Spectral response
Contents
HFI Spectral Response[edit]
This section outlines the unit conversion and colour correction protocol for Planck/HFI. Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper). Some of the checks on the unit conversion and colour correction coefficients will be described here also. Planet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section). There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here. The PLA UcCC subsection is primarily to introduce the software tools.
The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file [FIXME].
FIXME: insert figure.
The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges. The figure below demonstrates the stability in the integral once a sufficient data range has been employed. The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.
FIXME: insert figure showing integral flattening once the range hs extended sufficiently out of band.
The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average. Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region. The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky map. Future analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).
FIXME: include detector weight histogram plots.
The following table presents basic characteristics of the HFI detector spectral repsonse, inclusing optical efficiency, effective frequency, etc.
FIXME: Add table from HFI_SPEC_TRANS_REPORT
Unit Conversion Tables[edit]
This section presents unit conversion coefficients for the HFI detectors (and LFI in some instances), including uncertainty estimates based on the uncertainty of the HFI detector spectral response. The derivation of the unit conversion coefficients is provided in planck2013-p02d.
Band (GHz) | BC | Det. | U_C [MJy/sr/K'_CMB_'] |
100 | 00 | 1a | 238.2871 ± 0.5039 |
100 | 01 | 1b | 241.8530 ± 0.4899 |
100 | 20 | 2a | 244.2375 ± 0.5301 |
100 | 21 | 2b | 243.3572 ± 0.5621 |
100 | 40 | 3a | 246.0715 ± 0.5254 |
100 | 41 | 3b | 240.1739 ± 0.5075 |
100 | 80 | 4a | 246.7316 ± 0.5607 |
100 | 81 | 4b | 247.6289 ± 0.5442 |
100 | 100 | avg | 244.0960 ± 0.2170 |
143 | 02 | 1a | 366.4108 ± 0.1726 |
143 | 03 | 1b | 369.5905 ± 0.1823 |
143 | 30 | 2a | 366.7249 ± 0.1788 |
143 | 31 | 2b | 370.7001 ± 0.1703 |
143 | 50 | 3a | 360.0418 ± 0.1892 |
143 | 51 | 3b | 365.9529 ± 0.1835 |
143 | 82 | 4a | 371.3469 ± 0.1811 |
143 | 83 | 4b | 369.0953 ± 0.1758 |
143 | 10 | 5 | 380.1162 ± 0.1659 |
143 | 42 | 6 | 373.3413 ± 0.1744 |
143 | 60 | 7 | 381.2511 ± 0.1745 |
143 | 70 | 8 | 376.1461 ± 0.1777 |
143 | 143 | avg | 371.7327 ± 0.0558 |
217 | 04 | 1 | 486.0322 ± 0.0252 |
217 | 22 | 2 | 486.4008 ± 0.0262 |
217 | 52 | 3 | 486.8924 ± 0.0257 |
217 | 84 | 4 | 486.0164 ± 0.0248 |
217 | 11 | 5a | 479.8049 ± 0.0286 |
217 | 12 | 5b | 480.4364 ± 0.0280 |
217 | 43 | 6a | 480.3416 ± 0.0281 |
217 | 44 | 6b | 480.3544 ± 0.0284 |
217 | 61 | 7a | 481.0486 ± 0.0265 |
217 | 62 | 7b | 480.0012 ± 0.0283 |
217 | 71 | 8a | 479.8096 ± 0.0289 |
217 | 72 | 8b | 480.7686 ± 0.0271 |
217 | 217 | avg | 483.6874 ± 0.0084 |
353 | 05 | 1 | 288.4183 ± 0.0150 |
353 | 13 | 2 | 287.8701 ± 0.0158 |
353 | 23 | 3a | 289.2493 ± 0.0176 |
353 | 24 | 3b | 289.1951 ± 0.0159 |
353 | 32 | 4a | 286.6167 ± 0.0155 |
353 | 33 | 4b | 286.5976 ± 0.0161 |
353 | 53 | 5a | 289.9808 ± 0.0157 |
353 | 54 | 5b | 289.9004 ± 0.0161 |
353 | 63 | 6a | 288.8151 ± 0.0190 |
353 | 64 | 6b | 292.8348 ± 0.0179 |
353 | 45 | 7 | 285.3414 ± 0.0192 |
353 | 85 | 8 | 283.5120 ± 0.0177 |
353 | 353 | avg | 287.4517 ± 0.0061 |
545 | 14 | 1 | 57.0831 ± 0.0343 |
545 | 34 | 2 | 58.8825 ± 0.0320 |
545 | 55 | 3 | 57.8794 ± 0.0595 |
545 | 73 | 4 | 58.0595 ± 0.0368 |
545 | 545 | avg | 58.0356 ± 0.0199 |
857 | 25 | 1 | 2.1891 ± 0.0391 |
857 | 35 | 2 | 2.3457 ± 0.0323 |
857 | 65 | 3 | 2.2133 ± 0.0363 |
857 | 74 | 4 | 2.4022 ± 0.0402 |
857 | 857 | avg | 2.2681 ± 0.0188 |
The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.
Band (GHz) | BC | Det. | U_C [K'_RJ_'/(MJy/sr)] |
100 | 100 | avg | 0.0032548074 |
143 | 143 | avg | 0.0015916707 |
217 | 217 | avg | 0.00069120334 |
353 | 353 | avg | 0.00026120163 |
545 | 545 | avg | 0.00010958025 |
857 | 857 | avg | 4.4316316e-05 |
The following is for the SZ coefficients.
