Difference between revisions of "Spectral response"

From Planck PLA Wiki
Jump to: navigation, search
(Colour Correction, Powerlaw spectra)
(HFI Spectral Response)
 
(39 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
This section outlines the unit conversion and colour correction protocol for Planck/HFI.  Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper).  Some of the checks on the unit conversion and colour correction coefficients will be described here also.  Planet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section).  There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here.  The PLA UcCC subsection is primarily to introduce the software tools.
 
This section outlines the unit conversion and colour correction protocol for Planck/HFI.  Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper).  Some of the checks on the unit conversion and colour correction coefficients will be described here also.  Planet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section).  There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here.  The PLA UcCC subsection is primarily to introduce the software tools.
  
The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file [FIXME].
+
The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file ([[the RIMO|here]]).
  
FIXME: insert figure.
+
<center>
 +
[[Image:map-cc-HFI_Spec_Bands_180mm.png|thumb|700px|center|Band-average HFI transmission spectra.  Vertical bars illustrate the CO rotational transition frequencies.]]
 +
</center>
  
 
The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges.  The figure below demonstrates the stability in the integral once a sufficient data range has been employed.  The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.
 
The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges.  The figure below demonstrates the stability in the integral once a sufficient data range has been employed.  The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.
  
FIXME: insert figure showing integral flattening once the range hs extended sufficiently out of band.
+
<center>
 +
<gallery widths=400px heights=500px perrow="3">
 +
File:CheckCCcutoff_v302_nuInu2RJ_100_GHz_bc100_avg.png|100 GHz
 +
File:CheckCCcutoff_v302_nuInu2RJ_143_GHz_bc143_avg.png|143 GHz
 +
File:CheckCCcutoff_v302_nuInu2RJ_217_GHz_bc217_avg.png|217 GHz
 +
File:CheckCCcutoff_v302_nuInu2RJ_353_GHz_bc353_avg.png|353 GHz
 +
File:CheckCCcutoff_v302_nuInu2RJ_545_GHz_bc545_avg.png|545 GHz
 +
File:CheckCCcutoff_v302_nuInu2RJ_857_GHz_bc857_avg.png|857 GHz
 +
</gallery>
 +
'''Colour Correction (alpha = -1 to +2) stability with integration cut-off variation.  The horizontal bars illustrate the nominal colour correction values.  Similar results are found for the integration cut-on.'''
 +
</center>
 +
 
  
 
The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average.  Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region.  The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky map.  Future analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).   
 
The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average.  Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region.  The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky map.  Future analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).   
  
FIXME: include detector weight histogram plots.
+
<center>
 
+
<gallery widths="500px" heights="330px" perrow="2">
The following table presents basic characteristics of the HFI detector spectral repsonse, inclusing optical efficiency, effective frequency, etc.
+
File:100GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|100 GHz
 
+
File:143GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|143 GHz
FIXME: Add table from HFI_SPEC_TRANS_REPORT
+
File:217GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|217 GHz
 
+
File:353GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|353 GHz
=== Unit Conversion Tables ===
+
File:545GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|545 GHz
 
+
File:857GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|857 GHz
This section presents unit conversion coefficients for the HFI detectors (and LFI in some instances), including uncertainty estimates based on the uncertainty of the HFI detector spectral response.  The derivation of the unit conversion coefficients is provided in <cite>planck2013-p02d</cite>.
 
 
 
 
 
{| border = 1
 
|+Table 1: MJy/sr/KCMB unit conversion table.
 
|-
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
 
|-
 
 
 
| 100 || 00 || 1a || 238.2871 ± 0.5039
 
|-
 
| 100 || 01 || 1b || 241.8530 ± 0.4899
 
|-
 
| 100 || 20 || 2a || 244.2375 ± 0.5301
 
|-
 
| 100 || 21 || 2b || 243.3572 ± 0.5621
 
|-
 
| 100 || 40 || 3a || 246.0715 ± 0.5254
 
|-
 
| 100 || 41 || 3b || 240.1739 ± 0.5075
 
|-
 
| 100 || 80 || 4a || 246.7316 ± 0.5607
 
|-
 
| 100 || 81 || 4b || 247.6289 ± 0.5442
 
|-
 
| 100 || 100 || avg || 244.0960 ± 0.2170
 
|-
 
| 143 || 02 || 1a || 366.4108 ± 0.1726
 
|-
 
| 143 || 03 || 1b || 369.5905 ± 0.1823
 
|-
 
| 143 || 30 || 2a || 366.7249 ± 0.1788
 
|-
 
| 143 || 31 || 2b || 370.7001 ± 0.1703
 
|-
 
| 143 || 50 || 3a || 360.0418 ± 0.1892
 
|-
 
| 143 || 51 || 3b || 365.9529 ± 0.1835
 
|-
 
| 143 || 82 || 4a || 371.3469 ± 0.1811
 
|-
 
| 143 || 83 || 4b || 369.0953 ± 0.1758
 
|-
 
| 143 || 10 || 5 || 380.1162 ± 0.1659
 
|-
 
| 143 || 42 || 6 || 373.3413 ± 0.1744
 
|-
 
| 143 || 60 || 7 || 381.2511 ± 0.1745
 
|-
 
| 143 || 70 || 8 || 376.1461 ± 0.1777
 
|-
 
| 143 || 143 || avg || 371.7327 ± 0.0558
 
|-
 
| 217 || 04 || 1 || 486.0322 ± 0.0252
 
|-
 
| 217 || 22 || 2 || 486.4008 ± 0.0262
 
|-
 
| 217 || 52 || 3 || 486.8924 ± 0.0257
 
|-
 
| 217 || 84 || 4 || 486.0164 ± 0.0248
 
|-
 
| 217 || 11 || 5a || 479.8049 ± 0.0286
 
|-
 
| 217 || 12 || 5b || 480.4364 ± 0.0280
 
|-
 
| 217 || 43 || 6a || 480.3416 ± 0.0281
 
|-
 
| 217 || 44 || 6b || 480.3544 ± 0.0284
 
|-
 
| 217 || 61 || 7a || 481.0486 ± 0.0265
 
|-
 
| 217 || 62 || 7b || 480.0012 ± 0.0283
 
|-
 
| 217 || 71 || 8a || 479.8096 ± 0.0289
 
|-
 
| 217 || 72 || 8b || 480.7686 ± 0.0271
 
|-
 
| 217 || 217 || avg || 483.6874 ± 0.0084
 
|-
 
| 353 || 05 || 1 || 288.4183 ± 0.0150
 
|-
 
| 353 || 13 || 2 || 287.8701 ± 0.0158
 
|-
 
| 353 || 23 || 3a || 289.2493 ± 0.0176
 
|-
 
| 353 || 24 || 3b || 289.1951 ± 0.0159
 
|-
 
| 353 || 32 || 4a || 286.6167 ± 0.0155
 
|-
 
| 353 || 33 || 4b || 286.5976 ± 0.0161
 
|-
 
| 353 || 53 || 5a || 289.9808 ± 0.0157
 
|-
 
| 353 || 54 || 5b || 289.9004 ± 0.0161
 
|-
 
| 353 || 63 || 6a || 288.8151 ± 0.0190
 
|-
 
| 353 || 64 || 6b || 292.8348 ± 0.0179
 
|-
 
| 353 || 45 || 7 || 285.3414 ± 0.0192
 
|-
 
| 353 || 85 || 8 || 283.5120 ± 0.0177
 
|-
 
| 353 || 353 || avg || 287.4517 ± 0.0061
 
|-
 
| 545 || 14 || 1 || 57.0831 ± 0.0343
 
|-
 
| 545 || 34 || 2 || 58.8825 ± 0.0320
 
|-
 
| 545 || 55 || 3 || 57.8794 ± 0.0595
 
|-
 
| 545 || 73 || 4 || 58.0595 ± 0.0368
 
|-
 
| 545 || 545 || avg || 58.0356 ± 0.0199
 
|-
 
| 857 || 25 || 1 || 2.1891 ± 0.0391
 
|-
 
| 857 || 35 || 2 || 2.3457 ± 0.0323
 
|-
 
| 857 || 65 || 3 || 2.2133 ± 0.0363
 
|-
 
| 857 || 74 || 4 || 2.4022 ± 0.0402
 
|-
 
| 857 || 857 || avg || 2.2681 ± 0.0188
 
|}
 
 
 
The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.
 
 
 
{| border = 1
 
|+ Table 2: MJy/sr to Tb unit conversion.
 
|-
 
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
 
|-
 
| 100 || 100 || avg || 0.0032548074
 
|-
 
| 143 || 143 || avg || 0.0015916707
 
|-
 
| 217 || 217 || avg || 0.00069120334
 
|-
 
| 353 || 353 || avg || 0.00026120163
 
|-
 
| 545 || 545 || avg || 0.00010958025
 
|-
 
| 857 || 857 || avg || 4.4316316e-05
 
|}
 
 
 
 
 
 
 
The following is for the SZ coefficients.
 
