam Window Function
+
: The beam window functions <math>B(l)</math>, and their uncertainties, are the ones used in the high-ell likelihood analysis, described in section 6.1 "Error Eigenmodes" of {{PlanckPapers|planck2013-p08}} and provided in the HFI [[The RIMO|RIMO]].
The beam window functions B(l), and their uncertainties, are the ones used in the  
 
high-ell likelihood analysis, described in section 6.1 "Error Eigenmodes" of <cite>planck2013-p08</cite> and provided in the HFI [[The RIMO|RIMO]].
 
  
==Related products==
+
===Related products===
 
+
None
<span style="color:Red">A description of other products that are related and
 
share some commonalities with the product being described here. E.g. if the
 
description is of a generic product (e.g. frequency maps), all the products
 
falling into that type should be listed and referenced.</span>
 
 
 
If none, please delete this section
 
 
 
==File names and structure==
 
  
 +
===FITS file structure===
 
Power spectra are provided for the auto and cross products built from the 13 detsets available at 100, 143 and 217 GHz, namely:  
 
Power spectra are provided for the auto and cross products built from the 13 detsets available at 100, 143 and 217 GHz, namely:  
 
* 100-ds1, 100-ds2,
 
* 100-ds1, 100-ds2,
Line 148: Line 132:
  
  
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left"
+
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
 +
|+ '''Power spectrum file data structure'''
 +
|- bgcolor="ffdead" 
 +
!colspan="4" | 1. EXTNAME = 'POW-SPEC' (BINTABLE)
 +
|- bgcolor="ffdead" 
 
! Column Name || Data Type || Units || Description
 
! Column Name || Data Type || Units || Description
 
|-
 
|-
!colspan="4" style="background:#ffdead;"| 1. EXTNAME = 'POW-SPEC' : Data columns
+
|TEMP_CL || Real*4 || <math>\mu</math>K<sub>cmb</sub><sup>2</sup>|| the power spectrum
 
|-
 
|-
|TEMP_CL || Real*4 || microK<sub>cmb</sub><sup>2</sup> || the power spectrum
+
|TEMP_CL_ERR || Real*4 || <math>\mu</math>K<sub>cmb</sub><sup>2</sup> || estimate of the uncertainty in the power spectrum
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data Type || Value || Description
 
|-
 
|-
|TEMP_CL_ERR || Real*4 || microK<sub>cmb</sub><sup>2</sup> || estimate of the uncertainty in the power spectrum
+
|LMIN  ||     Integer || 0 || First monopole
 
|-
 
|-
!colspan="4"|  Keywords
+
|LMAX ||    Integer || value || Last monopole
 +
|- bgcolor="ffdead" 
 +
!colspan="4" | 2. EXTNAME = 'PSCOVMAT' (IMAGE)
 
|-
 
|-
|LMIN  ||     Integer || 0 || First value of ''ell'' (origin 0)
+
|COVMAT || Real*4 || <math>\mu</math>K<sub>cmb</sub><sup>4</sup> || the covariance matrix
 
|-
 
|-
|LMAX ||     Integer || value || Last value of ''ell'' (origin 0)
+
|- bgcolor="ffdead" 
 +
! Keyword || Data Type || Value || Description
 
|-
 
|-
!colspan="4" style="background:#ffdead;"| 2. EXTNAME = 'PSCOVMAT' : Data columns
+
|NAXIS1 || Integer || dim1 || matrix first dimension
 
|-
 
|-
|COVMAT || Real*4 || microK<sub>cmb</sub><sup>4</sup> || the covariance matrix
+
|NAXIS2 || Integer || dim2 || matrix second dimension
|-
 
!colspan="4"|  Keywords
 
|-
 
|TDIM1 || Integer || (dim1, dim2) || matrix dimensions
 
 
|}
 
|}
  
 +
where LMAX is the same for both vectors, and dim1 = dim2 = LMAX+1 by construction.
  
=== Ext POW-SPEC ===
 
 
A ''BINTABLE'' extension with two columns, containing the spectrum and the estimated uncertainty on the spectrum, which is simply the diagonal of the covariance matrix.  The length of both vectors is LMAX+1, which is the number of table rows (this is also the NAXIS keyword).
 
 
===Extension PSCOVMAT ===
 
 
A BINTABLE extension for the covariance matrix.  It consists of a single column of LMAX+1 cells, each cell containing the LMAX+1 elements which make up one row of the matrix. 
 
  
 
===List of filenames===
 
===List of filenames===
 +
{| align="center" style="text-align:left" border="1" cellpadding="2" cellspacing="0" width=400px
 +
|+ '''FITS filenames''' 
 +
|- bgcolor="ffdead" 
 +
! Auto power spectra
 +
|-
 +
| HFI_PowerSpect_100-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-ds2_R1.10.fits
 +
|- bgcolor="ffdead" 
 +
! Cross power spectra
 +
|-
 +
| HFI_PowerSpect_100-ds1x100-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x143-5_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x143-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x143-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds1x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x143-5_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x143-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x143-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_100-ds2x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-5x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-6x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-7x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x143-5_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x143-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds1x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x143-5_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x143-6_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x143-7_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_143-ds2x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1x217-2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-1x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-2x217-3_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-2x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-2x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-2x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-3x217-4_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-3x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-3x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-4x217-ds1_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-4x217-ds2_R1.10.fits
 +
|-
 +
| HFI_PowerSpect_217-ds1x217-ds2_R1.10.fits
 +
|- bgcolor="ffdead" 
 +
! Sky mask
 +
|-
 +
| {{PLASingleFile|fileType=map|name=HFI_PowerSpect_Mask_2048_R1.10.fits|link=HFI_PowerSpect_Mask_2048_R1.10.fits}}
 +
|}
  
 +
The full list of HFI power spectra with links to the files in the PLA can be found {{PLASpec|inst=HFI|link=here}}.
  