Band (GHz) | BC | Det. | U_C [y'_SZ_'/K'_CMB_'] |
100 | 00 | 1a | -0.2461 ± 0.0001 |
100 | 01 | 1b | -0.2470 ± 0.0001 |
100 | 20 | 2a | -0.2483 ± 0.0001 |
100 | 21 | 2b | -0.2480 ± 0.0001 |
100 | 40 | 3a | -0.2487 ± 0.0001 |
100 | 41 | 3b | -0.2469 ± 0.0001 |
100 | 80 | 4a | -0.2491 ± 0.0001 |
100 | 81 | 4b | -0.2492 ± 0.0001 |
100 | 100 | avg | -0.2481 ± 5.2679e-05 |
143 | 02 | 1a | -0.3550 ± 0.0001 |
143 | 03 | 1b | -0.3574 ± 0.0001 |
143 | 30 | 2a | -0.3555 ± 0.0001 |
143 | 31 | 2b | -0.3582 ± 0.0001 |
143 | 50 | 3a | -0.3502 ± 0.0001 |
143 | 51 | 3b | -0.3548 ± 0.0001 |
143 | 82 | 4a | -0.3596 ± 0.0001 |
143 | 83 | 4b | -0.3569 ± 0.0001 |
143 | 10 | 5 | -0.3656 ± 0.0001 |
143 | 42 | 6 | -0.3604 ± 0.0001 |
143 | 60 | 7 | -0.3666 ± 0.0001 |
143 | 70 | 8 | -0.3629 ± 0.0001 |
143 | 143 | avg | -0.3592 ± 4.2195e-05 |
217 | 04 | 1 | 4.3470 ± 0.0090 |
217 | 22 | 2 | 4.0275 ± 0.0081 |
217 | 52 | 3 | 4.1184 ± 0.0082 |
217 | 84 | 4 | 4.4334 ± 0.0094 |
217 | 11 | 5a | 7.4840 ± 0.0288 |
217 | 12 | 5b | 6.9766 ± 0.0244 |
217 | 43 | 6a | 7.0507 ± 0.0249 |
217 | 44 | 6b | 7.0169 ± 0.0249 |
217 | 61 | 7a | 6.7975 ± 0.0228 |
217 | 62 | 7b | 7.6995 ± 0.0307 |
217 | 71 | 8a | 7.2564 ± 0.0273 |
217 | 72 | 8b | 6.8621 ± 0.0231 |
217 | 217 | avg | 5.1531 ± 0.0042 |
353 | 05 | 1 | 0.1623 ± 1.7570e-05 |
353 | 13 | 2 | 0.1620 ± 1.7967e-05 |
353 | 23 | 3a | 0.1623 ± 2.2104e-05 |
353 | 24 | 3b | 0.1628 ± 1.8225e-05 |
353 | 32 | 4a | 0.1589 ± 1.6673e-05 |
353 | 33 | 4b | 0.1594 ± 1.7566e-05 |
353 | 53 | 5a | 0.1645 ± 1.8971e-05 |
353 | 54 | 5b | 0.1649 ± 1.9322e-05 |
353 | 63 | 6a | 0.1630 ± 2.2397e-05 |
353 | 64 | 6b | 0.1665 ± 2.1640e-05 |
353 | 45 | 7 | 0.1582 ± 2.4010e-05 |
353 | 85 | 8 | 0.1571 ± 1.8646e-05 |
353 | 353 | avg | 0.1611 ± 7.0587e-06 |
545 | 14 | 1 | 0.0688 ± 3.9623e-05 |
545 | 34 | 2 | 0.0696 ± 3.6313e-05 |
545 | 55 | 3 | 0.0690 ± 6.9471e-05 |
545 | 73 | 4 | 0.0690 ± 4.2375e-05 |
545 | 545 | avg | 0.0692 ± 2.2699e-05 |
857 | 25 | 1 | 0.0378 ± 0.0006 |
857 | 35 | 2 | 0.0382 ± 0.0004 |
857 | 65 | 3 | 0.0378 ± 0.0005 |
857 | 74 | 4 | 0.0382 ± 0.0005 |
857 | 857 | avg | 0.0380 ± 0.0003 |
Colour Correction, Powerlaw spectra[edit]
The following table presents colour correction coefficients for HFI (and LFI) detectors and bands. Following the table, plots are also included demonstrating the variation in colour correction coefficients within a frequency band, over a range of spectral indices.
Band (GHz) | BC | Det. | F'_CC_', S.I.: -2 | -1 | 0 | 1 | 2 | 3 | 4 |
100 | 00 | 1a | 0.9864 ± 0.0009 | 1 | 1.0055 ± 0.0009 | 1.0027 ± 0.0017 | 0.9918 ± 0.0025 | 0.97303 ± 0.00334 | 0.94693 ± 0.00418 |
100 | 01 | 1b | 0.9925 ± 0.0009 | 1 | 0.9994 ± 0.0008 | 0.9908 ± 0.0017 | 0.9743 ± 0.0025 | 0.95048 ± 0.00330 | 0.91979 ± 0.00416 |
100 | 20 | 2a | 0.9943 ± 0.0009 | 1 | 0.9963 ± 0.0009 | 0.9831 ± 0.0018 | 0.9606 ± 0.0027 | 0.92957 ± 0.00359 | 0.89055 ± 0.00457 |
100 | 21 | 2b | 0.9929 ± 0.0010 | 1 | 0.9977 ± 0.0009 | 0.9860 ± 0.0019 | 0.9651 ± 0.0028 | 0.93578 ± 0.00374 | 0.89865 ± 0.00472 |
100 | 40 | 3a | 0.9972 ± 0.0009 | 1 | 0.9933 ± 0.0009 | 0.9772 ± 0.0018 | 0.9523 ± 0.0027 | 0.91919 ± 0.00357 | 0.87887 ± 0.00453 |
100 | 41 | 3b | 0.9887 ± 0.0009 | 1 | 1.0026 ± 0.0009 | 0.9964 ± 0.0017 | 0.9814 ± 0.0026 | 0.95797 ± 0.00344 | 0.92666 ± 0.00432 |
100 | 80 | 4a | 0.9980 ± 0.0010 | 1 | 0.9923 ± 0.0009 | 0.9751 ± 0.0019 | 0.9486 ± 0.0028 | 0.91377 ± 0.00383 | 0.87135 ± 0.00488 |
100 | 81 | 4b | 0.9995 ± 0.0009 | 1 | 0.9908 ± 0.0009 | 0.9722 ± 0.0018 | 0.9447 ± 0.0028 | 0.90909 ± 0.00373 | 0.86633 ± 0.00475 |