 
 
{| border = 1
 
|+Table 3: KCMB to ySZ unit conversion
 
|-
 
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
 
|-
 
| 100 || 00 || 1a || -0.2461 ± 0.0001
 
|-
 
| 100 || 01 || 1b || -0.2470 ± 0.0001
 
|-
 
| 100 || 20 || 2a || -0.2483 ± 0.0001
 
|-
 
| 100 || 21 || 2b || -0.2480 ± 0.0001
 
|-
 
| 100 || 40 || 3a || -0.2487 ± 0.0001
 
|-
 
| 100 || 41 || 3b || -0.2469 ± 0.0001
 
|-
 
| 100 || 80 || 4a || -0.2491 ± 0.0001
 
|-
 
| 100 || 81 || 4b || -0.2492 ± 0.0001
 
|-
 
| 100 || 100 || avg || -0.2481 ± 5.2679e-05
 
|-
 
| 143 || 02 || 1a || -0.3550 ± 0.0001
 
|-
 
| 143 || 03 || 1b || -0.3574 ± 0.0001
 
|-
 
| 143 || 30 || 2a || -0.3555 ± 0.0001
 
|-
 
| 143 || 31 || 2b || -0.3582 ± 0.0001
 
|-
 
| 143 || 50 || 3a || -0.3502 ± 0.0001
 
|-
 
| 143 || 51 || 3b || -0.3548 ± 0.0001
 
|-
 
| 143 || 82 || 4a || -0.3596 ± 0.0001
 
|-
 
| 143 || 83 || 4b || -0.3569 ± 0.0001
 
|-
 
| 143 || 10 || 5 || -0.3656 ± 0.0001
 
|-
 
| 143 || 42 || 6 || -0.3604 ± 0.0001
 
|-
 
| 143 || 60 || 7 || -0.3666 ± 0.0001
 
|-
 
| 143 || 70 || 8 || -0.3629 ± 0.0001
 
|-
 
| 143 || 143 || avg || -0.3592 ± 4.2195e-05
 
|-
 
| 217 || 04 || 1 || 4.3470 ± 0.0090
 
|-
 
| 217 || 22 || 2 || 4.0275 ± 0.0081
 
|-
 
| 217 || 52 || 3 || 4.1184 ± 0.0082
 
|-
 
| 217 || 84 || 4 || 4.4334 ± 0.0094
 
|-
 
| 217 || 11 || 5a || 7.4840 ± 0.0288
 
|-
 
| 217 || 12 || 5b || 6.9766 ± 0.0244
 
|-
 
| 217 || 43 || 6a || 7.0507 ± 0.0249
 
|-
 
| 217 || 44 || 6b || 7.0169 ± 0.0249
 
|-
 
| 217 || 61 || 7a || 6.7975 ± 0.0228
 
|-
 
| 217 || 62 || 7b || 7.6995 ± 0.0307
 
|-
 
| 217 || 71 || 8a || 7.2564 ± 0.0273
 
|-
 
| 217 || 72 || 8b || 6.8621 ± 0.0231
 
|-
 
| 217 || 217 || avg || 5.1531 ± 0.0042
 
|-
 
| 353 || 05 || 1 || 0.1623 ± 1.7570e-05
 
|-
 
| 353 || 13 || 2 || 0.1620 ± 1.7967e-05
 
|-
 
| 353 || 23 || 3a || 0.1623 ± 2.2104e-05
 
|-
 
| 353 || 24 || 3b || 0.1628 ± 1.8225e-05
 
|-
 
| 353 || 32 || 4a || 0.1589 ± 1.6673e-05
 
|-
 
| 353 || 33 || 4b || 0.1594 ± 1.7566e-05
 
|-
 
| 353 || 53 || 5a || 0.1645 ± 1.8971e-05
 
|-
 
| 353 || 54 || 5b || 0.1649 ± 1.9322e-05
 
|-
 
| 353 || 63 || 6a || 0.1630 ± 2.2397e-05
 
|-
 
| 353 || 64 || 6b || 0.1665 ± 2.1640e-05
 
|-
 
| 353 || 45 || 7 || 0.1582 ± 2.4010e-05
 
|-
 
| 353 || 85 || 8 || 0.1571 ± 1.8646e-05
 
|-
 
| 353 || 353 || avg || 0.1611 ± 7.0587e-06
 
|-
 
| 545 || 14 || 1 || 0.0688 ± 3.9623e-05
 
|-
 
| 545 || 34 || 2 || 0.0696 ± 3.6313e-05
 
|-
 
| 545 || 55 || 3 || 0.0690 ± 6.9471e-05
 
|-
 
| 545 || 73 || 4 || 0.0690 ± 4.2375e-05
 
|-
 
| 545 || 545 || avg || 0.0692 ± 2.2699e-05
 
|-
 
| 857 || 25 || 1 || 0.0378 ± 0.0006
 
|-
 
| 857 || 35 || 2 || 0.0382 ± 0.0004
 
|-
 
| 857 || 65 || 3 || 0.0378 ± 0.0005
 
|-
 
| 857 || 74 || 4 || 0.0382 ± 0.0005
 
|-
 
| 857 || 857 || avg || 0.0380 ± 0.0003
 
|}
 
 
 
=== Colour Correction, Powerlaw spectra ===
 
 
 
The following table presents colour correction coefficients for HFI (and LFI) detectors and bands.  Plots are also included demonstrating the variation in colour correction coefficients within a frequency band, over a range of spectral indices.
 
 
 
 
 
<gallery caption="" widths="300px" perrow="3">
 
File:CCplot_100GHz_wEr_88mm.png | 100 GHz
 
File:CCplot_143GHz_wEr_88mm.png | 143 GHz
 
File:CCplot_217GHz_wEr_88mm.png | 217 GHz
 
File:CCplot_353GHz_wEr_88mm.png | 353 GHz
 
File:CCplot_545GHz_wEr_88mm.png | 545 GHz
 
File:CCplot_857GHz_wEr_88mm.png | 857 GHz
 
 
</gallery>
 
</gallery>
 +
'''Variation of individual detector contribution to band-average frequency maps across the sky, for various HFI surveys.'''
 +
</center>
  
{| border = 1
 
|+ Table: 4: Powerlaw / Spectral Index Colour Correction Coefficient Table <div id="tab:CC"></div>
 
|-
 
|-
 
| Band (GHz) || BC || Det. || F'_CC_', S.I.: -2 || -1 || 0 || 1 || 2 || 3 || 4
 
|-
 
  
| 100 || 00 || 1a || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025 || 0.97303 ± 0.00334 || 0.94693 ± 0.00418
+
The following table presents basic characteristics of the HFI detector spectral response, including optical efficiency, effective frequency, etc. Further details on the definition of these parameters are available in {{PlanckPapers|planck2013-p03d}}.
|-
 
| 100 || 01 || 1b || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025 || 0.95048 ± 0.00330 || 0.91979 ± 0.00416
 
|-
 
| 100 || 20 || 2a || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027 || 0.92957 ± 0.00359 || 0.89055 ± 0.00457
 
|-
 
| 100 || 21 || 2b || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028 || 0.93578 ± 0.00374 || 0.89865 ± 0.00472
 
|-
 
| 100 || 40 || 3a || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027 || 0.91919 ± 0.00357 || 0.87887 ± 0.00453
 
|-
 
| 100 || 41 || 3b || 0.9887 ± 0.0009 || 1 || 1.0026 ± 0.0009 || 0.9964 ± 0.0017 || 0.9814 ± 0.0026 || 0.95797 ± 0.00344 || 0.92666 ± 0.00432
 
|-
 
| 100 || 80 || 4a || 0.9980 ± 0.0010 || 1 || 0.9923 ± 0.0009 || 0.9751 ± 0.0019 || 0.9486 ± 0.0028 || 0.91377 ± 0.00383 || 0.87135 ± 0.00488
 
|-
 
| 100 || 81 || 4b || 0.9995 ± 0.0009 || 1 || 0.9908 ± 0.0009 || 0.9722 ± 0.0018 || 0.9447 ± 0.0028 || 0.90909 ± 0.00373 || 0.86633 ± 0.00475
 
|-
 
| 100 || 100 || avg || 0.9943 ± 0.0004 || 1 || 0.9964 ± 0.0004 || 0.9835 ± 0.0007 || 0.9617 ± 0.0011 || 0.93158 ± 0.00144 || 0.89381 ± 0.00182
 
|-
 
  
| 143 || 02 || 1a || 0.97263 ± 0.00024 || 1 || 1.01872 ± 0.00023 || 1.02801 ± 0.00045 || 1.02743 ± 0.00067 || 1.01688 ± 0.00089 || 0.99662 ± 0.00111
+
<center>
|-
+
{| class="wikitable" align="center" style="text-align:center" border="1" cellpadding="5" cellspacing="0"
| 143 || 03 || 1b || 0.97677 ± 0.00025 || 1 || 1.01443 ± 0.00024 || 1.01949 ± 0.00047 || 1.01492 ± 0.00069 || 1.00082 ± 0.00091 || 0.97759 ± 0.00114
+
|+ '''Properties of HFI detector spectra'''
|-
+
|- bgcolor="ffdead"
| 143 || 30 || 2a || 0.97272 ± 0.00026 || 1 || 1.01834 ± 0.00024 || 1.02703 ± 0.00047 || 1.02566 ± 0.00069 || 1.01422 ± 0.00092 || 0.99300 ± 0.00114
+
| Band (GHz) || <math>\nu</math>cut-on [GHz] || <math>\nu</math>cut-off [GHz] || BW [GHz] || <math>\nu</math>cen. [GHz] || <math>\nu</math>eff. [GHz] || <math>\varepsilon</math> || <math>\epsilon</math>Int. || <math>\nu</math> -1 [GHz] || <math>\nu</math> +2 [GHz] || <math>\nu</math> +4 [GHz]
 
|-
 
|-
| 143 || 31 || 2b || 0.97820 ± 0.00024 || 1 || 1.01294 ± 0.00022 || 1.01653 ± 0.00044 || 1.01056 ± 0.00065 || 0.99516 ± 0.00086 || 0.97074 ± 0.00108
+
| 100-1a || 84.8 ± 0.5 || 113.96 ± 0.16 || 29.1 ± 0.6 || 99.4 ± 0.3 || 100.28 ± 0.11 || 0.419 ± 0.008 || 0.310 ± 0.008 || 99.45 ± 0.12 || 101.93 ± 0.11 || 103.59 ± 0.10
 
|-
 
|-
| 143 || 50 || 3a || 0.96420 ± 0.00026 || 1 || 1.02753 ± 0.00025 || 1.04577 ± 0.00048 || 1.05402 ± 0.00071 || 1.05201 ± 0.00094 || 1.03976 ± 0.00117
+
| 100-1b || 86.5 ± 1.0 || 115.32 ± 0.08 || 28.8 ± 1.0 || 100.9 ± 0.5 || 100.87 ± 0.11 || 0.563 ± 0.011 || 0.324 ± 0.011 || 100.06 ± 0.11 || 102.51 ± 0.10 || 104.18 ± 0.09
 