 
+
== LFI maps power spectra ==
 
+
===Product description===
HFI_PowerSpect_100-ds1_R1.00.fits
 
HFI_PowerSpect_100-ds1x100-ds2_R1.00.fits
 
HFI_PowerSpect_100-ds1x143-5_R1.00.fits
 
HFI_PowerSpect_100-ds1x143-6_R1.00.fits
 
HFI_PowerSpect_100-ds1x143-7_R1.00.fits
 
HFI_PowerSpect_100-ds1x143-ds1_R1.00.fits
 
HFI_PowerSpect_100-ds1x143-ds2_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-1_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-2_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-3_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-4_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-ds1_R1.00.fits
 
HFI_PowerSpect_100-ds1x217-ds2_R1.00.fits
 
HFI_PowerSpect_100-ds2_R1.00.fits
 
HFI_PowerSpect_100-ds2x143-5_R1.00.fits
 
HFI_PowerSpect_100-ds2x143-6_R1.00.fits
 
HFI_PowerSpect_100-ds2x143-7_R1.00.fits
 
HFI_PowerSpect_100-ds2x143-ds1_R1.00.fits
 
HFI_PowerSpect_100-ds2x143-ds2_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-1_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-2_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-3_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-4_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-ds1_R1.00.fits
 
HFI_PowerSpect_100-ds2x217-ds2_R1.00.fits
 
HFI_PowerSpect_143-5_R1.00.fits
 
HFI_PowerSpect_143-5x143-6_R1.00.fits
 
HFI_PowerSpect_143-5x143-7_R1.00.fits
 
HFI_PowerSpect_143-5x217-1_R1.00.fits
 
HFI_PowerSpect_143-5x217-2_R1.00.fits
 
HFI_PowerSpect_143-5x217-3_R1.00.fits
 
HFI_PowerSpect_143-5x217-4_R1.00.fits
 
HFI_PowerSpect_143-5x217-ds1_R1.00.fits
 
HFI_PowerSpect_143-5x217-ds2_R1.00.fits
 
HFI_PowerSpect_143-6_R1.00.fits
 
HFI_PowerSpect_143-6x143-7_R1.00.fits
 
HFI_PowerSpect_143-6x217-1_R1.00.fits
 
HFI_PowerSpect_143-6x217-2_R1.00.fits
 
HFI_PowerSpect_143-6x217-3_R1.00.fits
 
HFI_PowerSpect_143-6x217-4_R1.00.fits
 
HFI_PowerSpect_143-6x217-ds1_R1.00.fits
 
HFI_PowerSpect_143-6x217-ds2_R1.00.fits
 
HFI_PowerSpect_143-7_R1.00.fits
 
HFI_PowerSpect_143-7x217-1_R1.00.fits
 
HFI_PowerSpect_143-7x217-2_R1.00.fits
 
HFI_PowerSpect_143-7x217-3_R1.00.fits
 
HFI_PowerSpect_143-7x217-4_R1.00.fits
 
HFI_PowerSpect_143-7x217-ds1_R1.00.fits
 
HFI_PowerSpect_143-7x217-ds2_R1.00.fits
 
HFI_PowerSpect_143-ds1_R1.00.fits
 
HFI_PowerSpect_143-ds1x143-5_R1.00.fits
 
HFI_PowerSpect_143-ds1x143-6_R1.00.fits
 
HFI_PowerSpect_143-ds1x143-7_R1.00.fits
 
HFI_PowerSpect_143-ds1x143-ds2_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-1_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-2_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-3_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-4_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-ds1_R1.00.fits
 
HFI_PowerSpect_143-ds1x217-ds2_R1.00.fits
 
HFI_PowerSpect_143-ds2_R1.00.fits
 
HFI_PowerSpect_143-ds2x143-5_R1.00.fits
 
HFI_PowerSpect_143-ds2x143-6_R1.00.fits
 
HFI_PowerSpect_143-ds2x143-7_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-1_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-2_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-3_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-4_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-ds1_R1.00.fits
 
HFI_PowerSpect_143-ds2x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-1_R1.00.fits
 
HFI_PowerSpect_217-1x217-2_R1.00.fits
 
HFI_PowerSpect_217-1x217-3_R1.00.fits
 
HFI_PowerSpect_217-1x217-4_R1.00.fits
 
HFI_PowerSpect_217-1x217-ds1_R1.00.fits
 
HFI_PowerSpect_217-1x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-2_R1.00.fits
 
HFI_PowerSpect_217-2x217-3_R1.00.fits
 
HFI_PowerSpect_217-2x217-4_R1.00.fits
 
HFI_PowerSpect_217-2x217-ds1_R1.00.fits
 
HFI_PowerSpect_217-2x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-3_R1.00.fits
 
HFI_PowerSpect_217-3x217-4_R1.00.fits
 
HFI_PowerSpect_217-3x217-ds1_R1.00.fits
 
HFI_PowerSpect_217-3x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-4_R1.00.fits
 
HFI_PowerSpect_217-4x217-ds1_R1.00.fits
 
HFI_PowerSpect_217-4x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-ds1_R1.00.fits
 
HFI_PowerSpect_217-ds1x217-ds2_R1.00.fits
 
HFI_PowerSpect_217-ds2_R1.00.fits
 
 
 
= LFI frequency maps power spectra =
 
---------------------------------
 
 
 
==Product description==
 
 
The angular power spectrum provides information about the distribution of power on the sky map at the various angular scales. It is especially important for CMB, because it is characterized by a number of features, most notably the acoustic peaks, that encode the dependence from cosmological parameters. Therefore, angular power spectra are the basic inputs for the [[CMB spectrum & Likelihood Code | Planck Likelihood Code]], and for estimation of cosmological parameters in general.
 
The angular power spectrum provides information about the distribution of power on the sky map at the various angular scales. It is especially important for CMB, because it is characterized by a number of features, most notably the acoustic peaks, that encode the dependence from cosmological parameters. Therefore, angular power spectra are the basic inputs for the [[CMB spectrum & Likelihood Code | Planck Likelihood Code]], and for estimation of cosmological parameters in general.
  
 
For this release we have computed only temperature power spectra. Polarization is not included.
 
For this release we have computed only temperature power spectra. Polarization is not included.
  
Please note that these spectra come from frequency maps. No component separation has been applied, and we have only masked Galactic Plane and detected point sources. Units are <math> \mu K^2_{CMB} </math>.
+
Please note that these spectra come from frequency maps. No component separation has been applied, and we have only masked Galactic Plane and detected point sources. Units are <math> \rm{ \mu K^2_{CMB}} </math>.
  