100 | 100 | avg | 0.9943 ± 0.0004 | 1 | 0.9964 ± 0.0004 | 0.9835 ± 0.0007 | 0.9617 ± 0.0011 | 0.93158 ± 0.00144 | 0.89381 ± 0.00182 |
143 | 02 | 1a | 0.97263 ± 0.00024 | 1 | 1.01872 ± 0.00023 | 1.02801 ± 0.00045 | 1.02743 ± 0.00067 | 1.01688 ± 0.00089 | 0.99662 ± 0.00111 |
143 | 03 | 1b | 0.97677 ± 0.00025 | 1 | 1.01443 ± 0.00024 | 1.01949 ± 0.00047 | 1.01492 ± 0.00069 | 1.00082 ± 0.00091 | 0.97759 ± 0.00114 |
143 | 30 | 2a | 0.97272 ± 0.00026 | 1 | 1.01834 ± 0.00024 | 1.02703 ± 0.00047 | 1.02566 ± 0.00069 | 1.01422 ± 0.00092 | 0.99300 ± 0.00114 |
143 | 31 | 2b | 0.97820 ± 0.00024 | 1 | 1.01294 ± 0.00022 | 1.01653 ± 0.00044 | 1.01056 ± 0.00065 | 0.99516 ± 0.00086 | 0.97074 ± 0.00108 |
143 | 50 | 3a | 0.96420 ± 0.00026 | 1 | 1.02753 ± 0.00025 | 1.04577 ± 0.00048 | 1.05402 ± 0.00071 | 1.05201 ± 0.00094 | 1.03976 ± 0.00117 |
143 | 51 | 3b | 0.97178 ± 0.00026 | 1 | 1.01941 ± 0.00024 | 1.02926 ± 0.00047 | 1.02918 ± 0.00069 | 1.01915 ± 0.00092 | 0.99948 ± 0.00114 |
143 | 82 | 4a | 0.97836 ± 0.00025 | 1 | 1.01212 ± 0.00024 | 1.01421 ± 0.00047 | 1.00611 ± 0.00069 | 0.98805 ± 0.00092 | 0.96062 ± 0.00116 |
143 | 83 | 4b | 0.97609 ± 0.00025 | 1 | 1.01513 ± 0.00023 | 1.02093 ± 0.00046 | 1.01721 ± 0.00068 | 1.00405 ± 0.00090 | 0.98188 ± 0.00113 |
143 | 10 | 5 | 0.99048 ± 0.00023 | 1 | 1.00048 ± 0.00022 | 0.99189 ± 0.00043 | 0.97451 ± 0.00064 | 0.94888 ± 0.00085 | 0.91575 ± 0.00107 |
143 | 42 | 6 | 0.98148 ± 0.00024 | 1 | 1.00943 ± 0.00023 | 1.00943 ± 0.00045 | 0.99996 ± 0.00067 | 0.98129 ± 0.00089 | 0.95395 ± 0.00111 |
143 | 60 | 7 | 0.99192 ± 0.00024 | 1 | 0.99900 ± 0.00023 | 0.98892 ± 0.00045 | 0.97009 ± 0.00067 | 0.94312 ± 0.00089 | 0.90883 ± 0.00113 |
143 | 70 | 8 | 0.98488 ± 0.00025 | 1 | 1.00574 ± 0.00024 | 1.00188 ± 0.00047 | 0.98858 ± 0.00069 | 0.96627 ± 0.00092 | 0.93573 ± 0.00116 |
143 | 143 | avg | 0.97935 ± 0.0000772811 | 1 | 1.01158 ± 0.0000731485 | 1.01364 ± 0.00014 | 1.00607 ± 0.00021 | 0.98907 ± 0.00028 | 0.96318 ± 0.00036 |
217 | 04 | 1 | 1.01104 ± 0.000054 | 1 | 0.98146 ± 0.000054 | 0.95584 ± 0.00011 | 0.92373 ± 0.00017 | 0.88587 ± 0.00023 | 0.84309 ± 0.00031 |
217 | 22 | 2 | 1.01214 ± 0.000056 | 1 | 0.97999 ± 0.000057 | 0.95264 ± 0.00012 | 0.91866 ± 0.00018 | 0.87891 ± 0.00025 | 0.83436 ± 0.00032 |
217 | 52 | 3 | 1.01277 ± 0.000054 | 1 | 0.97995 ± 0.000054 | 0.95309 ± 0.00011 | 0.92006 ± 0.00017 | 0.88163 ± 0.00023 | 0.83866 ± 0.00031 |
217 | 84 | 4 | 1.01091 ± 0.000053 | 1 | 0.98175 ± 0.000054 | 0.95655 ± 0.00011 | 0.92496 ± 0.00017 | 0.88767 ± 0.00023 | 0.84549 ± 0.00031 |
217 | 11 | 5a | 0.99803 ± 0.000060 | 1 | 0.99318 ± 0.000059 | 0.97777 ± 0.00012 | 0.95421 ± 0.00018 | 0.92318 ± 0.00025 | 0.88554 ± 0.00032 |
217 | 12 | 5b | 0.99929 ± 0.000059 | 1 | 0.99202 ± 0.000058 | 0.97559 ± 0.00012 | 0.95120 ± 0.00018 | 0.91956 ± 0.00024 | 0.88156 ± 0.00031 |
217 | 43 | 6a | 0.99908 ± 0.000059 | 1 | 0.99220 ± 0.000058 | 0.97593 ± 0.00012 | 0.95167 ± 0.00018 | 0.92012 ± 0.00024 | 0.88214 ± 0.00032 |
217 | 44 | 6b | 0.99907 ± 0.000059 | 1 | 0.99219 ± 0.000058 | 0.97592 ± 0.00012 | 0.95169 ± 0.00018 | 0.92028 ± 0.00024 | 0.88257 ± 0.00031 |
217 | 61 | 7a | 1.00045 ± 0.000056 | 1 | 0.99121 ± 0.000055 | 0.97430 ± 0.00011 | 0.94973 ± 0.00017 | 0.91817 ± 0.00023 | 0.88046 ± 0.00030 |
217 | 62 | 7b | 0.99824 ± 0.000059 | 1 | 0.99328 ± 0.000058 | 0.97826 ± 0.00012 | 0.95537 ± 0.00018 | 0.92529 ± 0.00024 | 0.88885 ± 0.00031 |
217 | 71 | 8a | 0.99810 ± 0.000060 | 1 | 0.99293 ± 0.000059 | 0.97713 ± 0.00012 | 0.95308 ± 0.00018 | 0.92152 ± 0.00025 | 0.88334 ± 0.00032 |
217 | 72 | 8b | 0.99984 ± 0.000057 | 1 | 0.99161 ± 0.000056 | 0.97493 ± 0.00011 | 0.95048 ± 0.00017 | 0.91897 ± 0.00023 | 0.88126 ± 0.00030 |
