Difference between revisions of "HFI-Validation"

From Planck Legacy Archive Wiki
Jump to: navigation, search
m
 
(191 intermediate revisions by 10 users not shown)
Line 1: Line 1:
The HFI validation is mostly modular. That is, each part of the pipeline, be it timeline processing, map-making, or any other, validates the results of its work at each step of the processing. In addition, we do additional validation with an eye towards overall system integrity.
+
{{DISPLAYTITLE:Overall internal validation}}
  
==Expected systematics and tests (bottom-up approach)==
+
The overall internal validation of the frequency maps is performed thanks to several tests:
 +
* difference between the PR2 (2015) and PR3 (2018) frequency maps,
 +
* survey difference maps for the PR2 and the PR3 frequency maps,
 +
* spectra of the PR2 and the PR3 data splits,
 +
* comparison of the FFP10 simulations and the PR3 data.
  
{{:HFI-bottom_up}}
+
<br>
 +
<span style="font-size:150%">'''Frequency maps for the PR2 and the PR3 and their difference''' </span>
  
==Top-down approach to systematics==
+
This table shows the PR2 and PR3 maps and their differences in I, Q, and U. This table is complementary of the figure in {{PlanckPapers|planck2016-l03}} (see detailled explanations there).
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:centert" width=800px
 +
|+ '''Comparaison of PR2 and PR3 I, Q and U maps and their difference. '''
 +
|- bgcolor="ffdead"
 +
!
 +
!colspan="3"| PR2 frequency maps
 +
!colspan="3"| PR3 frequency maps
 +
!colspan="3"| difference
 +
|-
 +
!
 +
!I
 +
!Q
 +
!U
 +
!I
 +
!Q
 +
!U
 +
!I
 +
!Q
 +
!U
 +
|-
 +
| 100 GHz
 +
|[[File:100GHz_DX11_I.pdf.pdf|100px]]
 +
|[[File:100GHz_DX11_Q.pdf.pdf|100px]]
 +
|[[File:100GHz_DX11_U.pdf.pdf|100px]]
 +
|[[File:100GHz_I.pdf|100px]]
 +
|[[File:100GHz_Q.pdf|100px]]
 +
|[[File:100GHz_U.pdf|100px]]
 +
|[[File:100GHz_diff_I.pdf.pdf|100px]]
 +
|[[File:100GHz_diff_Q.pdf.pdf|100px]]
 +
|[[File:100GHz_diff_U.pdf.pdf|100px]]
 +
|-
 +
| 143 GHz
 +
|[[File:143GHz_DX11_I.pdf.pdf|100px]]
 +
|[[File:143GHz_DX11_Q.pdf.pdf|100px]]
 +
|[[File:143GHz_DX11_U.pdf.pdf|100px]]
 +
|[[File:143GHz_I.pdf|100px]]
 +
|[[File:143GHz_Q.pdf|100px]]
 +
|[[File:143GHz_U.pdf|100px]]
 +
|[[File:143GHz_diff_I.pdf.pdf|100px]]
 +
|[[File:143GHz_diff_Q.pdf.pdf|100px]]
 +
|[[File:143GHz_diff_U.pdf.pdf|100px]]
 +
|-
 +
| 217 GHz
 +
|[[File:217GHz_DX11_I.pdf.pdf|100px]]
 +
|[[File:217GHz_DX11_Q.pdf.pdf|100px]]
 +
|[[File:217GHz_DX11_U.pdf.pdf|100px]]
 +
|[[File:217GHz_I.pdf|100px]]
 +
|[[File:217GHz_Q.pdf|100px]]
 +
|[[File:217GHz_U.pdf|100px]]
 +
|[[File:217GHz_diff_I.pdf.pdf|100px]]
 +
|[[File:217GHz_diff_Q.pdf.pdf|100px]]
 +
|[[File:217GHz_diff_U.pdf.pdf|100px]]
 +
|-
 +
| 353 GHz
 +
|[[File:353GHz_DX11_I.pdf.pdf|100px]]
 +
|[[File:353GHz_DX11_Q.pdf.pdf|100px]]
 +
|[[File:353GHz_DX11_U.pdf.pdf|100px]]
 +
|[[File:353GHz_I.pdf|100px]]
 +
|[[File:353GHz_Q.pdf|100px]]
 +
|[[File:353GHz_U.pdf|100px]]
 +
|[[File:353GHz_diff_I.pdf.pdf|100px]]
 +
|[[File:353GHz_diff_Q.pdf.pdf|100px]]
 +
|[[File:353GHz_diff_U.pdf.pdf|100px]]
 +
|-
 +
| 545 GHz
 +
|[[File:545GHz_DX11_I.pdf.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:545GHz_I.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:545GHz_diff_I.pdf.pdf|100px]]
 +
| .
 +
| .
 +
|-
 +
| 857 GHz
 +
|[[File:857GHz_DX11_I.pdf.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:857GHz_I.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:857GHz_diff_I.pdf.pdf|100px]]
 +
| .
 +
| .
 +
|}
 +
 
