|
|
(16 intermediate revisions by the same user not shown) |
Line 2: |
Line 2: |
| | | |
| | | |
− | <br>
| |
− | ----
| |
− | <span style="font-size:150%">'''Section 3.1.2: masks of the very bright regions where the sub-pixel effect in the CO foreground templates prevent them to be used for cosmology or astrophysics analysis''' </span>
| |
− |
| |
− | Those masks are provided in the PLA.<!-- LVLV -->
| |
− |
| |
− | The difference between the downgraded of the CO simulated map at N<sub>side</sub>=128 and at N<sub>side</sub>=2048 provides the level of the bias introduced by the downgraded CO template at each bolometer. Residual frequency maps have been computed using this information projected for each bolometer multiplied by the CO bandpass coefficient computed by SRoll. The table displays the mamps of the ratio of the variance inside each pixel at nside=128 in logarithmic scale between the CO frequency residual map and the noise level estimated from the End-to-end simulations. This bias is well determined and specific masks adapted to each scientific analysis can be computed from these ratio maps. It can also be noted that very few pixels have been biased at the level of the noise nearby the galactic center.
| |
− |
| |
− | The table also gives the sky fraction masked by thresholding (100, 10, 1 %) the rms of the CO bandpass correction at N<sub>side</sub>=2048 inside the pixel at N<sub>side</sub>=128 referred to the rms of the noise at N<sub>side</sub>=2048 inside the pixel at N<sub>side</sub>=128.
| |
− |
| |
− | {| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:center" width=800px
| |
− | |+ '''CO templates '''
| |
− | |- bgcolor="ffdead"
| |
− | !
| |
− | !colspan="3" | 100 GHz
| |
− | !colspan="3" | 143 GHz
| |
− | !colspan="3" | 217 GHz
| |
− | !colspan="3" | 353 GHz
| |
− | |-
| |
− | |
| |
− | |I
| |
− | |Q
| |
− | |U
| |
− | |I
| |
− | |Q
| |
− | |U
| |
− | |I
| |
− | |Q
| |
− | |U
| |
− | |I
| |
− | |Q
| |
− | |U
| |
− | |-
| |
− | |100%
| |
− | |0.01
| |
− | |0.01
| |
− | |0.07
| |
− | |.
| |
− | |.
| |
− | |.
| |
− | |0.00
| |
− | |0.01
| |
− | |0.01
| |
− | |0.00
| |
− | |0.01
| |
− | |0.01
| |
− | |-
| |
− | |10%
| |
− | |0.55
| |
− | |0.97
| |
− | |1.80
| |
− | |.
| |
− | |.
| |
− | |.
| |
− | |0.04
| |
− | |0.29
| |
− | |0.19
| |
− | |0.01
| |
− | |0.38
| |
− | |0.29
| |
− | |-
| |
− | |1%
| |
− | |7.39
| |
− | |8.63
| |
− | |10.81
| |
− | |.
| |
− | |.
| |
− | |.
| |
− | |0.90
| |
− | |4.98
| |
− | |2.79
| |
− | |0.46
| |
− | |5.81
| |
− | |3.38
| |
− | |-
| |
− | |template maps
| |
− | |[[File:100-I_CO_Subpix.png|100px]]
| |
− | |[[File:100-Q_CO_Subpix.png|100px]]
| |
− | |[[File:100-U_CO_Subpix.png|100px]]
| |
− | |.
| |
− | |.
| |
− | |.
| |
− | |[[File:217-I_CO_Subpix.png|100px]]
| |
− | |[[File:217-Q_CO_Subpix.png|100px]]
| |
− | |[[File:217-U_CO_Subpix.png|100px]]
| |
− | |[[File:353-I_CO_Subpix.png|100px]]
| |
− | |[[File:353-Q_CO_Subpix.png|100px]]
| |
− | |[[File:353-U_CO_Subpix.png|100px]]
| |
− | |}
| |
| | | |
| <!-- | | <!-- |
Line 117: |
Line 28: |
| --> | | --> |
| | | |
− | <br>
| |
− | ----
| |
− | <span style="font-size:150%">'''Section 3.2: complementary figures of Fig. 11''' </span>
| |
− |
| |
− | {| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:centert" width=800px
| |
− | |+ '''Comparaison of 2015 and 2017 I, Q and U maps and their difference. '''
| |
− | |- bgcolor="ffdead"
| |
− | !