217 | 217 | avg | 1.00607 ± 0.000018 | 1 | 0.98586 ± 0.000018 | 0.96403 ± 0.000036 | 0.93508 ± 0.000055 | 0.89977 ± 0.0000762557 | 0.85897 ± 0.0000999621 |
353 | 05 | 1 | 1.00515 ± 0.000041 | 1 | 0.98729 ± 0.000041 | 0.96731 ± 0.000083 | 0.94058 ± 0.00013 | 0.90776 ± 0.00018 | 0.86965 ± 0.00023 |
353 | 13 | 2 | 1.00617 ± 0.000042 | 1 | 0.98602 ± 0.000043 | 0.96453 ± 0.000087 | 0.93604 ± 0.00013 | 0.90128 ± 0.00019 | 0.86111 ± 0.00024 |
353 | 23 | 3a | 1.00498 ± 0.000052 | 1 | 0.98835 ± 0.000051 | 0.97024 ± 0.000100 | 0.94602 ± 0.00015 | 0.91620 ± 0.00021 | 0.88141 ± 0.00027 |
353 | 24 | 3b | 1.00404 ± 0.000042 | 1 | 0.98875 ± 0.000043 | 0.97046 ± 0.000088 | 0.94549 ± 0.00014 | 0.91438 ± 0.00019 | 0.87780 ± 0.00025 |
353 | 32 | 4a | 1.01332 ± 0.000040 | 1 | 0.98071 ± 0.000042 | 0.95573 ± 0.000085 | 0.92551 ± 0.00013 | 0.89056 ± 0.00018 | 0.85151 ± 0.00024 |
353 | 33 | 4b | 1.01220 ± 0.000041 | 1 | 0.98127 ± 0.000043 | 0.95631 ± 0.000088 | 0.92561 ± 0.00014 | 0.88977 ± 0.00019 | 0.84951 ± 0.00025 |
353 | 53 | 5a | 1.00016 ± 0.000043 | 1 | 0.99191 ± 0.000043 | 0.97608 ± 0.000088 | 0.95292 ± 0.00013 | 0.92307 ± 0.00018 | 0.88730 ± 0.00024 |
353 | 54 | 5b | 0.99946 ± 0.000044 | 1 | 0.99213 ± 0.000044 | 0.97600 ± 0.000090 | 0.95198 ± 0.00014 | 0.92072 ± 0.00019 | 0.88306 ± 0.00025 |
353 | 63 | 6a | 1.00364 ± 0.000052 | 1 | 0.98856 ± 0.000052 | 0.96957 ± 0.00011 | 0.94351 ± 0.00016 | 0.91103 ± 0.00023 | 0.87296 ± 0.00030 |
353 | 64 | 6b | 0.99521 ± 0.000048 | 1 | 0.99812 ± 0.000049 | 0.98954 ± 0.000098 | 0.97439 ± 0.00015 | 0.95298 ± 0.00021 | 0.92575 ± 0.00027 |
353 | 45 | 7 | 1.01512 ± 0.000058 | 1 | 0.97828 ± 0.000056 | 0.95040 ± 0.00011 | 0.91695 ± 0.00017 | 0.87863 ± 0.00023 | 0.83621 ± 0.00030 |
353 | 85 | 8 | 1.01821 ± 0.000045 | 1 | 0.97446 ± 0.000047 | 0.94216 ± 0.000098 | 0.90384 ± 0.00016 | 0.86040 ± 0.00022 | 0.81279 ± 0.00030 |
353 | 353 | avg | 1.00811 ± 0.000016 | 1 | 0.98449 ± 0.000017 | 0.96190 ± 0.000034 | 0.93276 ± 0.000052 | 0.89776 ± 0.0000716970 | 0.85770 ± 0.0000943816 |
545 | 14 | 1 | 1.00706 ± 0.00018 | 1 | 0.98297 ± 0.00011 | 0.95694 ± 0.00017 | 0.92302 ± 0.00023 | 0.88254 ± 0.00027 | 0.83687 ± 0.00032 |
545 | 34 | 2 | 0.99997 ± 0.00016 | 1 | 0.98982 ± 0.000097 | 0.97015 ± 0.00016 | 0.94196 ± 0.00021 | 0.90642 ± 0.00025 | 0.86485 ± 0.00029 |
545 | 55 | 3 | 1.00355 ± 0.00031 | 1 | 0.98686 ± 0.00018 | 0.96491 ± 0.00029 | 0.93512 ± 0.00037 | 0.89862 ± 0.00043 | 0.85665 ± 0.00048 |
545 | 73 | 4 | 1.00276 ± 0.00019 | 1 | 0.98774 ± 0.00011 | 0.96673 ± 0.00018 | 0.93790 ± 0.00023 | 0.90233 ± 0.00028 | 0.86123 ± 0.00032 |
545 | 545 | avg | 1.00316 ± 0.000100 | 1 | 0.98693 ± 0.000060 | 0.96474 ± 0.000100 | 0.93445 ± 0.00013 | 0.89725 ± 0.00015 | 0.85444 ± 0.00018 |
857 | 25 | 1 | 0.9864 ± 0.0009 | 1 | 1.0055 ± 0.0009 | 1.0027 ± 0.0017 | 0.9918 ± 0.0025 | 0.97303 ± 0.00334 | 0.94693 ± 0.00418 |
857 | 35 | 2 | 0.9925 ± 0.0009 | 1 | 0.9994 ± 0.0008 | 0.9908 ± 0.0017 | 0.9743 ± 0.0025 | 0.95048 ± 0.00330 | 0.91979 ± 0.00416 |
857 | 65 | 3 | 0.9943 ± 0.0009 | 1 | 0.9963 ± 0.0009 | 0.9831 ± 0.0018 | 0.9606 ± 0.0027 | 0.92957 ± 0.00359 | 0.89055 ± 0.00457 |
857 | 74 | 4 | 0.9929 ± 0.0010 | 1 | 0.9977 ± 0.0009 | 0.9860 ± 0.0019 | 0.9651 ± 0.0028 | 0.93578 ± 0.00374 | 0.89865 ± 0.00472 |
857 | 857 | avg | 0.9972 ± 0.0009 | 1 | 0.9933 ± 0.0009 | 0.9772 ± 0.0018 | 0.9523 ± 0.0027 | 0.91919 ± 0.00357 | 0.87887 ± 0.00453 |
Colour Correction, Modified Blackbody[edit]
This section will present colour correction coefficients relevant for a variety of dust spectra...
CO unit conversion[edit]
This section presents the CO unit conversion coefficcients.