==Production process==
+
===Production process===
Spectra are computed using cROMAster, a implementation of the pseudo-Cl method described in [http://adsabs.harvard.edu/abs/2002ApJ...567....2H  Hivon et al, 2002]. In addition to the original approach, our implementation allows for estimation of cross-power spectra from two or more maps (see [http://adsabs.harvard.edu/abs/2005JCAP...11..001P Polenta et al, 2005,] for details). The software package uses [http://healpix.sourceforge.net/ HEALPix] modules for spherical harmonic transform and Cl calculation. The schematic of the estimation process is as follows:
+
Spectra are computed using cROMAster, a implementation of the pseudo-Cl method described in{{BibCite|master}}. In addition to the original approach, our implementation allows for estimation of cross-power spectra from two or more maps{{BibCite|polenta_CrossSpectra}}. The software package uses [http://healpix.sourceforge.net/ HEALPix] modules for spherical harmonic transform and Cl calculation. The schematic of the estimation process is as follows:
  
 
* computing the a_lm coefficients from the input temperature map after masking Galactic Plane and point sources.
 
* computing the a_lm coefficients from the input temperature map after masking Galactic Plane and point sources.
Line 300: Line 381:
 
* estimating error bars on bandpowers from signal plus noise Monte Carlo simulations, where signal simulations include only CMB anisotropies.
 
* estimating error bars on bandpowers from signal plus noise Monte Carlo simulations, where signal simulations include only CMB anisotropies.
  
==Inputs==
+
===Inputs===
 
 
 
The inputs are the following:
 
The inputs are the following:
  
Line 324: Line 404:
 
* [[The RIMO#Beam_Window_Functions| Beam window functions]]
 
* [[The RIMO#Beam_Window_Functions| Beam window functions]]
 
* Monte Carlo simulations
 
* Monte Carlo simulations
* binning scheme (3 columns: central l parameter, first l, last l):
+
* binning scheme [[Media:Power_spectra_CTP_bin_tt.pdf]].
<pre>
 