|-
 
|-
| 143 || 51 || 3b || 0.97178 ± 0.00026 || 1 || 1.01941 ± 0.00024 || 1.02926 ± 0.00047 || 1.02918 ± 0.00069 || 1.01915 ± 0.00092 || 0.99948 ± 0.00114
+
| 100-2a || 86.0 ± 0.6 || 116.4 ± 0.4 || 30.4 ± 0.9 || 101.2 ± 0.3 || 101.34 ± 0.12 || 0.550 ± 0.012 || 0.372 ± 0.012 || 100.38 ± 0.12 || 103.34 ± 0.11 || 105.47 ± 0.10
 
|-
 
|-
| 143 || 82 || 4a || 0.97836 ± 0.00025 || 1 || 1.01212 ± 0.00024 || 1.01421 ± 0.00047 || 1.00611 ± 0.00069 || 0.98805 ± 0.00092 || 0.96062 ± 0.00116
+
| 100-2b || 84.3 ± 0.5 || 115.5 ± 0.4 || 31.3 ± 0.7 || 99.9 ± 0.3 || 101.19 ± 0.11 || 0.634 ± 0.009 || 0.334 ± 0.009 || 100.23 ± 0.11 || 103.14 ± 0.10 || 105.16 ± 0.09
 
|-
 
|-
| 143 || 83 || 4b || 0.97609 ± 0.00025 || 1 || 1.01513 ± 0.00023 || 1.02093 ± 0.00046 || 1.01721 ± 0.00068 || 1.00405 ± 0.00090 || 0.98188 ± 0.00113
+
| 100-3a || 84.21 ± 0.17 || 117.36 ± 0.06 || 33.14 ± 0.18 || 100.78 ± 0.09 || 101.64 ± 0.12 || 0.493 ± 0.005 || 0.331 ± 0.005 || 100.68 ± 0.12 || 103.60 ± 0.10 || 105.60 ± 0.09
 
|-
 
|-
| 143 || 10 || 5 || 0.99048 ± 0.00023 || 1 || 1.00048 ± 0.00022 || 0.99189 ± 0.00043 || 0.97451 ± 0.00064 || 0.94888 ± 0.00085 || 0.91575 ± 0.00107
+
| 100-3b || 84.19 ± 0.19 || 116.81 ± 0.16 || 32.6 ± 0.2 || 100.50 ± 0.13 || 100.63 ± 0.12 || 0.426 ± 0.004 || 0.281 ± 0.004 || 99.74 ± 0.12 || 102.45 ± 0.11 || 104.35 ± 0.10
 
|-
 
|-
| 143 || 42 || 6 || 0.98148 ± 0.00024 || 1 || 1.00943 ± 0.00023 || 1.00943 ± 0.00045 || 0.99996 ± 0.00067 || 0.98129 ± 0.00089 || 0.95395 ± 0.00111
+
| 100-4a || 84.74 ± 0.07 || 118.09 ± 0.09 || 33.34 ± 0.12 || 101.42 ± 0.05 || 101.77 ± 0.12 || 0.461 ± 0.003 || 0.255 ± 0.003 || 100.77 ± 0.13 || 103.82 ± 0.11 || 105.96 ± 0.10
 
|-
 
|-
| 143 || 60 || 7 || 0.99192 ± 0.00024 || 1 || 0.99900 ± 0.00023 || 0.98892 ± 0.00045 || 0.97009 ± 0.00067 || 0.94312 ± 0.00089 || 0.90883 ± 0.00113
+
| 100-4b || 84.9 ± 0.3 || 118.30 ± 0.05 || 33.4 ± 0.3 || 101.58 ± 0.14 || 101.91 ± 0.13 || 0.396 ± 0.003 || 0.258 ± 0.003 || 100.92 ± 0.13 || 103.92 ± 0.12 || 105.98 ± 0.10
 
|-
 
|-
| 143 || 70 || 8 || 0.98488 ± 0.00025 || 1 || 1.00574 ± 0.00024 || 1.00188 ± 0.00047 || 0.98858 ± 0.00069 || 0.96627 ± 0.00092 || 0.93573 ± 0.00116
+
| 100-avg || 84.4 ± 0.3 || 117.36 ± 0.05 || 32.9 ± 0.3 || 100.89 ± 0.13 || 101.31 ± 0.05 || 0.479 ± 0.003 || 0.304 ± 0.003 || 100.36 ± 0.05 || 103.24 ± 0.05 || 105.25 ± 0.04
 
|-
 
|-
| 143 || 143 || avg || 0.97935 ± 0.0000772811 || 1 || 1.01158 ± 0.0000731485 || 1.01364 ± 0.00014 || 1.00607 ± 0.00021 || 0.98907 ± 0.00028 || 0.96318 ± 0.00036
+
| 100-detset1 || 84.77 ± 0.05 || 117.81 ± 0.06 || 33.03 ± 0.08 || 101.29 ± 0.04 || 101.43 ± 0.07 || 0.4199 ± 0.0020 || 0.2645 ± 0.0020 || 100.49 ± 0.07 || 103.35 ± 0.06 || 105.34 ± 0.06
 
|-
 
|-
 
+
| 100-detset2 || 84.3 ± 0.3 || 117.14 ± 0.05 || 32.8 ± 0.3 || 100.72 ± 0.13 || 101.25 ± 0.06 || 0.505 ± 0.003 || 0.321 ± 0.003 || 100.31 ± 0.06 || 103.19 ± 0.06 || 105.21 ± 0.05
| 217 || 04 || 1 || 1.01104 ± 0.000054 || 1 || 0.98146 ± 0.000054 || 0.95584 ± 0.00011 || 0.92373 ± 0.00017 || 0.88587 ± 0.00023 || 0.84309 ± 0.00031
 
 
|-
 
|-
| 217 || 22 || 2 || 1.01214 ± 0.000056 || 1 || 0.97999 ± 0.000057 || 0.95264 ± 0.00012 || 0.91866 ± 0.00018 || 0.87891 ± 0.00025 || 0.83436 ± 0.00032
+
| 143-1a || 121.2 ± 0.4 || 162 ± 2 || 41 ± 2 || 141.5 ± 1.1 || 141.71 ± 0.04 || 0.66 ± 0.02 || 0.43 ± 0.02 || 140.37 ± 0.04 || 144.48 ± 0.04 || 147.35 ± 0.03
 
|-
 
|-
| 217 || 52 || 3 || 1.01277 ± 0.000054 || 1 || 0.97995 ± 0.000054 || 0.95309 ± 0.00011 || 0.92006 ± 0.00017 || 0.88163 ± 0.00023 || 0.83866 ± 0.00031
+
| 143-1b || 119.99 ± 0.03 || 162.8 ± 0.7 || 42.8 ± 0.8 || 141.4 ± 0.4 || 142.29 ± 0.04 || 0.608 ± 0.007 || 0.347 ± 0.007 || 140.97 ± 0.04 || 145.02 ± 0.04 || 147.79 ± 0.04
 
|-
 
|-
| 217 || 84 || 4 || 1.01091 ± 0.000053 || 1 || 0.98175 ± 0.000054 || 0.95655 ± 0.00011 || 0.92496 ± 0.00017 || 0.88767 ± 0.00023 || 0.84549 ± 0.00031
+
| 143-2a || 119.7 ± 0.2 || 162.76 ± 0.05 || 43.1 ± 0.2 || 141.21 ± 0.11 || 141.79 ± 0.04 || 0.626 ± 0.003 || 0.449 ± 0.003 || 140.42 ± 0.04 || 144.61 ± 0.04 || 147.51 ± 0.04
 
|-
 
|-
| 217 || 11 || 5a || 0.99803 ± 0.000060 || 1 || 0.99318 ± 0.000059 || 0.97777 ± 0.00012 || 0.95421 ± 0.00018 || 0.92318 ± 0.00025 || 0.88554 ± 0.00032
+
| 143-2b || 119.2 ± 0.4 || 163.3 ± 0.5 || 44.1 ± 0.6 || 141.3 ± 0.3 || 142.50 ± 0.04 || 0.619 ± 0.007 || 0.443 ± 0.007 || 141.17 ± 0.05 || 145.21 ± 0.04 || 148.00 ± 0.04
 
|-
 
|-
| 217 || 12 || 5b || 0.99929 ± 0.000059 || 1 || 0.99202 ± 0.000058 || 0.97559 ± 0.00012 || 0.95120 ± 0.00018 || 0.91956 ± 0.00024 || 0.88156 ± 0.00031
+
| 143-3a || 120.2 ± 0.3 || 158.8 ± 0.4 || 38.6 ± 0.5 || 139.5 ± 0.2 || 140.51 ± 0.05 || 0.970 ± 0.008 || 0.539 ± 0.008 || 139.17 ± 0.05 || 143.28 ± 0.05 || 146.09 ± 0.05
 
|-
 
|-
| 217 || 43 || 6a || 0.99908 ± 0.000059 || 1 || 0.99220 ± 0.000058 || 0.97593 ± 0.00012 || 0.95167 ± 0.00018 || 0.92012 ± 0.00024 || 0.88214 ± 0.00032
+
| 143-3b || 119.88 ± 0.04 || 161.3 ± 1.0 || 41.4 ± 1.0 || 140.6 ± 0.5 || 141.63 ± 0.05 || 0.718 ± 0.012 || 0.457 ± 0.012 || 140.28 ± 0.05 || 144.41 ± 0.04 || 147.22 ± 0.04
 
|-
 
|-
| 217 || 44 || 6b || 0.99907 ± 0.000059 || 1 || 0.99219 ± 0.000058 || 0.97592 ± 0.00012 || 0.95169 ± 0.00018 || 0.92028 ± 0.00024 || 0.88257 ± 0.00031
+
| 143-4a || 118.7 ± 0.2 || 168.21 ± 0.03 || 49.5 ± 0.2 || 143.47 ± 0.12 || 142.71 ± 0.04 || 0.532 ± 0.002 || 0.324 ± 0.002 || 141.29 ± 0.05 || 145.61 ± 0.04 || 148.56 ± 0.04
 