Band (GHz) | BC | Det. | CO line | F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] | F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s] |
100 | 00 | 1a | J1-0 | 10.87 ± 0.29 | 16.96 ± 0.75 |
100 | 01 | 1b | J1-0 | 12.61 ± 0.27 | 16.40 ± 0.71 |
100 | 20 | 2a | J1-0 | 14.69 ± 0.50 | 14.08 ± 0.61 |
100 | 21 | 2b | J1-0 | 12.01 ± 0.39 | 17.50 ± 0.63 |
100 | 40 | 3a | J1-0 | 16.36 ± 0.57 | 14.52 ± 0.64 |
100 | 41 | 3b | J1-0 | 11.78 ± 0.48 | 13.78 ± 0.51 |
100 | 80 | 4a | J1-0 | 19.09 ± 0.63 | 18.64 ± 0.79 |
100 | 81 | 4b | J1-0 | 16.11 ± 0.57 | 17.57 ± 0.80 |
100 | 100 | avg | J1-0 | 14.78 ± 0.21 | 15.55 ± 0.26 |
143 | 02 | 1a | J1-0 | 0.0613 ± 0.0031 | 0.0022 ± 5.0163e-05 |
143 | 03 | 1b | J1-0 | 0.0437 ± 0.0022 | 0.0017 ± 5.5805e-05 |
143 | 30 | 2a | J1-0 | 0.0523 ± 0.0027 | 0.0020 ± 0.0001 |
143 | 31 | 2b | J1-0 | 0.0557 ± 0.0028 | 0.0022 ± 0.0001 |
143 | 50 | 3a | J1-0 | 0.0881 ± 0.0045 | 0.0030 ± 2.3871e-05 |
143 | 51 | 3b | J1-0 | 0.0737 ± 0.0036 | 0.0023 ± 0.0001 |
143 | 82 | 4a | J1-0 | 0.0489 ± 0.0024 | 0.0018 ± 8.9210e-05 |
143 | 83 | 4b | J1-0 | 0.0493 ± 0.0024 | 0.0019 ± 9.4426e-05 |
143 | 10 | 5 | J1-0 | 0.0210 ± 0.0012 | 0.0012 ± 0.0001 |
143 | 42 | 6 | J1-0 | 0.0579 ± 0.0029 | 0.0020 ± 0.0003 |
143 | 60 | 7 | J1-0 | 0.0099 ± 0.0005 | 0.0005 ± 2.4544e-05 |
143 | 70 | 8 | J1-0 | 0.0404 ± 0.0023 | 0.0018 ± 8.5655e-05 |
143 | 143 | avg | J1-0 | 0.0470 ± 0.0008 | 0.0018 ± 4.4951e-05 |
143 | 02 | 1a | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 03 | 1b | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 30 | 2a | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 31 | 2b | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 50 | 3a | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 51 | 3b | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 82 | 4a | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 83 | 4b | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 10 | 5 | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 42 | 6 | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 60 | 7 | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 70 | 8 | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
143 | 143 | avg | J2-1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
217 | 04 | 1 | J2-1 | 50.22 ± 0.36 | 34.42 ± 0.21 |
217 | 22 | 2 | J2-1 | 42.47 ± 0.30 | 32.73 ± 0.21 |
217 | 52 | 3 | J2-1 | 51.23 ± 0.35 | 37.37 ± 0.23 |
217 | 84 | 4 | J2-1 | 47.75 ± 0.35 | 30.87 ± 0.19 |
217 | 11 | 5a | J2-1 | 43.97 ± 0.29 | 35.85 ± 0.22 |
217 | 12 | 5b | J2-1 | 43.68 ± 0.34 | 38.54 ± 0.22 |
217 | 43 | 6a | J2-1 | 38.92 ± 0.30 | 41.21 ± 0.25 |
217 | 44 | 6b | J2-1 | 40.75 ± 0.36 | 33.33 ± 0.21 |
217 | 61 | 7a | J2-1 | 45.50 ± 0.31 | 41.57 ± 0.26 |
217 | 62 | 7b | J2-1 | 43.58 ± 0.29 | 33.19 ± 0.20 |
217 | 71 | 8a | J2-1 | 45.30 ± 0.31 | 41.48 ± 0.25 |
217 | 72 | 8b | J2-1 | 41.78 ± 0.31 | 34.16 ± 0.21 |
217 | 217 | avg | J2-1 | 45.85 ± 0.11 | 35.37 ± 0.07 |
353 | 05 | 1 | J3-2 | 170.3 ± 1.3 | 82.5 ± 0.4 |
353 | 13 | 2 | J3-2 | 174.0 ± 1.3 | 130.8 ± 0.7 |
353 | 23 | 3a | J3-2 | 185.4 ± 1.6 | 133.3 ± 0.8 |
353 | 24 | 3b | J3-2 | 200.7 ± 1.5 | 166.6 ± 0.9 |
353 | 32 | 4a | J3-2 | 172.9 ± 1.4 | 121.0 ± 0.7 |
353 | 33 | 4b | J3-2 | 140.9 ± 1.3 | 125.2 ± 0.7 |
353 | 53 | 5a | J3-2 | 150.3 ± 1.2 | 138.1 ± 0.7 |
353 | 54 | 5b | J3-2 | 159.8 ± 1.1 | 143.9 ± 0.8 |
353 | 63 | 6a | J3-2 | 148.9 ± 1.2 | 143.0 ± 0.9 |
353 | 64 | 6b | J3-2 | 166.4 ± 1.5 | 167.1 ± 1.0 |
353 | 45 | 7 | J3-2 | 196.9 ± 1.4 | 110.9 ± 0.6 |
353 | 85 | 8 | J3-2 | 185.3 ± 1.4 | 99.9 ± 0.6 |
353 | 353 | avg | J3-2 | 175.1 ± 0.5 | 117.1 ± 0.2 |
545 | 14 | 1 | J4-3 | 256.5 ± 2.5 | 47.8 ± 0.9 |
545 | 34 | 2 | J4-3 | 268.3 ± 2.4 | 83.9 ± 1.0 |
545 | 55 | 3 | J4-3 | 258.3 ± 3.2 | 59.7 ± 1.7 |
545 | 73 | 4 | J4-3 | 230.7 ± 2.4 | 35.5 ± 1.1 |
545 | 545 | avg | J4-3 | 252.5 ± 1.4 | 56.9 ± 0.6 |
545 | 14 | 1 | J5-4 | 2216.1 ± 11.8 | 1144.5 ± 6.3 |
545 | 34 | 2 | J5-4 | 2281.8 ± 12.3 | 1422.4 ± 7.6 |
545 | 55 | 3 | J5-4 | 2349.2 ± 13.4 | 1845.6 ± 10.4 |
545 | 73 | 4 | J5-4 | 2473.6 ± 13.7 | 1492.2 ± 8.1 |
545 | 545 | avg | J5-4 | 2322.2 ± 7.3 | 1356.1 ± 4.3 |
857 | 25 | 1 | J6-5 | 7794.4 ± 160.0 | 3264.7 ± 81.0 |
857 | 35 | 2 | J6-5 | 6702.0 ± 111.9 | 1700.5 ± 43.7 |
857 | 65 | 3 | J6-5 | 6978.7 ± 144.5 | 1417.9 ± 60.8 |
857 | 74 | 4 | J6-5 | 7565.4 ± 145.4 | 1439.8 ± 57.3 |
857 | 857 | avg | J6-5 | 7217.3 ± 71.4 | 2016.6 ± 30.4 |
857 | 25 | 1 | J7-6 | 72291.9 ± 1440.7 | 61488.8 ± 1186.4 |
857 | 35 | 2 | J7-6 | 62775.8 ± 995.9 | 64156.9 ± 969.1 |
857 | 65 | 3 | J7-6 | 82316.7 ± 1523.9 | 57721.9 ± 1029.5 |