    2.0          2          2
 
    3.0          3          3
 
    4.0          4          4
 
    5.0          5          5
 
    6.0          6          6
 
    7.0          7          7
 
    8.0          8          8
 
    9.0          9          9
 
    10.0          10          10
 
    11.0          11          11
 
    12.0          12          12
 
    13.0          13          13
 
    14.0          14          14
 
    15.0          15          15
 
    16.0          16          16
 
    17.0          17          17
 
    18.0          18          18
 
    19.0          19          19
 
    20.0          20          20
 
    21.0          21          21
 
    22.0          22          22
 
    23.0          23          23
 
    24.0          24          24
 
    25.0          25          25
 
    26.0          26          26
 
    27.0          27          27
 
    28.0          28          28
 
    29.0          29          29
 
    30.0          30          30
 
    31.0          31          31
 
    32.0          32          32
 
    33.0          33          33
 
    34.0          34          34
 
    35.0          35          35
 
    36.0          36          36
 
    37.0          37          37
 
    38.0          38          38
 
    39.5          39          40
 
    41.5          41          42
 
    43.5          43          44
 
    45.5          45          46
 
    47.5          47          48
 
    49.5          49          50
 
    51.5          51          52
 
    53.5          53          54
 
    55.5          55          56
 
    57.5          57          58
 
    59.5          59          60
 
    61.5          61          62
 
    63.5          63          64
 
    65.5          65          66
 
    67.5          67          68
 
    69.5          69          70
 
    71.5          71          72
 
    73.5          73          74
 
    75.5          75          76
 
    77.5          77          78
 
    80.0          79          81
 
    83.0          82          84
 
    86.0          85          87
 
    89.0          88          90
 
    92.0          91          93
 
    95.0          94          96
 
    98.0          97          99
 
  101.0        100        102
 
  104.0        103        105
 
  107.0        106        108
 
  110.0        109        111
 
  113.0        112        114
 
  116.0        115        117
 
  119.0        118        120
 
  122.5        121        124
 
  126.5        125        128
 
  130.5        129        132
 
  134.5        133        136
 
  138.5        137        140
 
  142.5        141        144
 
  146.5        145        148
 
  150.5        149        152
 
  154.5        153        156
 
  158.5        157        160
 
  163.0        161        165
 
  168.0        166        170
 
  173.0        171        175
 
  178.0        176        180
 
  183.0        181        185
 
  188.0        186        190
 
  193.0        191        195
 
  198.0        196        200
 
  203.5        201        206
 
  209.5        207        212
 
  215.5        213        218
 
  221.5        219        224
 
  227.5        225        230
 
  233.5        231        236
 
  239.5        237        242
 
  246.0        243        249
 
  253.0        250        256
 
  260.0        257        263
 
  267.0        264        270
 
  274.0        271        277
 
  281.0        278        284
 
  288.5        285        292
 
  296.5        293        300
 
  304.5        301        308
 
  312.5        309        316
 
  320.5        317        324
 
  329.0        325        333
 
  338.0        334        342
 
  347.0        343        351
 
  356.0        352        360
 
  365.5        361        370
 
  375.5        371        380
 
  385.5        381        390
 
  395.5        391        400
 
  406.0        401        411
 
  417.0        412        422
 
  428.0        423        433
 
  439.0        434        444
 
  450.5        445        456
 
  462.5        457        468
 
  474.5        469        480
 
  487.0        481        493
 
  500.0        494        506
 
  513.0        507        519
 
  526.5        520        533
 
  540.5        534        547
 
  554.5        548        561
 
  569.0        562        576
 
  584.0        577        591
 
  599.0        592        606
 
  614.5        607        622
 
  630.5        623        638
 
  647.0        639        655
 
  664.0        656        672
 
  681.0        673        689
 
  698.5        690        707
 
  716.5        708        725
 
  735.0        726        744
 
  754.0        745        763
 
  773.5        764        783
 
  793.5        784        803
 
  814.0        804        824
 
  835.0        825        845
 
  856.5        846        867
 
  878.5        868        889
 
  901.0        890        912
 
  924.0        913        935
 
  947.5        936        959
 
  972.0        960        984
 
  997.0        985        1009
 
  1022.5        1010        1035
 
  1048.5        1036        1061
 
  1075.0        1062        1088
 
  1102.5        1089        1116
 
  1130.5        1117        1144
 
  1159.0        1145        1173
 
  1188.5        1174        1203
 
  1219.0        1204        1234
 
  1250.0        1235        1265
 
  1281.5        1266        1297
 
  1314.0        1298        1330
 
  1347.5        1331        1364
 
  1382.0        1365        1399
 
  1417.5        1400        1435
 
  1453.5        1436        1471
 
  1490.0        1472        1508
 
  1527.5        1509        1546
 
  1566.0        1547        1585
 
  1605.5        1586        1625
 
  1646.0        1626        1666
 
  1687.5        1667        1708
 
  1730.0        1709        1751
 
  1773.5        1752        1795
 
  1818.0        1796        1840
 
  1864.0        1841        1887
 
  1911.5        1888        1935
 
  1960.0        1936        1984
 
  2009.5        1985        2034
 
  2060.0        2035        2085
 
  2112.0        2086        2138
 
  2165.5        2139        2192
 
  2220.0        2193        2247
 
  2276.0        2248        2304
 
  2333.5        2305        2362
 
  2392.5        2363        2422
 
  2453.0        2423        2483
 
  2515.0        2484        2546
 
  2578.5        2547        2610
 
  2643.5        2611        2676
 
  2710.0        2677        2743
 
  2778.0        2744        2812
 
  2848.0        2813        2883
 
  2920.0        2884        2956
 
  2993.5        2957        3030
 
</pre>
 
 
 
==Related products==
 
<span style="color:Red">A description of other products that are related and share some commonalities with the product being described here. E.g. if the description is of a generic product (e.g. frequency maps), all the products falling into that type should be listed and referenced.</span>
 
==File Names==
 
  
 +
===File Names===
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_030_R1.10.fits|link=LFI_PowerSpect_030_R1.10.fits}}
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_030_R1.10.fits|link=LFI_PowerSpect_030_R1.10.fits}}
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_044_R1.10.fits|link=LFI_PowerSpect_044_R1.10.fits}}
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_044_R1.10.fits|link=LFI_PowerSpect_044_R1.10.fits}}
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_070_R1.10.fits|link=LFI_PowerSpect_070_R1.10.fits}}
 
: {{PLASingleFile|fileType=cosmo|name=LFI_PowerSpect_070_R1.10.fits|link=LFI_PowerSpect_070_R1.10.fits}}
  
==Meta Data ==
+
===Meta Data ===
 
 
 
The angular power spectra source list in each frequency is structured as a FITS binary table.  
 
The angular power spectra source list in each frequency is structured as a FITS binary table.  
 
The Fits extension is composed by the columns described below:
 
The Fits extension is composed by the columns described below:
Line 666: Line 545:
 
</pre>
 
</pre>
  
= References =
+
== References ==
<biblio force=false>
+
<References />
#[[References]]
+
</biblio>
+
 
 +
 
  
[[Category:Mission science products|006]]
+
[[Category:Mission products|006]]

Latest revision as of 15:37, 18 July 2014

HFI maps power spectra[edit]

Angular power spectra of cut sky CMB dominated maps are provided to allow independent cosmological analysis at high [math]\ell[/math].

Product description[edit]

The auto and cross-spectra of the 13 detector set (detset) maps at 100, 143 and 217 GHz, all analyzed on the same 42.8% of the sky, are provided. The mask used is apodized to reduce the power leakage from large scale to small scale (see input section). Except for the removal of the most contaminated pixels through masking, no attempt at astrophysical components separation has been performed.

For each pair of detectors [math]X[/math] and [math]Y[/math], are provided,

  • the unbinned estimated power spectrum [math]\hat{C}^{XY}_\ell[/math] for all [math]\ell[/math] from 0 to 3508 (see Figure 1 below), as well as
  • the unbinned symmetric covariance matrix

\begin{align}

  \hat{M}^{XY}_{\ell \ell'} \equiv \langle\Delta \hat{C}^{XY}_\ell\Delta \hat{C}^{XY}_{\ell'}\rangle
  \label{eq:covmatCl}

\end{align} for all [math]\ell[/math] on the same range. At the price of some extra hypotheses, that information can be used to build the likelihood of a given theoretical power spectrum [math]C_{\ell}[/math] given the data, and therefore determine the best cosmological models fitting the data. Several examples of such high-[math]\ell[/math] likelihoods are described, discussed and compared in Planck-2013-XV[1].

$ \newcommand{\bfE}{\boldsymbol{\mathrm{E}}} \newcommand{\bfM}{\boldsymbol{\mathrm{M}}} \newcommand{\bfx}{\boldsymbol{\mathrm{x}}} \newcommand{\lmax}{\ell_{\mathrm{max}}} $ Note that [math]\hat{\bfM}[/math] only describes the statistical covariance of the power spectrum induced by the signal and noise of the input map on the cut sky begin analyzed. Most sources of systematic effects (such as uncertainty on the beam modeling) as well as post-processing steps (such as foreground subtraction) will increase the covariance. In the particular case of the uncertainty on the beam window functions [math]B(l)[/math], the RIMO provides for each pair [math]XY[/math] a set of eigen-vectors [math]E_{p}^{XY}(\ell)[/math] of the relative error on [math]B^{XY}_{\ell}[/math] (see HFI time response and beams paper[2]), defined for [math]p[/math] in [math][1,5][/math] and [math]\ell[/math] in [math][0, \lmax][/math] (with [math]\lmax[/math] being 2500, 3000 or 4000 when the lowest of the nominal frequencies of the detectors [math]X[/math] and [math]Y[/math] is respectively 100, 143 or 217GHz). The extra contribution to the covariance of [math]C^{XY}_\ell[/math] is then \begin{align}

  \hat{M}^{XY, \mathrm{beam}}_{\ell_1 \ell_2} = 4 \hat{C}^{XY}_{\ell_1} \hat{C}^{XY}_{\ell_2} \sum_{p=1}^{5} E^{XY}_p(\ell_1) E^{XY}_p(\ell_2).
  \label{eq:covmatBeam}

\end{align}

Figure 1: The 91 auto- (dotted lines) and cross- (solid lines) angular power spectra [math]\hat{C}_\ell[/math], shown here after a binning of [math]\Delta \ell = 31[/math], grouped by frequencies. For instance the top left panel, tagged 100x100 (3), contains the three spectra 100-ds1x100-ds2, 100-ds1x100-ds1 and 100-ds1x100-ds2. The auto spectra are contaminated at high [math]\ell[/math] by the instrumental noise, and all of them may be affected by foreground contamination. The grey circles show the best Planck CMB high-[math]\ell[/math] power spectrum described in the CMB spectrum & Likelihood Code section