| |
− | !colspan="3"| 2015 maps
| |
− | !colspan="3"| 2017 maps
| |
− | !colspan="3"| difference
| |
− | |-
| |
− | !
| |
− | !I
| |
− | !Q
| |
− | !U
| |
− | !I
| |
− | !Q
| |
− | !U
| |
− | !I
| |
− | !Q
| |
− | !U
| |
− | |-
| |
− | | 100 GHz
| |
− | |[[File:100GHz_DX11_I.pdf.pdf|100px]]
| |
− | |[[File:100GHz_DX11_Q.pdf.pdf|100px]]
| |
− | |[[File:100GHz_DX11_U.pdf.pdf|100px]]
| |
− | |[[File:100GHz_I.pdf|100px]]
| |
− | |[[File:100GHz_Q.pdf|100px]]
| |
− | |[[File:100GHz_U.pdf|100px]]
| |
− | |[[File:100GHz_diff_I.pdf.pdf|100px]]
| |
− | |[[File:100GHz_diff_Q.pdf.pdf|100px]]
| |
− | |[[File:100GHz_diff_U.pdf.pdf|100px]]
| |
− | |-
| |
− | | 143 GHz
| |
− | |[[File:143GHz_DX11_I.pdf.pdf|100px]]
| |
− | |[[File:143GHz_DX11_Q.pdf.pdf|100px]]
| |
− | |[[File:143GHz_DX11_U.pdf.pdf|100px]]
| |
− | |[[File:143GHz_I.pdf|100px]]
| |
− | |[[File:143GHz_Q.pdf|100px]]
| |
− | |[[File:143GHz_U.pdf|100px]]
| |
− | |[[File:143GHz_diff_I.pdf.pdf|100px]]
| |
− | |[[File:143GHz_diff_Q.pdf.pdf|100px]]
| |
− | |[[File:143GHz_diff_U.pdf.pdf|100px]]
| |
− | |-
| |
− | | 217 GHz
| |
− | |[[File:217GHz_DX11_I.pdf.pdf|100px]]
| |
− | |[[File:217GHz_DX11_Q.pdf.pdf|100px]]
| |
− | |[[File:217GHz_DX11_U.pdf.pdf|100px]]
| |
− | |[[File:217GHz_I.pdf|100px]]
| |
− | |[[File:217GHz_Q.pdf|100px]]
| |
− | |[[File:217GHz_U.pdf|100px]]
| |
− | |[[File:217GHz_diff_I.pdf.pdf|100px]]
| |
− | |[[File:217GHz_diff_Q.pdf.pdf|100px]]
| |
− | |[[File:217GHz_diff_U.pdf.pdf|100px]]
| |
− | |-
| |
− | | 353 GHz
| |
− | |[[File:353GHz_DX11_I.pdf.pdf|100px]]
| |
− | |[[File:353GHz_DX11_Q.pdf.pdf|100px]]
| |
− | |[[File:353GHz_DX11_U.pdf.pdf|100px]]
| |
− | |[[File:353GHz_I.pdf|100px]]
| |
− | |[[File:353GHz_Q.pdf|100px]]
| |
− | |[[File:353GHz_U.pdf|100px]]
| |
− | |[[File:353GHz_diff_I.pdf.pdf|100px]]
| |
− | |[[File:353GHz_diff_Q.pdf.pdf|100px]]
| |
− | |[[File:353GHz_diff_U.pdf.pdf|100px]]
| |
− | |-
| |
− | | 545 GHz
| |
− | |[[File:545GHz_DX11_I.pdf.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |[[File:545GHz_I.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |[[File:545GHz_diff_I.pdf.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |-
| |
− | | 857 GHz
| |
− | |[[File:857GHz_DX11_I.pdf.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |[[File:857GHz_I.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |[[File:857GHz_diff_I.pdf.pdf|100px]]
| |
− | | .
| |
− | | .