|-
 
|-
| 217 || 61 || 7a || 1.00045 ± 0.000056 || 1 || 0.99121 ± 0.000055 || 0.97430 ± 0.00011 || 0.94973 ± 0.00017 || 0.91817 ± 0.00023 || 0.88046 ± 0.00030
+
| 143-4b || 119.0 ± 0.3 || 161.58 ± 0.04 || 42.6 ± 0.3 || 140.27 ± 0.14 || 142.19 ± 0.05 || 0.538 ± 0.003 || 0.339 ± 0.003 || 140.87 ± 0.05 || 144.87 ± 0.04 || 147.59 ± 0.04
 
|-
 
|-
| 217 || 62 || 7b || 0.99824 ± 0.000059 || 1 || 0.99328 ± 0.000058 || 0.97826 ± 0.00012 || 0.95537 ± 0.00018 || 0.92529 ± 0.00024 || 0.88885 ± 0.00031
+
| 143-5 || 119.9 ± 0.3 || 166.608 ± 0.016 || 46.7 ± 0.3 || 143.28 ± 0.16 || 144.24 ± 0.04 || 0.386 ± 0.002 || 0.305 ± 0.002 || 142.93 ± 0.04 || 146.86 ± 0.04 || 149.48 ± 0.03
 
|-
 
|-
| 217 || 71 || 8a || 0.99810 ± 0.000060 || 1 || 0.99293 ± 0.000059 || 0.97713 ± 0.00012 || 0.95308 ± 0.00018 || 0.92152 ± 0.00025 || 0.88334 ± 0.00032
+
| 143-6 || 119.97 ± 0.20 || 166.14 ± 0.04 || 46.2 ± 0.2 || 143.06 ± 0.10 || 143.00 ± 0.04 || 0.4531 ± 0.0016 || 0.3128 ± 0.0016 || 141.66 ± 0.05 || 145.72 ± 0.04 || 148.49 ± 0.04
 
|-
 
|-
| 217 || 72 || 8b || 0.99984 ± 0.000057 || 1 || 0.99161 ± 0.000056 || 0.97493 ± 0.00011 || 0.95048 ± 0.00017 || 0.91897 ± 0.00023 || 0.88126 ± 0.00030
+
| 143-7 || 120.39 ± 0.07 || 167.5 ± 0.3 || 47.1 ± 0.3 || 143.95 ± 0.15 || 144.46 ± 0.04 || 0.427 ± 0.002 || 0.308 ± 0.002 || 143.14 ± 0.05 || 147.09 ± 0.04 || 149.69 ± 0.04
 
|-
 
|-
| 217 || 217 || avg || 1.00607 ± 0.000018 || 1 || 0.98586 ± 0.000018 || 0.96403 ± 0.000036 || 0.93508 ± 0.000055 || 0.89977 ± 0.0000762557 || 0.85897 ± 0.0000999621
+
| 143-8 || 120.7 ± 0.4 || 165.59 ± 0.06 || 44.8 ± 0.4 || 143.16 ± 0.18 || 143.55 ± 0.04 || 0.393 ± 0.002 || 0.277 ± 0.002 || 142.18 ± 0.05 || 146.30 ± 0.04 || 149.02 ± 0.04
 
|-
 
|-
 
+
| 143-avg || 119.994 ± 0.018 || 165.76 ± 0.04 || 45.76 ± 0.05 || 142.876 ± 0.018 || 142.710 ± 0.012 || 0.5069 ± 0.0007 || 0.3669 ± 0.0007 || 141.363 ± 0.012 || 145.458 ± 0.011 || 148.235 ± 0.011
| 353 || 05 || 1 || 1.00515 ± 0.000041 || 1 || 0.98729 ± 0.000041 || 0.96731 ± 0.000083 || 0.94058 ± 0.00013 || 0.90776 ± 0.00018 || 0.86965 ± 0.00023
 
 
|-
 
|-
| 353 || 13 || 2 || 1.00617 ± 0.000042 || 1 || 0.98602 ± 0.000043 || 0.96453 ± 0.000087 || 0.93604 ± 0.00013 || 0.90128 ± 0.00019 || 0.86111 ± 0.00024
+
| 143-detset1 || 120.05 ± 0.03 || 160.18 ± 0.09 || 40.13 ± 0.10 || 140.12 ± 0.05 || 141.45 ± 0.02 || 0.7049 ± 0.0017 || 0.4614 ± 0.0017 || 140.11 ± 0.02 || 144.22 ± 0.02 || 147.05 ± 0.02
 
|-
 
|-
| 353 || 23 || 3a || 1.00498 ± 0.000052 || 1 || 0.98835 ± 0.000051 || 0.97024 ± 0.000100 || 0.94602 ± 0.00015 || 0.91620 ± 0.00021 || 0.88141 ± 0.00027
+
| 143-detset2 || 118.95 ± 0.08 || 164.9 ± 0.8 || 45.9 ± 0.8 || 141.9 ± 0.4 || 142.27 ± 0.02 || 0.507 ± 0.007 || 0.379 ± 0.007 || 140.91 ± 0.02 || 145.05 ± 0.02 || 147.902 ± 0.019
 
|-
 
|-
| 353 || 24 || 3b || 1.00404 ± 0.000042 || 1 || 0.98875 ± 0.000043 || 0.97046 ± 0.000088 || 0.94549 ± 0.00014 || 0.91438 ± 0.00019 || 0.87780 ± 0.00025
+
| 143-SWBs || 120.17 ± 0.03 || 166.308 ± 0.018 || 46.14 ± 0.04 || 143.238 ± 0.017 || 143.96 ± 0.02 || 0.3967 ± 0.0006 || 0.3123 ± 0.0006 || 142.64 ± 0.02 || 146.63 ± 0.02 || 149.282 ± 0.020
 
|-
 
|-
| 353 || 32 || 4a || 1.01332 ± 0.000040 || 1 || 0.98071 ± 0.000042 || 0.95573 ± 0.000085 || 0.92551 ± 0.00013 || 0.89056 ± 0.00018 || 0.85151 ± 0.00024
+
| 217-1 || 189.0 ± 0.4 || 251.24 ± 0.05 || 62.2 ± 0.4 || 220.14 ± 0.20 || 222.817 ± 0.016 || 0.414 ± 0.002 || 0.322 ± 0.002 || 221.099 ± 0.016 || 226.274 ± 0.017 || 229.76 ± 0.02
 
|-
 
|-
| 353 || 33 || 4b || 1.01220 ± 0.000041 || 1 || 0.98127 ± 0.000043 || 0.95631 ± 0.000088 || 0.92561 ± 0.00014 || 0.88977 ± 0.00019 || 0.84951 ± 0.00025
+
| 217-2 || 188.66 ± 0.02 || 253.68 ± 0.02 || 65.03 ± 0.04 || 221.169 ± 0.017 || 223.231 ± 0.018 || 0.4575 ± 0.0004 || 0.3624 ± 0.0004 || 221.430 ± 0.018 || 226.814 ± 0.018 || 230.35 ± 0.02
 
|-
 
|-
| 353 || 53 || 5a || 1.00016 ± 0.000043 || 1 || 0.99191 ± 0.000043 || 0.97608 ± 0.000088 || 0.95292 ± 0.00013 || 0.92307 ± 0.00018 || 0.88730 ± 0.00024
+
| 217-3 || 190.49 ± 0.05 || 253.174 ± 0.018 || 62.68 ± 0.06 || 221.83 ± 0.03 || 223.116 ± 0.016 || 0.4125 ± 0.0004 || 0.3257 ± 0.0004 || 221.440 ± 0.017 || 226.458 ± 0.016 || 229.774 ± 0.019
 
|-
 
|-
| 353 || 54 || 5b || 0.99946 ± 0.000044 || 1 || 0.99213 ± 0.000044 || 0.97600 ± 0.000090 || 0.95198 ± 0.00014 || 0.92072 ± 0.00019 || 0.88306 ± 0.00025
+
| 217-4 || 190.8 ± 0.4 || 253.219 ± 0.017 || 62.4 ± 0.4 || 222.03 ± 0.18 || 222.717 ± 0.018 || 0.4043 ± 0.0018 || 0.3132 ± 0.0018 || 221.033 ± 0.018 || 226.116 ± 0.017 || 229.55 ± 0.02
 
|-
 
|-
| 353 || 63 || 6a || 1.00364 ± 0.000052 || 1 || 0.98856 ± 0.000052 || 0.96957 ± 0.00011 || 0.94351 ± 0.00016 || 0.91103 ± 0.00023 || 0.87296 ± 0.00030
+
| 217-5a || 182.69 ± 0.07 || 253.2 ± 0.6 || 70.5 ± 0.6 || 217.9 ± 0.3 || 220.421 ± 0.017 || 0.548 ± 0.003 || 0.387 ± 0.003 || 218.489 ± 0.018 || 224.293 ± 0.017 || 228.15 ± 0.02
 
|-
 
|-
| 353 || 64 || 6b || 0.99521 ± 0.000048 || 1 || 0.99812 ± 0.000049 || 0.98954 ± 0.000098 || 0.97439 ± 0.00015 || 0.95298 ± 0.00021 || 0.92575 ± 0.00027
+
| 217-5b || 182.75 ± 0.06 || 250.1 ± 0.4 || 67.3 ± 0.4 || 216.41 ± 0.19 || 220.655 ± 0.018 || 0.621 ± 0.002 || 0.377 ± 0.002 || 218.746 ± 0.018 || 224.465 ± 0.018 || 228.234 ± 0.020
 