Auto and Cross Power Spectra[edit]

The spectra computed up to [math]l=3508[/math] using PolSpice[3][4] are corrected from the effect of the cut sky, and from the nominal beam window function and average pixel function. The different steps of the calculation are

  • computation of the Spherical Harmonics coefficients of the masked input maps [math]\Delta T^X(p)[/math] and of the input mask [math]w(p)[/math],

\begin{align}

 \tilde{a}^X_{\ell m} = \sum_p \Omega_p\, \Delta T^X(p)\, w(p)\, Y^*_{\ell m}(p), \label{eq:almdef}

\end{align} \begin{align}

 \tilde{w}^{(n)}_{\ell m} = \sum_p \Omega_p\ w^n(p)\, Y^*_{\ell m}(p); \label{eq:wlmdef}

\end{align} where the sum is done over all sky pixels [math]p[/math], [math]\Omega_p[/math] is the pixel area, and [math]n[/math] is either 1 or 2;

  • the sky (cross or auto) pseudo-power spectrum and mask power spectrum are computed from the [math]\tilde{a}_{\ell m}[/math] and [math]\tilde{w}_{\ell m}[/math],

\begin{align}

 \tilde{C}^{XY}_\ell =  \sum_{\ell m} \tilde{a}^X_{ m} \tilde{a}^{Y^*}_{\ell m}   / (2 \ell + 1), \label{eq:alm2cl}

\end{align} \begin{align}

 \tilde{W}^{(n)}_\ell =  \sum_{\ell m} \tilde{w}^{(n)}_{ m} {\tilde{w}^{(n)}}^*_{\ell m}   / (2 \ell + 1); \label{eq:wlm2wl}

\end{align}

  • the sky and mask angular correlation function are computed from the respective power spectra,

\begin{align}

 \tilde{\xi}(\theta) = \sum_\ell \frac{2\ell+1}{4\pi} \tilde{C}_{\ell} P_\ell(\theta),\label{eq:cl2xi}

\end{align} \begin{align}

 \tilde{\xi}_W(\theta) = \sum_\ell \frac{2\ell+1}{4\pi} \tilde{W}^{(1)}_{\ell} P_\ell(\theta),

\end{align} where [math]P_\ell[/math] is the Legendre Polynomial of order [math]\ell[/math];

  • the ratio of the sky angular correlation by the mask correlation provides the cut sky corrected angular correlation,

\begin{align}

 \xi(\theta) = \tilde{\xi}(\theta) / \tilde{\xi}_W(\theta); \label{eq:xi_deconv}

\end{align}

  • the sky angular correlation function which is then turned into a angular power spectrum,

\begin{align}

  {C'}_\ell =  2\pi \sum_i w_i \xi(\theta_i) P_\ell(\theta_i), \label{eq:xi2cl}

\end{align} where [math]w_i[/math] are the weights of the Gauss-Legendre quadrature, for [math]\theta[/math] in [math][0, \pi][/math];

  • the resulting power spectrum is corrected from the nominal beam window function [math]B_\ell[/math] and average pixel window function [math]w_{\mathrm{pix}}(\ell)[/math], to provide the final Spice estimator [math]\hat{C}_\ell[/math],

\begin{align}

 \hat{C}_\ell = {C'}_\ell / \left( B^2_\ell w^2_{\mathrm{pix}}(\ell) \right). \label{eq:clfinal}

\end{align}

Covariance Matrices[edit]

The covariance matrix for the pair [math]XY[/math] is computed by PolSpice using the formalism described in[5], also sketched in the appendix of CMB power spectra and likelihood paper[1], assuming the instrumental noise to be white and uniform.

$ \newcommand{\hC}{\hat C} $ One note that a good approximation of the covariance matrix [math]\tilde{M}[/math] of the pseudo [math]\tilde{C}_{\ell}[/math] is related to the underlying estimated auto- and cross-spectra [math]\hC_{\ell}[/math] through \begin{align} \tilde{M}_{\ell_1\ell_2} \equiv \langle\Delta \tilde{C}^{XY}_{\ell_1}\Delta \tilde{C}^{XY}_{\ell_2}\rangle = \left( \left(\hC^{XX}_{\ell_1} \hC^{YY}_{\ell_1} \hC^{XX}_{\ell_2} \hC^{YY}_{\ell_2}\right)^{1/2}

   + \hC^{XY}_{\ell_1} \hC^{XY}_{\ell_2} \right) 
 \sum_{\ell_3} \frac{2\ell_3+1}{4\pi} \tilde{W}^{(2)}_{\ell_3} \left(     
   \begin{array}{ccc}
       \! \ell_1\! & \ell_2\!  & \ell_3\!  \\
       \! 0     \! & 0     \!  & 0     \!
     \end{array}
 \right)^2,

\label{eq:covpseudo} \end{align} where [math]\tilde{W}^{(2)}_{\ell}[/math] is the power spectrum of the square of the pixel mask (Eqs. \ref{eq:wlmdef} and \ref{eq:wlm2wl} for [math]n=2[/math]). The covariance matrix [math]\hat{M}[/math] of the Spice estimator is then computed by applying Eqs. \ref{eq:cl2xi}, \ref{eq:xi_deconv}, \ref{eq:xi2cl} and \ref{eq:clfinal} on each row and column of [math]\tilde{M}[/math].


Inputs[edit]

Maps
The input maps are the 13 HFI detset (see Type of maps section for details) maps available at 100, 143 and 217 GHz. These are the same as the ones used for high-ell part of the likelihood code, but that code applies different masks for each cross-spectra in order to minimize further the foreground contamination.
Sky mask
All maps were analyzed on the 42.8% of the sky defined by the apodized mask HFI_PowerSpect_Mask_2048_R1.10.fits, which masks out Galactic Plane and point sources (see Planck-2013-XV[1]), and which is shown in Figure 2 below
Figure 2: Apodized pixel mask used for HFI power spectrum estimation
Beam Window Function
The beam window functions [math]B(l)[/math], and their uncertainties, are the ones used in the high-ell likelihood analysis, described in section 6.1 "Error Eigenmodes" of Planck-2013-XV[1] and provided in the HFI RIMO.