857 | 74 | 4 | J7-6 | 87556.9 ± 1619.8 | 63467.8 ± 1119.9 |
857 | 857 | avg | J7-6 | 74876.2 ± 694.6 | 61406.7 ± 545.5 |
857 | 25 | 1 | J8-7 | 168443.0 ± 3337.6 | 136686.1 ± 2671.9 |
857 | 35 | 2 | J8-7 | 145623.5 ± 2313.6 | 117751.3 ± 1825.7 |
857 | 65 | 3 | J8-7 | 154861.1 ± 2861.8 | 126685.2 ± 2320.6 |
857 | 74 | 4 | J8-7 | 125207.4 ± 2288.6 | 123683.8 ± 2230.9 |
857 | 857 | avg | J8-7 | 151726.7 ± 1398.9 | 126570.5 ± 1151.8 |
857 | 25 | 1 | J9-8 | 4941.8 ± 242.8 | 102261.9 ± 2036.6 |
857 | 35 | 2 | J9-8 | 5619.9 ± 238.2 | 80172.8 ± 1263.2 |
857 | 65 | 3 | J9-8 | 6897.2 ± 301.2 | 100933.8 ± 1853.0 |
857 | 74 | 4 | J9-8 | 144.7 ± 232.1 | 51734.0 ± 988.8 |
857 | 857 | avg | J9-8 | 4998.3 ± 131.9 | 88290.3 ± 821.8 |
Planet Colour Correction[edit]
As the planets within our solar system are used as calibration verification, and their spectra may deviate from the nominal Rayleigh-Jeans spectral profile, colour correction coefficients have been determined for each of the planets observed by Planck. This involves a model spectrum for each planet over the Planck Bands (cite rel. models here), and an understanding of the model uncertainties, and spectral uncertainties in order to determine the planet colour correction coefficient uncertainties. The table below summarizes the results for the planet colour correction coefficients.
FIXME: get into proper table format...
Band, BC, det., CC_SI=-2, CCE_SI=-2, CC_Mars1, CCE_Mars1, CC_Mars2, CE_Mars2, CC_Mars3, CCE_Mars3, CC_Jup, CCE_Jup, CC_Sat, CCE_Sat, CC_Ur, CCE_Ur, CC_Nep, CCE_Nep 100 00 1a 0.99179524 0.0024569372 0.99136628 0.0028896212 0.99177756 0.0027920234 0.99136832 0.0028653367 0.99192571 0.0058583181 0.99226270 0.0051635052 0.99629477 0.0023507110 1.0000696 0.0023383064 100 01 1b 0.97434212 0.0023504173 0.97375068 0.0027664805 0.97430734 0.0026726654 0.97375361 0.0027429981 0.97441599 0.0056352787 0.97488177 0.0049649349 0.98002947 0.0022491406 0.98428882 0.0022335515 100 20 2a 0.96064335 0.0024812887 0.95985742 0.0028602119 0.96059429 0.0027710572 0.95986171 0.0028382682 0.96071444 0.0056396086 0.96134048 0.0049820244 0.96809857 0.0023651134 0.97276578 0.0023474124 100 21 2b 0.96513920 0.0026154215 0.96440156 0.0029987856 0.96509400 0.0029095399 0.96440543 0.0029770927 0.96521685 0.0057557103 0.96580167 0.0050993873 0.97217979 0.0024991748 0.97658077 0.0024855546 100 40 3a 0.95227079 0.0024217183 0.95141328 0.0028267431 0.95221319 0.0027357225 0.95141775 0.0028039782 0.95231097 0.0056369281 0.95298905 0.0049778541 0.96021386 0.0023229208 0.96555618 0.0023034938 100 41 3b 0.98139440 0.0024512185 0.98083549 0.0028571474 0.98136600 0.0027636093 0.98083842 0.0028339286 0.98151075 0.0057414268 0.98195360 0.0050633475 0.98700251 0.0023420047 0.99141841 0.0023273952 100 80 4a 0.94863992 0.0025572022 0.94773453 0.0029459918 0.94857907 0.0028574219 0.94773941 0.0029242937 0.94868107 0.0056758085 0.94939951 0.0050287996 0.95702542 0.0024475671 0.96255867 0.0024264874 100 81 4b 0.94472176 0.0024347784 0.94378680 0.0028136068 0.94465704 0.0027263078 0.94379172 0.0027919631 0.94474695 0.0055351329 0.94548546 0.0048926320 0.95329271 0.0023286029 0.95886516 0.0023080312 100 100 avg 0.96201584 0.0010140989 0.96125413 0.0017473936 0.96196792 0.0016180539 0.96125815 0.0017102511 0.96208289 0.0052173339 0.96268641 0.0044916060 0.96922184 0.0010542270 0.97410782 0.0010439924 143 02 1a 1.0274279 0.00069310170 1.0273780 0.0010929967 1.0274933 0.00097577618 1.0273952 0.0010617994 1.0277801 0.0040870736 1.0280921 0.0032092061 1.0303270 0.00062520368 1.0310322 0.00063324809 143 03 1b 1.0149215 0.00070866545 1.0147696 0.0010951536 1.0149853 0.00098107888 1.0147886 0.0010647845 1.0153107 0.0040423422 1.0157214 0.0031761456 1.0191177 0.00064083408 1.0196698 0.00064901275 143 30 2a 1.0256655 0.00071856612 1.0255947 0.0011051012 1.0257319 0.00098966074 1.0256126 0.0010743671 1.0260326 0.0040969243 1.0263760 0.0032170282 1.0288763 0.00064839386 1.0296126 0.00065702576 143 31 2b 1.0105600 0.00066156375 1.0103726 0.0010564197 1.0106237 0.00094037912 1.0103925 0.0010254397 1.0109642 0.0040132254 1.0114212 0.0031483366 1.0152188 0.00059867200 1.0157617 0.00060634902 143 50 3a 1.0540337 0.00079658097 1.0542126 0.0011819005 1.0540996 0.0010655460 1.0542247 0.0011511021 1.0542895 0.0042420340 1.0543570 0.0033359408 1.0539499 0.00071486962 1.0550431 0.00072497723 143 51 3b 1.0291866 0.00073197786 1.0291488 0.0011223489 1.0292516 0.0010059919 1.0291656 0.0010913951 1.0295330 0.0041396701 1.0298255 0.0032517812 1.0319238 0.00066040360 1.0326979 