|-
 
|-
| 353 || 45 || 7 || 1.01512 ± 0.000058 || 1 || 0.97828 ± 0.000056 || 0.95040 ± 0.00011 || 0.91695 ± 0.00017 || 0.87863 ± 0.00023 || 0.83621 ± 0.00030
+
| 217-6a || 182.284 ± 0.020 || 253.70 ± 0.02 || 71.41 ± 0.03 || 217.991 ± 0.014 || 220.619 ± 0.018 || 0.4497 ± 0.0003 || 0.3019 ± 0.0003 || 218.705 ± 0.018 || 224.441 ± 0.018 || 228.24 ± 0.02
 
|-
 
|-
| 353 || 85 || 8 || 1.01821 ± 0.000045 || 1 || 0.97446 ± 0.000047 || 0.94216 ± 0.000098 || 0.90384 ± 0.00016 || 0.86040 ± 0.00022 || 0.81279 ± 0.00030
+
| 217-6b || 182.85 ± 0.04 || 253.373 ± 0.015 || 70.52 ± 0.04 || 218.113 ± 0.019 || 220.619 ± 0.017 || 0.5274 ± 0.0004 || 0.3349 ± 0.0004 || 218.707 ± 0.017 || 224.408 ± 0.016 || 228.109 ± 0.017
 
|-
 
|-
| 353 || 353 || avg || 1.00811 ± 0.000016 || 1 || 0.98449 ± 0.000017 || 0.96190 ± 0.000034 || 0.93276 ± 0.000052 || 0.89776 ± 0.0000716970 || 0.85770 ± 0.0000943816
+
| 217-7a || 188.217 ± 0.019 || 253.88 ± 0.02 || 65.66 ± 0.03 || 221.049 ± 0.012 || 220.766 ± 0.016 || 0.4299 ± 0.0003 || 0.3065 ± 0.0003 || 218.925 ± 0.016 || 224.458 ± 0.016 || 228.122 ± 0.018
 
|-
 
|-
 
+
| 217-7b || 189.22 ± 0.03 || 250.88 ± 0.02 || 61.66 ± 0.04 || 220.054 ± 0.018 || 220.332 ± 0.018 || 0.4371 ± 0.0003 || 0.2776 ± 0.0003 || 218.468 ± 0.018 || 224.055 ± 0.018 || 227.718 ± 0.019
| 545 || 14 || 1 || 1.00706 ± 0.00018 || 1 || 0.98297 ± 0.00011 || 0.95694 ± 0.00017 || 0.92302 ± 0.00023 || 0.88254 ± 0.00027 || 0.83687 ± 0.00032
 
 
|-
 
|-
| 545 || 34 || 2 || 0.99997 ± 0.00016 || 1 || 0.98982 ± 0.000097 || 0.97015 ± 0.00016 || 0.94196 ± 0.00021 || 0.90642 ± 0.00025 || 0.86485 ± 0.00029
+
| 217-8a || 181.98 ± 0.02 || 253.722 ± 0.018 || 71.74 ± 0.03 || 217.852 ± 0.013 || 220.510 ± 0.018 || 0.5282 ± 0.0003 || 0.3768 ± 0.0003 || 218.544 ± 0.019 || 224.432 ± 0.018 || 228.32 ± 0.02
 
|-
 
|-
| 545 || 55 || 3 || 1.00355 ± 0.00031 || 1 || 0.98686 ± 0.00018 || 0.96491 ± 0.00029 || 0.93512 ± 0.00037 || 0.89862 ± 0.00043 || 0.85665 ± 0.00048
+
| 217-8b || 181.875 ± 0.013 || 252.99 ± 0.04 || 71.12 ± 0.04 || 217.433 ± 0.018 || 220.712 ± 0.017 || 0.6265 ± 0.0004 || 0.3872 ± 0.0004 || 218.837 ± 0.018 || 224.440 ± 0.017 || 228.127 ± 0.020
 
|-
 
|-
| 545 || 73 || 4 || 1.00276 ± 0.00019 || 1 || 0.98774 ± 0.00011 || 0.96673 ± 0.00018 || 0.93790 ± 0.00023 || 0.90233 ± 0.00028 || 0.86123 ± 0.00032
+
| 217-avg || 188.892 ± 0.012 || 253.419 ± 0.007 || 64.527 ± 0.014 || 221.156 ± 0.006 || 221.915 ± 0.005 || 0.39900 ± 0.00013 || 0.33846 ± 0.00013 || 220.113 ± 0.005 || 225.517 ± 0.005 || 229.097 ± 0.006
 
|-
 
|-
| 545 || 545 || avg || 1.00316 ± 0.000100 || 1 || 0.98693 ± 0.000060 || 0.96474 ± 0.000100 || 0.93445 ± 0.00013 || 0.89725 ± 0.00015 || 0.85444 ± 0.00018
+
| 217-detset1 || 183.32 ± 0.15 || 253.61 ± 0.02 || 70.29 ± 0.15 || 218.46 ± 0.07 || 220.548 ± 0.009 || 0.4577 ± 0.0007 || 0.3053 ± 0.0007 || 218.666 ± 0.010 || 224.312 ± 0.009 || 228.038 ± 0.010
 
|-
 
|-
 
+
| 217-detset2 || 182.159 ± 0.012 || 253.592 ± 0.008 || 71.433 ± 0.015 || 217.875 ± 0.007 || 220.614 ± 0.009 || 0.47458 ± 0.00016 || 0.34838 ± 0.00016 || 218.697 ± 0.009 || 224.429 ± 0.009 || 228.200 ± 0.010
| 857 || 25 || 1 || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025 || 0.97303 ± 0.00334 || 0.94693 ± 0.00418
 
 
|-
 
|-
| 857 || 35 || 2 || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025 || 0.95048 ± 0.00330 || 0.91979 ± 0.00416
+
| 217-SWBs || 189.02 ± 0.06 || 253.247 ± 0.014 || 64.22 ± 0.06 || 221.14 ± 0.03 || 222.957 ± 0.008 || 0.4072 ± 0.0003 || 0.3226 ± 0.0003 || 221.241 ± 0.008 || 226.395 ± 0.008 || 229.834 ± 0.010
 
|-
 
|-
| 857 || 65 || 3 || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027 || 0.92957 ± 0.00359 || 0.89055 ± 0.00457
+
| 353-1 || 306.3 ± 0.5 || 406.8 ± 0.4 || 100.5 ± 0.7 || 356.5 ± 0.3 || 360.289 ± 0.018 || 0.540 ± 0.003 || 0.390 ± 0.003 || 357.546 ± 0.018 || 365.762 ± 0.019 || 371.15 ± 0.02
 
|-
 
|-
| 857 || 74 || 4 || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028 || 0.93578 ± 0.00374 || 0.89865 ± 0.00472
+
| 353-2 || 305.82 ± 0.16 || 409.697 ± 0.020 || 103.88 ± 0.16 || 357.76 ± 0.08 || 360.866 ± 0.019 || 0.5947 ± 0.0008 || 0.4515 ± 0.0008 || 358.005 ± 0.019 || 366.615 ± 0.020 || 372.29 ± 0.02
 
|-
 
|-
| 857 || 857 || avg || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027 || 0.91919 ± 0.00357 || 0.87887 ± 0.00453
+
| 353-3a || 308.5 ± 0.3 || 404.77 ± 0.03 || 96.3 ± 0.3 || 356.63 ± 0.13 || 359.59 ± 0.02 || 0.4106 ± 0.0008 || 0.2862 ± 0.0008 || 357.16 ± 0.02 || 364.49 ± 0.02 || 369.37 ± 0.02
 
|-
 
|-
|}
+
| 353-3b || 308.3 ± 0.4 || 406.230 ± 0.015 || 98.0 ± 0.4 || 357.24 ± 0.19 || 359.65 ± 0.02 || 0.4689 ± 0.0014 || 0.3546 ± 0.0014 || 357.02 ± 0.02 || 365.01 ± 0.02 || 370.41 ± 0.02
 
 
=== Colour Correction, Modified Blackbody ===
 
 
 
This section will present colour correction coefficients relevant for a variety of dust spectra...
 
 
 
=== CO unit conversion ===
 
 
 
This section presents the CO unit conversion coefficcients.
 
 
 
{| border = 1
 
|+ Table 5: CO unit conversion coefficients for the various HFI detectors and channel-averages
 
 
|-
 
|-
| Band (GHz) || BC || Det. || CO line || F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] || F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s]
+
| 353-4a || 321.275 ± 0.018 || 407.94 ± 0.11 || 86.66 ± 0.11 || 364.61 ± 0.06 || 362.224 ± 0.018 || 0.4334 ± 0.0004 || 0.3119 ± 0.0004 || 359.944 ± 0.017 || 366.853 ± 0.019 || 371.52 ± 0.02
 
|-
 
|-
 
+
| 353-4b || 311.71 ± 0.05 || 407.71 ± 0.03 || 96.00 ± 0.06 || 359.71 ± 0.02 || 362.212 ± 0.019 || 0.4152 ± 0.0003 || 0.3123 ± 0.0003 || 359.739 ± 0.019 || 367.22 ± 0.02 || 372.23 ± 0.02
| 100 || 00 || 1a || J1-0 || 10.87 ± 0.29 || 16.96 ± 0.75
 
 
|-
 
|-
| 100 || 01 || 1b || J1-0 || 12.61 ± 0.27 || 16.40 ± 0.71
+
| 353-5a || 302.25 ± 0.04 || 406.41 ± 0.15 || 104.17 ± 0.16 || 354.33 ± 0.08 || 358.73 ± 0.02 || 0.3991 ± 0.0005 || 0.2965 ± 0.0005 || 355.88 ± 0.02 || 364.42 ± 0.02 || 370.01 ± 0.02
 
|-
 
|-
| 100 || 20 || 2a || J1-0 || 14.69 ± 0.50 || 14.08 ± 0.61
+
| 353-5b || 301.37 ± 0.05 || 416.77 ± 0.05 || 115.40 ± 0.07 || 359.07 ± 0.03 || 358.84 ± 0.02 || 0.3626 ± 0.0002 || 0.2542 ± 0.0002 || 355.80 ± 0.02 || 364.98 ± 0.02 || 371.11 ± 0.03
 