Related products[edit]

None

FITS file structure[edit]

Power spectra are provided for the auto and cross products built from the 13 detsets available at 100, 143 and 217 GHz, namely:

  • 100-ds1, 100-ds2,
  • 143-ds1, 143-ds2, 143-5, 143-6, 143-7,
  • 217-ds1, 217-ds2, 217-1, 217-2, 217-3, 217-4

which makes 13*(13+1)/2 = 91 spectra. Filenames for the auto spectra are HFI_PowerSPect_{detset}_Relnum.fits and HFI_PowerSPect_{detset1}x{detset2}_Relnum.fits for the auto- and cross-spectra, respectively. The list of the 91 files is given below. Each files contains 2 BINTABLE extensions:


Power spectrum file data structure
1. EXTNAME = 'POW-SPEC' (BINTABLE)
Column Name Data Type Units Description
TEMP_CL Real*4 [math]\mu[/math]Kcmb2 the power spectrum
TEMP_CL_ERR Real*4 [math]\mu[/math]Kcmb2 estimate of the uncertainty in the power spectrum
Keyword Data Type Value Description
LMIN Integer 0 First monopole
LMAX Integer value Last monopole
2. EXTNAME = 'PSCOVMAT' (IMAGE)
COVMAT Real*4 [math]\mu[/math]Kcmb4 the covariance matrix
Keyword Data Type Value Description
NAXIS1 Integer dim1 matrix first dimension
NAXIS2 Integer dim2 matrix second dimension

where LMAX is the same for both vectors, and dim1 = dim2 = LMAX+1 by construction.


List of filenames[edit]

FITS filenames
Auto power spectra
HFI_PowerSpect_100-ds1_R1.10.fits
HFI_PowerSpect_100-ds2_R1.10.fits
HFI_PowerSpect_143-5_R1.10.fits
HFI_PowerSpect_143-6_R1.10.fits
HFI_PowerSpect_143-7_R1.10.fits
HFI_PowerSpect_143-ds1_R1.10.fits
HFI_PowerSpect_143-ds2_R1.10.fits
HFI_PowerSpect_217-1_R1.10.fits
HFI_PowerSpect_217-2_R1.10.fits
HFI_PowerSpect_217-3_R1.10.fits
HFI_PowerSpect_217-4_R1.10.fits
HFI_PowerSpect_217-ds1_R1.10.fits
HFI_PowerSpect_217-ds2_R1.10.fits
Cross power spectra
HFI_PowerSpect_100-ds1x100-ds2_R1.10.fits
HFI_PowerSpect_100-ds1x143-5_R1.10.fits
HFI_PowerSpect_100-ds1x143-6_R1.10.fits
HFI_PowerSpect_100-ds1x143-7_R1.10.fits
HFI_PowerSpect_100-ds1x143-ds1_R1.10.fits
HFI_PowerSpect_100-ds1x143-ds2_R1.10.fits
HFI_PowerSpect_100-ds1x217-1_R1.10.fits
HFI_PowerSpect_100-ds1x217-2_R1.10.fits
HFI_PowerSpect_100-ds1x217-3_R1.10.fits
HFI_PowerSpect_100-ds1x217-4_R1.10.fits
HFI_PowerSpect_100-ds1x217-ds1_R1.10.fits
HFI_PowerSpect_100-ds1x217-ds2_R1.10.fits
HFI_PowerSpect_100-ds2x143-5_R1.10.fits
HFI_PowerSpect_100-ds2x143-6_R1.10.fits
HFI_PowerSpect_100-ds2x143-7_R1.10.fits
HFI_PowerSpect_100-ds2x143-ds1_R1.10.fits
HFI_PowerSpect_100-ds2x143-ds2_R1.10.fits
HFI_PowerSpect_100-ds2x217-1_R1.10.fits
HFI_PowerSpect_100-ds2x217-2_R1.10.fits
HFI_PowerSpect_100-ds2x217-3_R1.10.fits
HFI_PowerSpect_100-ds2x217-4_R1.10.fits
HFI_PowerSpect_100-ds2x217-ds1_R1.10.fits
HFI_PowerSpect_100-ds2x217-ds2_R1.10.fits
HFI_PowerSpect_143-5x143-6_R1.10.fits
HFI_PowerSpect_143-5x143-7_R1.10.fits
HFI_PowerSpect_143-5x217-1_R1.10.fits
HFI_PowerSpect_143-5x217-2_R1.10.fits
HFI_PowerSpect_143-5x217-3_R1.10.fits
HFI_PowerSpect_143-5x217-4_R1.10.fits
HFI_PowerSpect_143-5x217-ds1_R1.10.fits
HFI_PowerSpect_143-5x217-ds2_R1.10.fits
HFI_PowerSpect_143-6x143-7_R1.10.fits
HFI_PowerSpect_143-6x217-1_R1.10.fits
HFI_PowerSpect_143-6x217-2_R1.10.fits
HFI_PowerSpect_143-6x217-3_R1.10.fits
HFI_PowerSpect_143-6x217-4_R1.10.fits
HFI_PowerSpect_143-6x217-ds1_R1.10.fits
HFI_PowerSpect_143-6x217-ds2_R1.10.fits
HFI_PowerSpect_143-7x217-1_R1.10.fits
HFI_PowerSpect_143-7x217-2_R1.10.fits
HFI_PowerSpect_143-7x217-3_R1.10.fits
HFI_PowerSpect_143-7x217-4_R1.10.fits
HFI_PowerSpect_143-7x217-ds1_R1.10.fits
HFI_PowerSpect_143-7x217-ds2_R1.10.fits
HFI_PowerSpect_143-ds1x143-5_R1.10.fits
HFI_PowerSpect_143-ds1x143-6_R1.10.fits
HFI_PowerSpect_143-ds1x143-7_R1.10.fits
HFI_PowerSpect_143-ds1x143-ds2_R1.10.fits
HFI_PowerSpect_143-ds1x217-1_R1.10.fits
HFI_PowerSpect_143-ds1x217-2_R1.10.fits
HFI_PowerSpect_143-ds1x217-3_R1.10.fits
HFI_PowerSpect_143-ds1x217-4_R1.10.fits
HFI_PowerSpect_143-ds1x217-ds1_R1.10.fits
HFI_PowerSpect_143-ds1x217-ds2_R1.10.fits
HFI_PowerSpect_143-ds2x143-5_R1.10.fits
HFI_PowerSpect_143-ds2x143-6_R1.10.fits
HFI_PowerSpect_143-ds2x143-7_R1.10.fits
HFI_PowerSpect_143-ds2x217-1_R1.10.fits
HFI_PowerSpect_143-ds2x217-2_R1.10.fits
HFI_PowerSpect_143-ds2x217-3_R1.10.fits
HFI_PowerSpect_143-ds2x217-4_R1.10.fits
HFI_PowerSpect_143-ds2x217-ds1_R1.10.fits
HFI_PowerSpect_143-ds2x217-ds2_R1.10.fits
HFI_PowerSpect_217-1x217-2_R1.10.fits
HFI_PowerSpect_217-1x217-3_R1.10.fits
HFI_PowerSpect_217-1x217-4_R1.10.fits
HFI_PowerSpect_217-1x217-ds1_R1.10.fits
HFI_PowerSpect_217-1x217-ds2_R1.10.fits
HFI_PowerSpect_217-2x217-3_R1.10.fits
HFI_PowerSpect_217-2x217-4_R1.10.fits
HFI_PowerSpect_217-2x217-ds1_R1.10.fits
HFI_PowerSpect_217-2x217-ds2_R1.10.fits
HFI_PowerSpect_217-3x217-4_R1.10.fits
HFI_PowerSpect_217-3x217-ds1_R1.10.fits
HFI_PowerSpect_217-3x217-ds2_R1.10.fits
HFI_PowerSpect_217-4x217-ds1_R1.10.fits
HFI_PowerSpect_217-4x217-ds2_R1.10.fits
HFI_PowerSpect_217-ds1x217-ds2_R1.10.fits
Sky mask
HFI_PowerSpect_Mask_2048_R1.10.fits