 +
 
 +
<br>
 +
<span style="font-size:150%">'''Survey difference maps for the PR2 and the PR3 data''' </span>
 +
 
 +
This table shows the PR2 and PR3 survey difference maps ((S1+S3)-(S2+S4))in I, Q, and U. This table is taken from {{PlanckPapers|planck2016-l03}} (see detailled explanations there).
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:centert" width=800px
 +
|+ '''Comparaison of PR2 and PR3 I, Q and U survey difference maps.'''
 +
|- bgcolor="ffdead"
 +
!
 +
!colspan="3"| PR2 survey difference maps
 +
!colspan="3"| PR3 survey difference maps
 +
|-
 +
!
 +
!I
 +
!Q
 +
!U
 +
!I
 +
!Q
 +
!U
 +
|-
 +
| 100 GHz
 +
|[[File:100GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:100GHz_DX11_surveyS1S3_S2S4_Q.pdf.pdf|100px]]
 +
|[[File:100GHz_DX11_surveyS1S3_S2S4_U.pdf.pdf|100px]]
 +
|[[File:100GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:100GHz_RD12RC4_surveyS1S3_S2S4_Q.pdf|100px]]
 +
|[[File:100GHz_RD12RC4_surveyS1S3_S2S4_U.pdf|100px]]
 +
|-
 +
| 143 GHz
 +
|[[File:143GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:143GHz_DX11_surveyS1S3_S2S4_Q.pdf.pdf|100px]]
 +
|[[File:143GHz_DX11_surveyS1S3_S2S4_U.pdf.pdf|100px]]
 +
|[[File:143GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:143GHz_RD12RC4_surveyS1S3_S2S4_Q.pdf|100px]]
 +
|[[File:143GHz_RD12RC4_surveyS1S3_S2S4_U.pdf|100px]]
 +
|-
 +
| 217 GHz
 +
|[[File:217GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:217GHz_DX11_surveyS1S3_S2S4_Q.pdf.pdf|100px]]
 +
|[[File:217GHz_DX11_surveyS1S3_S2S4_U.pdf.pdf|100px]]
 +
|[[File:217GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:217GHz_RD12RC4_surveyS1S3_S2S4_Q.pdf|100px]]
 +
|[[File:217GHz_RD12RC4_surveyS1S3_S2S4_U.pdf|100px]]
 +
|-
 +
| 353 GHz
 +
|[[File:353GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:353GHz_DX11_surveyS1S3_S2S4_Q.pdf.pdf|100px]]
 +
|[[File:353GHz_DX11_surveyS1S3_S2S4_U.pdf.pdf|100px]]
 +
|[[File:353GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
|[[File:353GHz_RD12RC4_surveyS1S3_S2S4_Q.pdf|100px]]
 +
|[[File:353GHz_RD12RC4_surveyS1S3_S2S4_U.pdf|100px]]
 +
|-
 +
| 545 GHz
 +
|[[File:545GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:545GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
| .
 +
| .
 +
|-
 +
| 857 GHz
 +
|[[File:857GHz_DX11_surveyS1S3_S2S4_I.pdf|100px]]
 +
| .
 +
| .
 +
|[[File:857GHz_RD12RC4_surveyS1S3_S2S4_I.pdf|100px]]
 +
| .
 +
| .
 +
|}
 +
 