|-
 
|-
| 100 || 21 || 2b || J1-0 || 12.01 ± 0.39 || 17.50 ± 0.63
+
| 353-6a || 302.4 ± 0.4 || 407.99 ± 0.03 || 105.6 ± 0.4 || 355.19 ± 0.19 || 359.91 ± 0.03 || 0.3036 ± 0.0007 || 0.1946 ± 0.0007 || 357.09 ± 0.03 || 365.58 ± 0.03 || 371.18 ± 0.03
 
|-
 
|-
| 100 || 40 || 3a || J1-0 || 16.36 ± 0.57 || 14.52 ± 0.64
+
| 353-6b || 314.08 ± 0.03 || 398.19 ± 0.04 || 84.11 ± 0.05 || 356.13 ± 0.02 || 356.06 ± 0.02 || 0.2990 ± 0.0002 || 0.2193 ± 0.0002 || 353.67 ± 0.02 || 360.93 ± 0.02 || 365.83 ± 0.03
 
|-
 
|-
| 100 || 41 || 3b || J1-0 || 11.78 ± 0.48 || 13.78 ± 0.51
+
| 353-7 || 323.2 ± 1.6 || 406.0 ± 0.9 || 83 ± 2 || 364.6 ± 0.7 || 363.35 ± 0.03 || 0.313 ± 0.006 || 0.272 ± 0.006 || 360.84 ± 0.03 || 368.40 ± 0.02 || 373.41 ± 0.03
 
|-
 
|-
| 100 || 80 || 4a || J1-0 || 19.09 ± 0.63 || 18.64 ± 0.79
+
| 353-8 || 309 ± 3 || 408.20 ± 0.08 || 99 ± 3 || 358.5 ± 1.7 || 365.10 ± 0.02 || 0.374 ± 0.011 || 0.294 ± 0.011 || 362.25 ± 0.02 || 370.82 ± 0.02 || 376.53 ± 0.04
 
|-
 
|-
| 100 || 81 || 4b || J1-0 || 16.11 ± 0.57 || 17.57 ± 0.80
+
| 353-avg || 306.8 ± 0.6 || 408.22 ± 0.02 || 101.4 ± 0.6 || 357.5 ± 0.3 || 361.290 ± 0.008 || 0.4057 ± 0.0019 || 0.3353 ± 0.0019 || 358.564 ± 0.008 || 366.764 ± 0.009 || 372.193 ± 0.010
 
|-
 
|-
| 100 || 100 || avg || J1-0 || 14.78 ± 0.21 || 15.55 ± 0.26
+
| 353-detset1 || 303.582 ± 0.016 || 406.333 ± 0.018 || 102.75 ± 0.03 || 354.957 ± 0.011 || 359.156 ± 0.011 || 0.39123 ± 0.00015 || 0.29902 ± 0.00015 || 356.386 ± 0.011 || 364.744 ± 0.011 || 370.302 ± 0.012
 
|-
 
|-
 
+
| 353-detset2 || 318.885 ± 0.015 || 407.86 ± 0.02 || 88.97 ± 0.03 || 363.372 ± 0.013 || 360.870 ± 0.013 || 0.35915 ± 0.00014 || 0.28730 ± 0.00014 || 358.409 ± 0.013 || 365.850 ± 0.013 || 370.837 ± 0.013
| 143 || 02 || 1a || J1-0 || 0.0613 ± 0.0031 || 0.0022 ± 5.0163e-05
 
 
|-
 
|-
| 143 || 03 || 1b || J1-0 || 0.0437 ± 0.0022 || 0.0017 ± 5.5805e-05
+
| 353-SWBs || 306.3 ± 0.4 || 408.81 ± 0.03 || 102.5 ± 0.4 || 357.56 ± 0.18 || 361.921 ± 0.013 || 0.4381 ± 0.0013 || 0.3575 ± 0.0013 || 359.158 ± 0.013 || 367.455 ± 0.013 || 372.930 ± 0.015
 
|-
 
|-
| 143 || 30 || 2a || J1-0 || 0.0523 ± 0.0027 || 0.0020 ± 0.0001
+
| 545-1 || 466.41 ± 0.03 || 642.58 ± 0.05 || 176.17 ± 0.06 || 554.50 ± 0.03 || 559.83 ± 0.05 || 0.37600 ± 0.00018 || 0.29576 ± 0.00018 || 554.44 ± 0.07 || 570.00 ± 0.03 || 579.24 ± 0.02
 
|-
 
|-
| 143 || 31 || 2b || J1-0 || 0.0557 ± 0.0028 || 0.0022 ± 0.0001
+
| 545-2 || 466.78 ± 0.03 || 641.44 ± 0.07 || 174.66 ± 0.08 || 554.11 ± 0.04 || 556.05 ± 0.05 || 0.31937 ± 0.00019 || 0.26874 ± 0.00019 || 550.61 ± 0.07 || 566.37 ± 0.03 || 575.78 ± 0.03
 
|-
 
|-
| 143 || 50 || 3a || J1-0 || 0.0881 ± 0.0045 || 0.0030 ± 2.3871e-05
+
| 545-3 || 470.6 ± 0.9 || 637.44 ± 0.05 || 166.9 ± 0.9 || 554.0 ± 0.4 || 557.40 ± 0.08 || 0.2536 ± 0.0011 || 0.2127 ± 0.0011 || 552.26 ± 0.13 || 567.14 ± 0.04 || 576.05 ± 0.03
 
|-
 
|-
| 143 || 51 || 3b || J1-0 || 0.0737 ± 0.0036 || 0.0023 ± 0.0001
+
| 545-4 || 470.9 ± 0.3 || 638.52 ± 0.10 || 167.6 ± 0.3 || 554.73 ± 0.16 || 556.85 ± 0.05 || 0.2630 ± 0.0004 || 0.2143 ± 0.0004 || 551.76 ± 0.08 || 566.48 ± 0.03 || 575.32 ± 0.02
 
|-
 
|-
| 143 || 82 || 4a || J1-0 || 0.0489 ± 0.0024 || 0.0018 ± 8.9210e-05
+
| 545-avg || 469.5 ± 0.6 || 640.81 ± 0.03 || 171.3 ± 0.6 || 555.2 ± 0.3 || 557.53 ± 0.03 || 0.3036 ± 0.0008 || 0.2612 ± 0.0008 || 552.22 ± 0.04 || 567.596 ± 0.016 || 576.778 ± 0.014
 
|-
 
|-
| 143 || 83 || 4b || J1-0 || 0.0493 ± 0.0024 || 0.0019 ± 9.4426e-05
+
| 545-detset1 || 466.44 ± 0.02 || 642.36 ± 0.04 || 175.91 ± 0.05 || 554.40 ± 0.02 || 557.86 ± 0.03 || 0.32548 ± 0.00013 || 0.28031 ± 0.00013 || 552.43 ± 0.05 || 568.118 ± 0.020 || 577.458 ± 0.018
 
|-
 
|-
| 143 || 10 || 5 || J1-0 || 0.0210 ± 0.0012 || 0.0012 ± 0.0001
+
| 545-detset2 || 470.9 ± 0.3 || 638.52 ± 0.09 || 167.6 ± 0.3 || 554.73 ± 0.18 || 556.85 ± 0.05 || 0.2631 ± 0.0004 || 0.2143 ± 0.0004 || 551.76 ± 0.08 || 566.48 ± 0.03 || 575.32 ± 0.02
 
|-
 
|-
| 143 || 42 || 6 || J1-0 || 0.0579 ± 0.0029 || 0.0020 ± 0.0003
+
| 857-1 || 748.7 ± 0.9 || 992.5 ± 0.3 || 243.8 ± 1.0 || 870.6 ± 0.5 || 866.05 ± 0.10 || 0.2595 ± 0.0010 || 0.2283 ± 0.0010 || 858.1 ± 0.3 || 880.89 ± 0.03 || 894.38 ± 0.03
 
|-
 
|-
| 143 || 60 || 7 || J1-0 || 0.0099 ± 0.0005 || 0.0005 ± 2.4544e-05
+
| 857-2 || 726.3 ± 0.4 || 989.09 ± 0.13 || 262.8 ± 0.4 || 857.7 ± 0.2 || 860.55 ± 0.08 || 0.2435 ± 0.0003 || 0.1973 ± 0.0003 || 852.28 ± 0.19 || 876.22 ± 0.03 || 890.59 ± 0.03
 
|-
 
|-
| 143 || 70 || 8 || J1-0 || 0.0404 ± 0.0023 || 0.0018 ± 8.5655e-05
+
| 857-3 || 742.0 ± 0.5 || 991.7 ± 1.4 || 249.7 ± 1.5 || 866.8 ± 0.7 || 864.92 ± 0.09 || 0.2888 ± 0.0015 || 0.2573 ± 0.0015 || 857.0 ± 0.2 || 879.90 ± 0.03 || 893.53 ± 0.03
 
|-
 
|-
| 143 || 143 || avg || J1-0 || 0.0470 ± 0.0008 || 0.0018 ± 4.4951e-05
+
| 857-4 || 731.4 ± 0.4 || 979.9 ± 0.2 || 248.4 ± 0.4 || 855.7 ± 0.2 || 854.75 ± 0.09 || 0.1414 ± 0.0002 || 0.1189 ± 0.0002 || 847.2 ± 0.2 || 868.94 ± 0.03 || 881.94 ± 0.03
 
|-
 
|-
 
+
| 857-avg || 743.9 ± 0.5 || 989.78 ± 0.08 || 245.9 ± 0.5 || 866.8 ± 0.3 || 862.68 ± 0.05 || 0.2412 ± 0.0005 || 0.2165 ± 0.0005 || 854.69 ± 0.11 || 877.724 ± 0.017 || 891.462 ± 0.014
| 143 || 02 || 1a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
 