The full list of HFI power spectra with links to the files in the PLA can be found here.

LFI maps power spectra[edit]

Product description[edit]

The angular power spectrum provides information about the distribution of power on the sky map at the various angular scales. It is especially important for CMB, because it is characterized by a number of features, most notably the acoustic peaks, that encode the dependence from cosmological parameters. Therefore, angular power spectra are the basic inputs for the Planck Likelihood Code, and for estimation of cosmological parameters in general.

For this release we have computed only temperature power spectra. Polarization is not included.

Please note that these spectra come from frequency maps. No component separation has been applied, and we have only masked Galactic Plane and detected point sources. Units are [math] \rm{ \mu K^2_{CMB}} [/math].

Production process[edit]

Spectra are computed using cROMAster, a implementation of the pseudo-Cl method described in[6]. In addition to the original approach, our implementation allows for estimation of cross-power spectra from two or more maps[7]. The software package uses HEALPix modules for spherical harmonic transform and Cl calculation. The schematic of the estimation process is as follows:

  • computing the a_lm coefficients from the input temperature map after masking Galactic Plane and point sources.
  • computing the pseudo power spectrum from the alms.
  • estimating the bias due to the noise power spectrum of the map from noise-only Monte Carlo simulations based on detector noise properties
  • correcting for the effect of the adopted mask by computing the mode-mode coupling kernel corresponding to that mask
  • deconvolving the effect due to the finite angular resolution of the telescope by using the beam window function
  • deconvolving the effect due to the finite size of the pixel in the map by using a pixel window function
  • binning the power spectrum from individual multipoles into bandpowers
  • estimating error bars on bandpowers from signal plus noise Monte Carlo simulations, where signal simulations include only CMB anisotropies.

Inputs[edit]

The inputs are the following:

  • LFI Frequency Maps
  • Point source and galactic plane masks (the name being specified in the comment keyword in the header, see Note in Meta Data section below):
Point source masks
LFI_MASK_030-ps_2048_R1.00.fits
LFI_MASK_044-ps_2048_R1.00.fits
LFI_MASK_070-ps_2048_R1.00.fits
Galactic plane masks
COM_MASK_gal-06_2048_R1.00.fits
COM_MASK_gal-07_2048_R1.00.fits

File Names[edit]

LFI_PowerSpect_030_R1.10.fits
LFI_PowerSpect_044_R1.10.fits
LFI_PowerSpect_070_R1.10.fits

Meta Data[edit]

The angular power spectra source list in each frequency is structured as a FITS binary table. The Fits extension is composed by the columns described below:


FITS header
Column Name Data Type Units Description
L Integer*4 ell parameter
TEMP_CL Real*8 uK[math]_{CMB}^2[/math] [math]C_l[/math] (temperature)
TEMP_CL_ERR Real*8 uK[math]_{CMB}^2[/math] [math]C_l[/math] error


Note.- in the comment keyword in the header, the galactic and point source maps used to generate the angular spectra are specified (LFI_MASK_030-ps_2048_R1.00.fits and COM_MASK_gal-06_2048_R1.00.fits in the example below). Note also that, due to an oversight, the mask description related to COM_MASK_gal-xxx is wrong and should refer to the galactic mask.

Below an example of the header.

XTENSION= 'BINTABLE'           /Written by IDL:  Sat Feb 16 00:44:22 2013
BITPIX  =                    8 /
NAXIS   =                    2 /Binary table
NAXIS1  =                   20 /Number of bytes per row
NAXIS2  =                  130 /Number of rows
PCOUNT  =                    0 /Random parameter count
GCOUNT  =                    1 /Group count
TFIELDS =                    3 /Number of columns
TFORM1  = '1J      '           /Integer*4 (long integer)
TTYPE1  = 'L       '           /
TFORM2  = '1D      '           /Real*8 (double precision)
TTYPE2  = 'TEMP_CL '           /
TFORM3  = '1D      '           /Real*8 (double precision)
TTYPE3  = 'TEMP_CL_ERR'        /
EXTNAME = 'POW-SPEC'           / Extension name
EXTVER  =                    1 /Extension version
DATE    = '2013-02-15'         /Creation date
TUNIT2  = 'uK_CMB^2'           /
TUNIT3  = 'uK_CMB^2'           /
FILENAME= 'LFI_PowerSpect_030_R1.00.fits' /
PROCVER = 'Dx9_delta'          /
COMMENT ---------------------------------------------
COMMENT     Original Inputs
COMMENT ---------------------------------------------
COMMENT TT_30GHz_maskCS0.60_PS30GHzdet_febecopWls
COMMENT Used Point source Mask LFI_MASK_030-ps_2048_R1.00.fits
COMMENT Used Point source Mask COM_MASK_gal-06_2048_R1.00.fits
COMMENT Used FebeCoP 30 GHz wls
END