| |
− | |}
| |
| | | |
| | | |
Line 212: |
Line 34: |
| <span style="font-size:150%">'''Section 5.3.10: for convenience, we reproduce here Figures 6, 7 and 8 of Rosset et al.''' </span> | | <span style="font-size:150%">'''Section 5.3.10: for convenience, we reproduce here Figures 6, 7 and 8 of Rosset et al.''' </span> |
| | | |
− | This paper is published as Rosset et al. Planck pre-launch status: High Frequency Instrument polarization calibration. 2010b, A&A, 520, A13. ({{PlanckPapers|Planck-PreLaunch-IX}}) | + | This paper is published as Rosset et al. Planck pre-launch status: High Frequency Instrument polarization calibration. 2010b, A&A, 520, A13 {{PlanckPapers|rosset2010}}. The figures 6, 7 et 8 reproduced hereunder are given in the version on ArXiv 1004.2595 |
− | The figures 6, 7 et 8 reproduced hereunder are given in the version on ArXiv 1004.2595 | |
| | | |
| {| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:centert" width=800px | | {| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:centert" width=800px |
This page is intented to provide complementary figures to those of the 2017 HFI DPC paper (Planck-2020-A3[1]).
Section 5.3.10: for convenience, we reproduce here Figures 6, 7 and 8 of Rosset et al.
This paper is published as Rosset et al. Planck pre-launch status: High Frequency Instrument polarization calibration. 2010b, A&A, 520, A13 Planck-PreLaunch-XIII[2]. The figures 6, 7 et 8 reproduced hereunder are given in the version on ArXiv 1004.2595
gain errors (1) |
polarization efficiency errors (2) |
orientation errors (3)
|
---|
Error creating thumbnail: convert: unable to extend cache `/tmp/magick-30434MV1u70kOAU06': File too large @ error/cache.c/OpenPixelCache/4091.
|
Error creating thumbnail: convert: unable to extend cache `/tmp/magick-30441hF9Axg5ibRSB': File too large @ error/cache.c/OpenPixelCache/4091.
|
Error creating thumbnail: convert: unable to extend cache `/tmp/magick-30448zev0R7LilI8V': File too large @ error/cache.c/OpenPixelCache/4091.
|
(1) [math]\Delta C_{\ell}[/math] in rms due to gain errors from 0.01% to 1% for E-mode (top) and B-mode (bottom) compared to initial spectrum (solid black lines). Cosmic variance for E-mode is plotted in dashed black line.
(2) [math]\Delta C_{\ell}[/math] in rms due to polarization efficiency errors from 0.1% to 4% for E-mode (top) and B-mode (bottom) compared to initial spectrum (solid black lines). Cosmic variance for E-mode is plotted in dashed black line.
(3) [math]\Delta C_{\ell}[/math] in rms due to various orientation errors from 0.25 to 2 degrees for E-mode (top) and B-mode (bottom) compared to initial spectrum (solid black lines). Cosmic variance for E-mode is plotted in dashed black line.
Section 5.5: complementary figures of Fig. 29
Map and power spectra from E2E simulations difference with and without 4K lines.
100 GHz bolometers
|
143 GHz bolometers
|
217 GHz bolometers
|
353 GHz bolometers
|
---|
|
|
|
|
|
|
|
|
100px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.
|
.
|
|
|
|
|
|
|
.
|
.
|
|
|
|
|
|
|
.
|
.
|
|
|
|
|
|
|
.
|
.
|
.
|
.
|
|
|
|
|
Section 5.13: complementary figures of Fig. 47
ADCNL induced gain time variation as a function of ring numbers. Blue line shows the solved gain variation for the data and grey ones show 10 realizations drawn within the uncertainties of the ADC model.
100 GHz bolometers |
143 GHz bolometers |
217 GHz bolometers |
353 GHz bolometers
|
---|
|
|
|
|
References[edit]
- ↑ Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, Planck Collaboration, 2020, A&A, 641, A3.
- ↑ Planck pre-launch status: High Frequency Instrument polarization calibration, C. Rosset, M. Tristram, N. Ponthieu, et al. , A&A, 520, A13+, (2010).