|-
 
|-
| 143 || 03 || 1b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
+
| 857-detset1 || 736.9 ± 0.3 || 990.38 ± 0.06 || 253.4 ± 0.3 || 863.65 ± 0.13 || 863.42 ± 0.07 || 0.2446 ± 0.0002 || 0.2121 ± 0.0002 || 855.33 ± 0.16 || 878.67 ± 0.02 || 892.59 ± 0.02
 
|-
 
|-
| 143 || 30 || 2a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
+
| 857-detset2 || 741.79 ± 0.14 || 987.01 ± 0.09 || 245.22 ± 0.18 || 864.40 ± 0.08 || 861.74 ± 0.08 || 0.23780 ± 0.00017 || 0.21419 ± 0.00017 || 853.89 ± 0.18 || 876.53 ± 0.03 || 890.03 ± 0.03
|-
 
| 143 || 31 || 2b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 50 || 3a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 51 || 3b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 82 || 4a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 83 || 4b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 10 || 5 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 42 || 6 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 60 || 7 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 70 || 8 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 143 || avg || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
 
 
| 217 || 04 || 1 || J2-1 || 50.22 ± 0.36 || 34.42 ± 0.21
 
|-
 
| 217 || 22 || 2 || J2-1 || 42.47 ± 0.30 || 32.73 ± 0.21
 
|-
 
| 217 || 52 || 3 || J2-1 || 51.23 ± 0.35 || 37.37 ± 0.23
 
|-
 
| 217 || 84 || 4 || J2-1 || 47.75 ± 0.35 || 30.87 ± 0.19
 
|-
 
| 217 || 11 || 5a || J2-1 || 43.97 ± 0.29 || 35.85 ± 0.22
 
|-
 
| 217 || 12 || 5b || J2-1 || 43.68 ± 0.34 || 38.54 ± 0.22
 
|-
 
| 217 || 43 || 6a || J2-1 || 38.92 ± 0.30 || 41.21 ± 0.25
 
|-
 
| 217 || 44 || 6b || J2-1 || 40.75 ± 0.36 || 33.33 ± 0.21
 
|-
 
| 217 || 61 || 7a || J2-1 || 45.50 ± 0.31 || 41.57 ± 0.26
 
|-
 
| 217 || 62 || 7b || J2-1 || 43.58 ± 0.29 || 33.19 ± 0.20
 
|-
 
| 217 || 71 || 8a || J2-1 || 45.30 ± 0.31 || 41.48 ± 0.25
 
|-
 
| 217 || 72 || 8b || J2-1 || 41.78 ± 0.31 || 34.16 ± 0.21
 
|-
 
| 217 || 217 || avg || J2-1 || 45.85 ± 0.11 || 35.37 ± 0.07
 
|-
 
 
 
| 353 || 05 || 1 || J3-2 || 170.3 ± 1.3 || 82.5 ± 0.4
 
|-
 
| 353 || 13 || 2 || J3-2 || 174.0 ± 1.3 || 130.8 ± 0.7
 
|-
 
| 353 || 23 || 3a || J3-2 || 185.4 ± 1.6 || 133.3 ± 0.8
 
|-
 
| 353 || 24 || 3b || J3-2 || 200.7 ± 1.5 || 166.6 ± 0.9
 
|-
 
| 353 || 32 || 4a || J3-2 || 172.9 ± 1.4 || 121.0 ± 0.7
 
|-
 
| 353 || 33 || 4b || J3-2 || 140.9 ± 1.3 || 125.2 ± 0.7
 
|-
 
| 353 || 53 || 5a || J3-2 || 150.3 ± 1.2 || 138.1 ± 0.7
 
|-
 
| 353 || 54 || 5b || J3-2 || 159.8 ± 1.1 || 143.9 ± 0.8
 
|-
 
| 353 || 63 || 6a || J3-2 || 148.9 ± 1.2 || 143.0 ± 0.9
 
|-
 
| 353 || 64 || 6b || J3-2 || 166.4 ± 1.5 || 167.1 ± 1.0
 
|-
 
| 353 || 45 || 7 || J3-2 || 196.9 ± 1.4 || 110.9 ± 0.6
 
|-
 
| 353 || 85 || 8 || J3-2 || 185.3 ± 1.4 || 99.9 ± 0.6
 
|-
 
| 353 || 353 || avg || J3-2 || 175.1 ± 0.5 || 117.1 ± 0.2
 
|-
 
 
 
| 545 || 14 || 1 || J4-3 || 256.5 ± 2.5 || 47.8 ± 0.9
 
|-
 
| 545 || 34 || 2 || J4-3 || 268.3 ± 2.4 || 83.9 ± 1.0
 
|-
 
| 545 || 55 || 3 || J4-3 || 258.3 ± 3.2 || 59.7 ± 1.7
 
|-
 
| 545 || 73 || 4 || J4-3 || 230.7 ± 2.4 || 35.5 ± 1.1
 
|-
 
| 545 || 545 || avg || J4-3 || 252.5 ± 1.4 || 56.9 ± 0.6
 
|-
 
 
 
| 545 || 14 || 1 || J5-4 || 2216.1 ± 11.8 || 1144.5 ± 6.3
 
|-
 
| 545 || 34 || 2 || J5-4 || 2281.8 ± 12.3 || 1422.4 ± 7.6
 
|-
 
| 545 || 55 || 3 || J5-4 || 2349.2 ± 13.4 || 1845.6 ± 10.4
 
|-
 
| 545 || 73 || 4 || J5-4 || 2473.6 ± 13.7 || 1492.2 ± 8.1
 
|-
 
| 545 || 545 || avg || J5-4 || 2322.2 ± 7.3 || 1356.1 ± 4.3
 
|-
 
 
 
| 857 || 25 || 1 || J6-5 || 7794.4 ± 160.0 || 3264.7 ± 81.0
 
|-
 
| 857 || 35 || 2 || J6-5 || 6702.0 ± 111.9 || 1700.5 ± 43.7
 
|-
 
| 857 || 65 || 3 || J6-5 || 6978.7 ± 144.5 || 1417.9 ± 60.8
 
|-
 
| 857 || 74 || 4 || J6-5 || 7565.4 ± 145.4 || 1439.8 ± 57.3
 
|-
 
| 857 || 857 || avg || J6-5 || 7217.3 ± 71.4 || 2016.6 ± 30.4
 
|-
 
 
 
| 857 || 25 || 1 || J7-6 || 72291.9 ± 1440.7 || 61488.8 ± 1186.4
 
|-
 
| 857 || 35 || 2 || J7-6 || 62775.8 ± 995.9 || 64156.9 ± 969.1
 
|-
 
| 857 || 65 || 3 || J7-6 || 82316.7 ± 1523.9 || 57721.9 ± 1029.5
 
|-
 
| 857 || 74 || 4 || J7-6 || 87556.9 ± 1619.8 || 63467.8 ± 1119.9
 
|-
 
| 857 || 857 || avg || J7-6 || 74876.2 ± 694.6 || 61406.7 ± 545.5
 
|-
 
 
 
| 857 || 25 || 1 || J8-7 || 168443.0 ± 3337.6 || 136686.1 ± 2671.9
 
|-
 
| 857 || 35 || 2 || J8-7 || 145623.5 ± 2313.6 || 117751.3 ± 1825.7
 
|-
 
| 857 || 65 || 3 || J8-7 || 154861.1 ± 2861.8 || 126685.2 ± 2320.6
 
|-
 
| 857 || 74 || 4 || J8-7 || 125207.4 ± 2288.6 || 123683.8 ± 2230.9
 
|-
 
| 857 || 857 || avg || J8-7 || 151726.7 ± 1398.9 || 126570.5 ± 1151.8
 
|-
 
 
 
| 857 || 25 || 1 || J9-8 || 4941.8 ± 242.8 || 102261.9 ± 2036.6
 
|-
 
| 857 || 35 || 2 || J9-8 || 5619.9 ± 238.2 || 80172.8 ± 1263.2
 
|-
 
| 857 || 65 || 3 || J9-8 || 6897.2 ± 301.2 || 100933.8 ± 1853.0
 
|-
 
| 857 || 74 || 4 || J9-8 || 144.7 ± 232.1 || 51734.0 ± 988.8
 
|-
 
| 857 || 857 || avg || J9-8 || 4998.3 ± 131.9 || 88290.3 ± 821.8
 
 
|}
 
|}
 +
</center>
  
=== Planet Colour Correction ===
+
== References ==
 
+
<References />
As the planets within our solar system are used as calibration verification, and their spectra may deviate from the nominal Rayleigh-Jeans spectral profile, colour correction coefficients have been determined for each of the planets observed by Planck.  This involves a model spectrum for each planet over the Planck Bands (cite rel. models here), and an understanding of the model uncertainties, and spectral uncertainties in order to determine the planet colour correction coefficient uncertainties.  The table below summarizes the results for the planet colour correction coefficients.
+
   
 
 
FIXME: get into proper table format...
 