Below an example of the header of two masks used as input: COM_MASK_gal-06_2048_R1.00.fits and LFI_MASK_030-ps_2048_R1.00.fits:

XTENSION= 'BINTABLE'           / binary table extension
BITPIX  =                    8 / 8-bit bytes
NAXIS   =                    2 / 2-dimensional binary table
NAXIS1  =                    4 / width of table in bytes
NAXIS2  =             50331648 / number of rows in table
PCOUNT  =                    0 / size of special data area
GCOUNT  =                    1 / one data group (required keyword)
TFIELDS =                    1 / number of fields in each row
TTYPE1  = 'Mask    '           / label for field   1
TFORM1  = 'E       '           / data format of field: 4-byte REAL
TUNIT1  = 'none    '           / physical unit of field
EXTNAME = '06-GalMask'
DATE    = '2013-02-16T11:07:42' / file creation date (YYYY-MM-DDThh:mm:ss UT)
CHECKSUM= 'NaGVNZGUNaGUNYGU'   / HDU checksum updated 2013-02-16T11:07:43
DATASUM = '2540860986'         / data unit checksum updated 2013-02-16T11:07:43
COMMENT
COMMENT *** Planck params ***
COMMENT
PIXTYPE = 'HEALPIX '           / HEALPIX pixelisation
ORDERING= 'NESTED  '           / Pixel ordering scheme, either RING or NESTED
NSIDE   =                 2048 / Resolution parameter for HEALPIX
FIRSTPIX=                    0 / First pixel # (0 based)
LASTPIX =             50331647 / Last pixel # (0 based)
INDXSCHM= 'IMPLICIT'           / Indexing: IMPLICIT or EXPLICIT
OBJECT  = 'FULLSKY '           / Sky coverage, either FULLSKY or PARTIAL
BAD_DATA=          -1.6375E+30
COORDSYS= 'GALACTIC'
FILENAME= 'COM_MASK_gal-06_2048_R1.00.fits'
COMMENT ---------------------------------------------------------------------
COMMENT Combined galactic mask 0.6 sky fraction
COMMENT Objects used:
COMMENT /sci_planck/lfi_dpc_test/ashdown/repository/masks/component_separation/d
COMMENT x9/combined_mask_0.60_sky_fraction.fits
COMMENT ---------------------------------------------------------------------
END
XTENSION= 'BINTABLE'           / binary table extension
BITPIX  =                    8 / 8-bit bytes
NAXIS   =                    2 / 2-dimensional binary table
NAXIS1  =                    4 / width of table in bytes
NAXIS2  =             50331648 / number of rows in table
PCOUNT  =                    0 / size of special data area
GCOUNT  =                    1 / one data group (required keyword)
TFIELDS =                    1 / number of fields in each row
TTYPE1  = 'Mask    '           / label for field   1
TFORM1  = 'E       '           / data format of field: 4-byte REAL
TUNIT1  = 'none    '           / physical unit of field
EXTNAME = '030-PSMask'
DATE    = '2013-02-16T11:03:20' / file creation date (YYYY-MM-DDThh:mm:ss UT)
CHECKSUM= 'fR7ThO7RfO7RfO7R'   / HDU checksum updated 2013-02-16T11:03:21
DATASUM = '3828742620'         / data unit checksum updated 2013-02-16T11:03:21
COMMENT
COMMENT *** Planck params ***
COMMENT
PIXTYPE = 'HEALPIX '           / HEALPIX pixelisation
ORDERING= 'NESTED  '           / Pixel ordering scheme, either RING or NESTED
NSIDE   =                 2048 / Resolution parameter for HEALPIX
FIRSTPIX=                    0 / First pixel # (0 based)
LASTPIX =             50331647 / Last pixel # (0 based)
INDXSCHM= 'IMPLICIT'           / Indexing: IMPLICIT or EXPLICIT
OBJECT  = 'FULLSKY '           / Sky coverage, either FULLSKY or PARTIAL
BAD_DATA=          -1.6375E+30
COORDSYS= 'GALACTIC'
FILENAME= 'LFI_MASK_030-ps_2048_R1.00.fits'
COMMENT ---------------------------------------------------------------------
COMMENT The radius of the holes is 3 times the sigma of the beam at the correspo
COMMENT nding frequency and sigma is FWHM/(2*sqrt(2ln2))
COMMENT FWHM at 30GHz used = 33.158 arcmin
COMMENT Objects used:
COMMENT /planck/sci_ops1/LFI_MAPs/DX9_Delta/MASKs/mask_ps_30GHz_beam33amin_nside
COMMENT 2048.00_DX9_nonblind_holesize3.fits
COMMENT ---------------------------------------------------------------------
END

References[edit]

  1. 1.01.11.21.3 Planck 2013 results. XV. CMB power spectra and likelihood, Planck Collaboration, 2014, A&A, 571, A15.
  2. Planck 2013 results. VII. HFI time response and beams, Planck Collaboration, 2014, A&A, 571, A7.
  3. Fast Cosmic Microwave Background Analyses via Correlation Functions, I. Szapudi, S. Prunet, D. Pogosyan, A. S. Szalay, J. R. Bond, ApJS, 548, L115-L118, (2001).
  4. Fast estimation of polarization power spectra using correlation functions, G. Chon, A. Challinor, S. Prunet, E. Hivon, I. Szapudi, MNRAS, 350, 914-926, (2004).
  5. Myths and truths concerning estimation of power spectra: the case for a hybrid estimator, G. Efstathiou, MNRAS, 349, 603-626, (2004).
  6. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets, E. Hivon, K. M. Górski, C. B. Netterfield, B. P. Crill, S. Prunet, F. Hansen, ApJ, 567, 2-17, (2002).
  7. Unbiased estimation of an angular power spectrum, G. Polenta, D. Marinucci, A. Balbi, P. de Bernardis, E. Hivon, S. Masi, P. Natoli, N. Vittorio, J. Cosmology Astropart. Phys., 11, 1, (2005).

(Planck) High Frequency Instrument

Cosmic Microwave background

Flexible Image Transfer Specification

Planck Legacy Archive

(Planck) Low Frequency Instrument

Full-Width-at-Half-Maximum