 +
 
 +
<br>
 +
<span style="font-size:150%">'''Spectra of the PR2 and the PR3 data splits''' </span>
 +
 
 +
This figure shows the ''EE'' and ''BB'' spectra of the PR2 and PR3 detset, half-mission and rings (for PR3 only) maps at 100, 143, 217, and 353 GHz. The auto-spectra of the difference maps and the cross-spectra between the maps are shown. The sky fraction used here is 43 %. The bins are: bin=1 for <math>2\leq\ell<30</math>; bin=5 for <math>30\leq\ell<50</math>; bin=10 for <math>50\leq\ell<160</math>; bin=20 for <math>160\leq\ell<1000</math>; and bin=100 for <math>\ell>1000</math>. This figure is taken from {{PlanckPapers|planck2016-l03}} (see detailled explanations there).
 +
 
 +
<center>
 +
[[File:cl_fsky43_DX11_RD12RC4_3000_oddeven_multiplot.pdf|500px]]
 +
</center>
 +
 
 +
 
 +
<br>
 +
<span style="font-size:150%">'''Comparison of the FFP10 simulated noise and systematic residuals and the PR3 data''' </span>
 +
 
 +
This figure shows the noise and systematic residuals in ''TT'', ''EE'', ''BB'', and ''EB'' spectra, at the three CMB frequencies, for difference maps of the ring (red) and half-mission (blue) null tests binned by <math>\Delta \ell =10</math>. Data spectra are represented by thick lines, and the averages of simulations by thin black lines. For the simulations, we show the 16 % and 84 % quantiles of the distribution with the same colours. This figure is taken from {{PlanckPapers|planck2016-l03}} (see detailled explanations there).
 +
 
 +
<center>
 +
[[File:newpte.pdf|500px]]
 +
</center>
  
While we track and try to limit the effects listed above, and we do not believe there are other large effects which might compromise the data, we test this using a suite of general difference tests. As an example,
 
  
o Survey 3 minus Survey 1
 
 
  
==Yardstick simulations==
+
==References==
  
===Yardstick simulations (Delouis)===
+
<References />
The yardstick allows gauging various effects to see whether they need be included in monte-carlo to describe data. It also allows gauging the significance of validation tests on data (e.g. can null test can be described by the model?).
 
 
   
 
   
Yardstick 3.0 that characterizes the DX9 data goes through the following steps:
 
 
#The input maps are computed using the Planck Sky Model.
 
#The LevelS is used to project input maps on timeline using the B-Spline scanning beam and the DX9 pointing (called ptcor6). The real pointing is affected by the aberration that is corrected by map-making. Yardstick does not simulate aberration. Finally, the difference between the projected pointing from simulation and from DX9 is equal to the aberration.
 
#The simulated noise timelines, that are added to the projected signal, have the same spectrum (low and high frequency) than the characterized noise. For yardstick 3.0. No correlation in time or between detectors have been simulated.
 
#The simulation map making step use the DX9 sample flags.
 
#For the low frequencies (100, 143, 217, 353), the yardstick output are calibrated using the same mechanism (e.g. dipole fitting) than DX9. The calibration is not done for higher frequency (545, 857)
 
#The Official map making is run on those timelines using the same parameters than for real data.
 
A yardstick production is composed by all survey map (1,2 and nominal), all detector Detsets and channel maps. The Yardstick 3.0 is based on 5 noise iterations for each map realization.
 