0.00066937901 143 82 4a 1.0061120 0.00070379842 1.0058677 0.0010944281 1.0061800 0.00097869910 1.0058899 0.0010635565 1.0065635 0.0040824417 1.0070911 0.0032056372 1.0116784 0.00063675289 1.0122041 0.00064498270 143 83 4b 1.0172157 0.00070622867 1.0170853 0.0010920808 1.0172783 0.00097799480 1.0171036 0.0010617064 1.0175901 0.0040386342 1.0179738 0.0031726240 1.0210933 0.00063851040 1.0217136 0.00064697273 143 10 5 0.97451281 0.00060130694 0.97403771 0.0010077414 0.97457462 0.00089211065 0.97406349 0.00097678507 0.97503467 0.0038957642 0.97578047 0.0030560406 0.98294909 0.00054954842 0.98306051 0.00055596656 143 42 6 0.99996107 0.00066668980 0.99968416 0.0010573354 1.0000246 0.00094266271 0.99970596 0.0010267065 1.0004048 0.0039909943 1.0009555 0.0031324957 1.0058087 0.00060469278 1.0062450 0.00061218052 143 60 7 0.97009182 0.00063299289 0.96958024 0.0010194157 0.97015385 0.00090626054 0.96960689 0.00098909047 0.97063066 0.0039043560 0.97140874 0.0030625003 0.97902883 0.00057634869 0.97905402 0.00058285699 143 70 8 0.98857904 0.00067452972 0.98820410 0.0010585037 0.98864304 0.00094536517 0.98822818 0.0010282681 0.98906878 0.0039713907 0.98971077 0.0031178738 0.99575904 0.00061283887 0.99604248 0.00062011604 143 143 avg 1.0070824 0.00021374022 1.0068614 0.00086409244 1.0071466 0.00071705691 1.0068821 0.00082483224 1.0075044 0.0040076546 1.0079914 0.0031228747 1.0122118 0.00021344720 1.0127057 0.00021557979 217 04 1 0.92372890 0.00014543105 0.92335527 0.00024240533 0.92408488 0.00019744716 0.92346228 0.00023023603 0.92564528 0.0015701413 0.94180278 0.0010131918 0.93820450 0.00012696036 0.95279110 0.00012462523 217 22 2 0.91865604 0.00014914031 0.91825965 0.00024397324 0.91902960 0.00019988489 0.91837207 0.00023202445 0.92064935 0.0015605936 0.93711772 0.0010080980 0.93393990 0.00013062592 0.94633963 0.00012956498 217 52 3 0.92005792 0.00014369930 0.91966886 0.00024222673 0.92041646 0.00019655457 0.91977696 0.00022986870 0.92194761 0.0015838572 0.93736052 0.0010206916 0.93487937 0.00012579592 0.94856537 0.00012450449 217 84 4 0.92495519 0.00014512127 0.92458715 0.00024358886 0.92530546 0.00019787179 0.92469247 0.00023121651 0.92680837 0.0015890382 0.94232617 0.0010241088 0.93919854 0.00012648258 0.95255081 0.00012451968 217 11 5a 0.95420528 0.00016517233 0.95395616 0.00026105946 0.95451165 0.00021582053 0.95404671 0.00024877594 0.95583734 0.0016393437 0.97066825 0.0010566672 0.96523516 0.00014388767 0.97794116 0.00014047459 217 12 5b 0.95119915 0.00015741187 0.95093690 0.00025282959 0.95150918 0.00020776743 0.95102877 0.00024059837 0.95285521 0.0016138199 0.96830417 0.0010403248 0.96255440 0.00013733322 0.97546140 0.00013434738 217 43 6a 0.95166719 0.00016000513 0.95140712 0.00025615709 0.95197683 0.00021074547 0.95149881 0.00024382949 0.95328677 0.0016297876 0.96784827 0.0010497778 0.96297893 0.00013941718 0.97494109 0.00013675603 217 44 6b 0.95169507 0.00015570745 0.95143404 0.00025362596 0.95200265 0.00020740357 0.95152524 0.00024108688 0.95330789 0.0016386924 0.96815314 0.0010553470 0.96297302 0.00013603545 0.97583895 0.00013324272 217 61 7a 0.94972963 0.00015239450 0.94946246 0.00025207770 0.95003715 0.00020563156 0.94955374 0.00023950395 0.95132855 0.0016287555 0.96583873 0.0010486024 0.96112182 0.00013270037 0.97286646 0.00013022047 217 62 7b 0.95537121 0.00016113948 0.95512752 0.00026061348 0.95566714 0.00021411649 0.95521510 0.00024801275 0.95688048 0.0016560033 0.97050533 0.0010660058 0.96606477 0.00014036063 0.97712304 0.00013754722 217 71 8a 0.95308368 0.00016110231 0.95282877 0.00025768691 0.95339507 0.00021184558 0.95292085 0.00024523592 0.95473572 0.0016464027 0.96936560 0.0010603617 0.96433301 0.00014032034 0.97700981 0.00013781597 217 72 8b 0.95048294 0.00015373978 0.95021787 0.00025301486 0.95079048 0.00020692295 0.95030911 0.00024053889 0.95210122 0.0016220164 0.96627247 0.0010445368 0.96184275 0.00013405319 0.97499412 0.00013086004 217 217 avg 0.93586113 4.7378428e-05 0.93553554 0.00020323701 0.93619662 0.00014455406 0.93563585 0.00018794390 0.93763539 0.0016001360 0.95291335 0.0010263908 0.94897105 4.1318756e-05 0.96194977 4.0574860e-05 353 05 1 0.94058043 0.00011332546 0.94098217 0.00011441096 0.94141295 0.00011288488 0.94116837 0.00011387941 0.94555005 0.00037131159 0.94844667 0.00017398739 0.95501386 9.6672425e-05 0.94252929 0.00010244836 353 13 2 0.93604223 0.00011766864 0.93646791 0.00011892386 0.93692586 0.00011730590 0.93666550 0.00011836793 0.94132594 0.00037197986 0.94433250 0.00017722200 0.95137461 0.00010038591 0.93875196 0.00010586665 353 23 3a 0.94601822 0.00013419995 0.94638004 0.00013494525 0.94677116 0.00013354759 0.94654860 0.00013446058 0.95047817 0.00037504681 0.95303302 0.00018638046 0.95908115 0.00011497526 0.94912779 0.00012047238 353 24 3b 0.94549039 0.00012107755 0.94587698 0.00012181912 0.94628057 0.00012041895 0.94605316 0.00012132239 0.95024077 0.00037357867 0.95295610 0.00017785405 0.95904147 0.00010291203 0.94782372 0.00010895011 353 32 4a 0.92550628 0.00011168432 0.92590043 0.00011280360 0.92638226 0.00011127256 0.92609866 0.00011226930 0.93061868 0.00036489332 0.93335202 0.00017140080 0.94131248 9.5161783e-05 0.93060586 0.00010232233 353 33 4b 0.92560740 0.00011535949 0.92601983 0.00011647515 0.92650963 0.00011494353 0.92622343 0.00011594320 0.93090737 0.00036576470 0.93376284 0.00017381066 0.94174044 9.8456132e-05 0.92965716 0.00010437055 353 53 5a 0.95292376 0.00012188150 0.95331003 0.00012272894 0.95368671 0.00012128687 0.95347921 0.00012222428 0.95752576 0.00037744312 0.96032758 0.00018013350 0.96572763 0.00010391665 0.95318252 0.00010850519 353 54 5b 0.95198172 0.00012562110 0.95239373 0.00012634361 0.95278451 0.00012493622 0.95257109 0.00012584674 0.95690100 0.00037545442 0.95986476 0.00018092809 0.96530501 0.00010679503 0.95260819 0.00011099594 353 63 6a 0.94350543 0.00014632473 0.94391092 0.00014710047 0.94433192 0.00014560840 0.94409518 0.00014658422 0.94846347 0.00038237367 0.95136826 0.00019551997 0.95766012 0.00012481655 0.94499853 0.00012943610 353 64 6b 0.97439004 0.00014454517 0.97469099 0.00014551843 0.97494197 0.00014385611 0.97481163 0.00014494673 0.97777798 0.00039581401 0.97992890 0.00019859126 0.98317463 0.00012209450 0.97339239 0.00012809685 353 45 7 0.91695423 0.00012676198 0.91738734 0.00012748245 0.91791853 0.00012616718 0.91760559 0.00012702172 0.92260648 0.00036124111 0.92566524 0.00017782391 0.93439356 0.00010927645 0.92339661 0.00011439164 353 85 8 0.90384202 0.00012261582 0.90433854 0.00012348863 0.90494364 0.00012202853 0.90458747 0.00012296857 0.91038829 0.00036092882 0.91389086 0.00017417894 0.92373414 0.00010434520 0.91163173 0.00011010402 353 353 avg 0.93323585 4.4062606e-05 0.93365358 4.7070290e-05 0.93411831 4.4557970e-05 0.93385153 4.6199076e-05 0.93848877 0.00035164656 0.94145185 0.00014110258 0.94870194 3.7658049e-05 0.93676117 3.9614753e-05 545 14 1 0.92302463 0.00016861905 0.92461756 0.00016804803 0.92501464 0.00016771153 0.92493336 0.00016787094 0.91708546 0.00015851497 0.80636759 0.00014498146 0.94179218 0.00015444168 0.95363288 0.00015667609 545 34 2 0.94195694 0.00016871427 0.94336773 0.00016811001 0.94370224 0.00016774858 0.94364108 0.00016791952 0.93574149 0.00015708569 0.82275030 0.00014416656 0.95787017 0.00015381168 0.97068422 0.00015578950 545 55 3 0.93512338 0.00027655893 0.93656096 0.00027600560 0.93691226 0.00027552445 0.93684341 0.00027578629 0.93104992 0.00025985046 0.81875193 0.00023124526 0.95176550 0.00025712338 0.96419783 0.00025990306 545 73 4 0.93789657 0.00018106184 0.93929799 0.00018048351 0.93963862 0.00018012702 0.93957268 0.00018030030 0.93488316 0.00016869839 0.82191908 0.00015426500 0.95404589 0.00016606602 0.96719779 0.00016790120 545 545 avg 0.93456594 9.9769955e-05 0.93603315 9.9429455e-05 0.93639001 9.9225109e-05 0.93632077 9.9322420e-05 0.92946031 9.3581163e-05 0.81720996 8.5125376e-05 0.95148319 9.1245529e-05 0.96409014 9.2283397e-05 857 25 1 0.96944437 0.00027856680 0.97151258 0.00027804692 0.97174365 0.00027784061 0.97174163 0.00027791474 0.98864826 0.00027967852 0.98899431 0.00027826822 0.98269193 0.00026752947 0.98870019 0.00026951231 857 35 2 0.98810255 0.00024194320 0.98982374 0.00024124537 0.99000266 0.00024103289 0.99000374 0.00024109823 1.0063799 0.00024222636 1.0057014 0.00024149148 0.99824571 0.00023048839 1.0042322 0.00023213953 857 65 3 0.97322233 0.00026529861 0.97521786 0.00026471472 0.97543817 0.00026450752 0.97543677 0.00026457792 0.99181933 0.00026601798 0.99151029 0.00026515330 0.98582708 0.00025417843 0.99174350 0.00025613279 857 74 4 1.0083172 0.00030474985 1.0094396 0.00030389953 1.0095398 0.00030362975 1.0095443 0.00030371607 1.0238004 0.00030485468 1.0254106 0.00030369029 1.0138754 0.00029033788 1.0204622 0.00029266176 857 857 avg 0.98090289 0.00013617145 0.98273089 0.00013584940 0.98292739 0.00013573943 0.98292724 0.00013577595 0.99918265 0.00013645470 0.99923102 0.00013587987 0.99210006 0.00013026850 0.99815419 0.00013122817
Conclusions[edit]
Summary remarks here...
(Planck) High Frequency Instrument
(Planck) Low Frequency Instrument
Planck Legacy Archive
Cosmic Microwave background
Sunyaev-Zel'dovich