  
===Sysiphe summary including what can neglected(Montier)===
 
  
==Simulations versus data results (including PTE) (Techene)==
+
[[Category:HFI data processing|006]]
We make consistency test between DX9 and Yardstick production. Yardstick production contains
 
sky (generated with LevelS starting from PSM177) and noise timeline realizations procedeed with
 
the official map making. DX9 production was regenerated in order to get rid of possible differences
 
that might appear for not running the official pipeline in the same conditions. We compare statistical
 
properties of the cross spectra of null test maps for 100, 143, 217, 353 channels. Null test maps can be
 
survey null test or half focal plane null test, each of them means a specific goal : survey1-survey2
 
aims at isolating transfert function or pointing issues, while half focal plane null test enables to
 
focus on beam issues. Comparing cross spectra we isolate systematic effects from the noise, and we
 
can check whether they are properly simulated or need to. Spectra are computed with spice
 
masking either DX9 point sources or simulated point sources, and masking the galactic plane with
 
several mask width, the sky fraction from which spectra are computed are around 30%, 60% and
 
80%.
 
Example of mask fsky=30% :
 
figure
 
DX9 and the Y3.0 iterations are binned using : '/data/dmc/MISS03/DATA/BINTAB/bin_v4.7_tt'.
 
For each bin we compute the statisical parameters of the Yardstick distribution. The following plot
 
shows the differences between Y3.0 mean and DX9 considering the standart deviation of the
 
yardstick. We also indicate chi square value, Chi^2 is computed over larger bin : [0,20][20,400]
 
[400,1000][1000,2000][2000, 3000], using the ratio between (DX9-Y3.0 mean)^2 and Y3.0
 
variance within each bin.
 
Exemple of consistency test for 143 survey null test maps :
 
figure
 

Latest revision as of 08:40, 3 July 2018


The overall internal validation of the frequency maps is performed thanks to several tests:

  • difference between the PR2 (2015) and PR3 (2018) frequency maps,
  • survey difference maps for the PR2 and the PR3 frequency maps,
  • spectra of the PR2 and the PR3 data splits,
  • comparison of the FFP10 simulations and the PR3 data.


Frequency maps for the PR2 and the PR3 and their difference

This table shows the PR2 and PR3 maps and their differences in I, Q, and U. This table is complementary of the figure in Planck-2020-A3[1] (see detailled explanations there).

Comparaison of PR2 and PR3 I, Q and U maps and their difference.
PR2 frequency maps PR3 frequency maps difference
I Q U I Q U I Q U
100 GHz 100GHz DX11 I.pdf.pdf 100GHz DX11 Q.pdf.pdf 100GHz DX11 U.pdf.pdf 100GHz I.pdf 100GHz Q.pdf 100GHz U.pdf 100GHz diff I.pdf.pdf 100GHz diff Q.pdf.pdf 100GHz diff U.pdf.pdf
143 GHz 143GHz DX11 I.pdf.pdf 143GHz DX11 Q.pdf.pdf 143GHz DX11 U.pdf.pdf 143GHz I.pdf 143GHz Q.pdf 143GHz U.pdf 143GHz diff I.pdf.pdf 143GHz diff Q.pdf.pdf 143GHz diff U.pdf.pdf
217 GHz 217GHz DX11 I.pdf.pdf 217GHz DX11 Q.pdf.pdf 217GHz DX11 U.pdf.pdf 217GHz I.pdf 217GHz Q.pdf 217GHz U.pdf 217GHz diff I.pdf.pdf 217GHz diff Q.pdf.pdf 217GHz diff U.pdf.pdf
353 GHz 353GHz DX11 I.pdf.pdf 353GHz DX11 Q.pdf.pdf 353GHz DX11 U.pdf.pdf 353GHz I.pdf 353GHz Q.pdf 353GHz U.pdf 353GHz diff I.pdf.pdf 353GHz diff Q.pdf.pdf 353GHz diff U.pdf.pdf
545 GHz 545GHz DX11 I.pdf.pdf . . 545GHz I.pdf . . 545GHz diff I.pdf.pdf . .
857 GHz 857GHz DX11 I.pdf.pdf . . 857GHz I.pdf . . 857GHz diff I.pdf.pdf . .



Survey difference maps for the PR2 and the PR3 data

This table shows the PR2 and PR3 survey difference maps ((S1+S3)-(S2+S4))in I, Q, and U. This table is taken from Planck-2020-A3[1] (see detailled explanations there).

Comparaison of PR2 and PR3 I, Q and U survey difference maps.
PR2 survey difference maps PR3 survey difference maps
I Q U I Q U
100 GHz 100GHz DX11 surveyS1S3 S2S4 I.pdf 100GHz DX11 surveyS1S3 S2S4 Q.pdf.pdf 100GHz DX11 surveyS1S3 S2S4 U.pdf.pdf 100GHz RD12RC4 surveyS1S3 S2S4 I.pdf 100GHz RD12RC4 surveyS1S3 S2S4 Q.pdf 100GHz RD12RC4 surveyS1S3 S2S4 U.pdf
143 GHz 143GHz DX11 surveyS1S3 S2S4 I.pdf 143GHz DX11 surveyS1S3 S2S4 Q.pdf.pdf 143GHz DX11 surveyS1S3 S2S4 U.pdf.pdf 143GHz RD12RC4 surveyS1S3 S2S4 I.pdf 143GHz RD12RC4 surveyS1S3 S2S4 Q.pdf 143GHz RD12RC4 surveyS1S3 S2S4 U.pdf
217 GHz 217GHz DX11 surveyS1S3 S2S4 I.pdf 217GHz DX11 surveyS1S3 S2S4 Q.pdf.pdf 217GHz DX11 surveyS1S3 S2S4 U.pdf.pdf 217GHz RD12RC4 surveyS1S3 S2S4 I.pdf 217GHz RD12RC4 surveyS1S3 S2S4 Q.pdf 217GHz RD12RC4 surveyS1S3 S2S4 U.pdf
353 GHz 353GHz DX11 surveyS1S3 S2S4 I.pdf 353GHz DX11 surveyS1S3 S2S4 Q.pdf.pdf 353GHz DX11 surveyS1S3 S2S4 U.pdf.pdf 353GHz RD12RC4 surveyS1S3 S2S4 I.pdf 353GHz RD12RC4 surveyS1S3 S2S4 Q.pdf 353GHz RD12RC4 surveyS1S3 S2S4 U.pdf
545 GHz 545GHz DX11 surveyS1S3 S2S4 I.pdf . . 545GHz RD12RC4 surveyS1S3 S2S4 I.pdf . .
857 GHz 857GHz DX11 surveyS1S3 S2S4 I.pdf . . 857GHz RD12RC4 surveyS1S3 S2S4 I.pdf . .



Spectra of the PR2 and the PR3 data splits

This figure shows the EE and BB spectra of the PR2 and PR3 detset, half-mission and rings (for PR3 only) maps at 100, 143, 217, and 353 GHz. The auto-spectra of the difference maps and the cross-spectra between the maps are shown. The sky fraction used here is 43 %. The bins are: bin=1 for [math]2\leq\ell\lt 30[/math]; bin=5 for [math]30\leq\ell\lt 50[/math]; bin=10 for [math]50\leq\ell\lt 160[/math]; bin=20 for [math]160\leq\ell\lt 1000[/math]; and bin=100 for [math]\ell\gt 1000[/math]. This figure is taken from Planck-2020-A3[1] (see detailled explanations there).

Cl fsky43 DX11 RD12RC4 3000 oddeven multiplot.pdf



Comparison of the FFP10 simulated noise and systematic residuals and the PR3 data

This figure shows the noise and systematic residuals in TT, EE, BB, and EB spectra, at the three CMB frequencies, for difference maps of the ring (red) and half-mission (blue) null tests binned by [math]\Delta \ell =10[/math]. Data spectra are represented by thick lines, and the averages of simulations by thin black lines. For the simulations, we show the 16 % and 84 % quantiles of the distribution with the same colours. This figure is taken from Planck-2020-A3[1] (see detailled explanations there).

Newpte.pdf


References[edit]

Cosmic Microwave background