Band, BC, det., CC_SI=-2, CCE_SI=-2, CC_Mars1, CCE_Mars1, CC_Mars2, CE_Mars2, CC_Mars3, CCE_Mars3, CC_Jup, CCE_Jup, CC_Sat, CCE_Sat, CC_Ur, CCE_Ur, CC_Nep, CCE_Nep
 
100 00 1a      0.99179524    0.0024569372      0.99136628    0.0028896212      0.99177756    0.0027920234      0.99136832    0.0028653367      0.99192571    0.0058583181      0.99226270    0.0051635052      0.99629477      0.0023507110        1.0000696    0.0023383064
 
100 01 1b      0.97434212    0.0023504173      0.97375068    0.0027664805      0.97430734    0.0026726654      0.97375361    0.0027429981      0.97441599    0.0056352787      0.97488177    0.0049649349      0.98002947    0.0022491406      0.98428882    0.0022335515
 
100 20 2a      0.96064335    0.0024812887      0.95985742    0.0028602119      0.96059429    0.0027710572      0.95986171    0.0028382682      0.96071444    0.0056396086      0.96134048    0.0049820244      0.96809857    0.0023651134      0.97276578    0.0023474124
 
100 21 2b      0.96513920    0.0026154215      0.96440156    0.0029987856      0.96509400    0.0029095399      0.96440543    0.0029770927      0.96521685    0.0057557103      0.96580167    0.0050993873      0.97217979    0.0024991748      0.97658077    0.0024855546
 
100 40 3a      0.95227079    0.0024217183      0.95141328    0.0028267431      0.95221319    0.0027357225      0.95141775    0.0028039782      0.95231097    0.0056369281      0.95298905    0.0049778541      0.96021386    0.0023229208      0.96555618    0.0023034938
 
100 41 3b      0.98139440    0.0024512185      0.98083549    0.0028571474      0.98136600    0.0027636093      0.98083842    0.0028339286      0.98151075    0.0057414268      0.98195360    0.0050633475      0.98700251    0.0023420047      0.99141841    0.0023273952
 
100 80 4a      0.94863992    0.0025572022      0.94773453    0.0029459918      0.94857907    0.0028574219      0.94773941    0.0029242937      0.94868107    0.0056758085      0.94939951    0.0050287996      0.95702542    0.0024475671      0.96255867    0.0024264874
 
100 81 4b      0.94472176    0.0024347784      0.94378680    0.0028136068      0.94465704    0.0027263078      0.94379172    0.0027919631      0.94474695    0.0055351329      0.94548546    0.0048926320      0.95329271    0.0023286029      0.95886516    0.0023080312
 
100 100 avg      0.96201584    0.0010140989      0.96125413    0.0017473936      0.96196792    0.0016180539      0.96125815    0.0017102511      0.96208289    0.0052173339      0.96268641    0.0044916060      0.96922184    0.0010542270      0.97410782    0.0010439924
 
143 02 1a        1.0274279    0.00069310170        1.0273780    0.0010929967        1.0274933    0.00097577618        1.0273952    0.0010617994        1.0277801    0.0040870736        1.0280921    0.0032092061        1.0303270    0.00062520368        1.0310322    0.00063324809
 
143 03 1b        1.0149215    0.00070866545        1.0147696    0.0010951536        1.0149853    0.00098107888        1.0147886    0.0010647845        1.0153107    0.0040423422        1.0157214    0.0031761456        1.0191177    0.00064083408        1.0196698    0.00064901275
 
143 30 2a        1.0256655    0.00071856612        1.0255947    0.0011051012        1.0257319    0.00098966074        1.0256126    0.0010743671        1.0260326    0.0040969243        1.0263760    0.0032170282        1.0288763    0.00064839386        1.0296126    0.00065702576
 
143 31 2b        1.0105600    0.00066156375        1.0103726    0.0010564197        1.0106237    0.00094037912        1.0103925    0.0010254397        1.0109642    0.0040132254        1.0114212    0.0031483366        1.0152188    0.00059867200        1.0157617    0.00060634902
 
143 50 3a        1.0540337    0.00079658097        1.0542126    0.0011819005        1.0540996    0.0010655460        1.0542247    0.0011511021        1.0542895    0.0042420340        1.0543570    0.0033359408        1.0539499    0.00071486962        1.0550431    0.00072497723
 
143 51 3b        1.0291866    0.00073197786        1.0291488    0.0011223489        1.0292516    0.0010059919        1.0291656    0.0010913951        1.0295330    0.0041396701        1.0298255    0.0032517812        1.0319238    0.00066040360        1.0326979    0.00066937901
 
143 82 4a        1.0061120    0.00070379842        1.0058677    0.0010944281        1.0061800    0.00097869910        1.0058899    0.0010635565        1.0065635    0.0040824417        1.0070911    0.0032056372        1.0116784    0.00063675289        1.0122041    0.00064498270
 
143 83 4b        1.0172157    0.00070622867        1.0170853    0.0010920808        1.0172783    0.00097799480        1.0171036    0.0010617064        1.0175901    0.0040386342        1.0179738    0.0031726240        1.0210933    0.00063851040        1.0217136    0.00064697273
 
143 10 5      0.97451281    0.00060130694      0.97403771    0.0010077414      0.97457462    0.00089211065      0.97406349    0.00097678507      0.97503467    0.0038957642      0.97578047    0.0030560406      0.98294909    0.00054954842      0.98306051    0.00055596656
 
143 42 6      0.99996107    0.00066668980      0.99968416    0.0010573354        1.0000246    0.00094266271      0.99970596    0.0010267065        1.0004048    0.0039909943        1.0009555    0.0031324957        1.0058087    0.00060469278        1.0062450    0.00061218052
 
143 60 7      0.97009182    0.00063299289      0.96958024    0.0010194157      0.97015385    0.00090626054      0.96960689    0.00098909047      0.97063066    0.0039043560      0.97140874    0.0030625003      0.97902883    0.00057634869      0.97905402    0.00058285699
 
143 70 8      0.98857904    0.00067452972      0.98820410    0.0010585037      0.98864304    0.00094536517      0.98822818    0.0010282681      0.98906878    0.0039713907      0.98971077    0.0031178738      0.99575904    0.00061283887      0.99604248    0.00062011604
 
143 143 avg        1.0070824    0.00021374022        1.0068614    0.00086409244        1.0071466    0.00071705691        1.0068821    0.00082483224        1.0075044    0.0040076546        1.0079914    0.0031228747        1.0122118    0.00021344720        1.0127057    0.00021557979
 
217 04 1      0.92372890    0.00014543105      0.92335527    0.00024240533      0.92408488    0.00019744716      0.92346228    0.00023023603      0.92564528    0.0015701413      0.94180278    0.0010131918      0.93820450    0.00012696036      0.95279110    0.00012462523
 
217 22 2      0.91865604    0.00014914031      0.91825965    0.00024397324      0.91902960    0.00019988489      0.91837207    0.00023202445      0.92064935    0.0015605936      0.93711772    0.0010080980      0.93393990    0.00013062592      0.94633963    0.00012956498
 
217 52 3      0.92005792    0.00014369930      0.91966886    0.00024222673      0.92041646    0.00019655457      0.91977696    0.00022986870      0.92194761    0.0015838572      0.93736052    0.0010206916      0.93487937    0.00012579592      0.94856537    0.00012450449
 
217 84 4      0.92495519    0.00014512127      0.92458715    0.00024358886      0.92530546    0.00019787179      0.92469247    0.00023121651      0.92680837    0.0015890382      0.94232617    0.0010241088      0.93919854    0.00012648258      0.95255081    0.00012451968
 
217 11 5a      0.95420528    0.00016517233      0.95395616    0.00026105946      0.95451165    0.00021582053      0.95404671    0.00024877594      0.95583734    0.0016393437      0.97066825    0.0010566672      0.96523516    0.00014388767      0.97794116    0.00014047459
 
217 12 5b      0.95119915    0.00015741187      0.95093690    0.00025282959      0.95150918    0.00020776743      0.95102877    0.00024059837      0.95285521    0.0016138199      0.96830417    0.0010403248      0.96255440    0.00013733322      0.97546140    0.00013434738
 
217 43 6a      0.95166719    0.00016000513      0.95140712    0.00025615709      0.95197683    0.00021074547      0.95149881    0.00024382949      0.95328677    0.0016297876      0.96784827    0.0010497778      0.96297893    0.00013941718      0.97494109    0.00013675603
 
217 44 6b      0.95169507    0.00015570745      0.95143404    0.00025362596      0.95200265    0.00020740357      0.95152524    0.00024108688      0.95330789    0.0016386924      0.96815314    0.0010553470      0.96297302    0.00013603545      0.97583895    0.00013324272
 
217 61 7a      0.94972963    0.00015239450      0.94946246    0.00025207770      0.95003715    0.00020563156      0.94955374    0.00023950395      0.95132855    0.0016287555      0.96583873    0.0010486024      0.96112182    0.00013270037      0.97286646    0.00013022047
 
217 62 7b      0.95537121    0.00016113948      0.95512752    0.00026061348      0.95566714    0.00021411649      0.95521510    0.00024801275      0.95688048    0.0016560033      0.97050533    0.0010660058      0.96606477    0.00014036063      0.97712304    0.00013754722
 
217 71 8a      0.95308368    0.00016110231      0.95282877    0.00025768691      0.95339507    0.00021184558      0.95292085    0.00024523592      0.95473572    0.0016464027      0.96936560    0.0010603617      0.96433301    0.00014032034      0.97700981    0.00013781597
 
217 72 8b      0.95048294    0.00015373978      0.95021787    0.00025301486      0.95079048    0.00020692295      0.95030911    0.00024053889      0.95210122    0.0016220164      0.96627247    0.0010445368      0.96184275    0.00013405319      0.97499412    0.00013086004
 
217 217 avg      0.93586113    4.7378428e-05      0.93553554    0.00020323701      0.93619662    0.00014455406      0.93563585    0.00018794390      0.93763539    0.0016001360      0.95291335    0.0010263908      0.94897105    4.1318756e-05      0.96194977    4.0574860e-05
 
353 05 1      0.94058043    0.00011332546      0.94098217    0.00011441096      0.94141295    0.00011288488      0.94116837    0.00011387941      0.94555005    0.00037131159      0.94844667    0.00017398739      0.95501386    9.6672425e-05      0.94252929    0.00010244836
 
353 13 2      0.93604223    0.00011766864      0.93646791    0.00011892386      0.93692586    0.00011730590      0.93666550    0.00011836793      0.94132594    0.00037197986      0.94433250    0.00017722200      0.95137461    0.00010038591      0.93875196    0.00010586665
 
353 23 3a      0.94601822    0.00013419995      0.94638004    0.00013494525      0.94677116    0.00013354759      0.94654860    0.00013446058      0.95047817    0.00037504681      0.95303302    0.00018638046      0.95908115    0.00011497526      0.94912779    0.00012047238
 
353 24 3b      0.94549039    0.00012107755      0.94587698    0.00012181912      0.94628057    0.00012041895      0.94605316    0.00012132239      0.95024077    0.00037357867      0.95295610    0.00017785405      0.95904147    0.00010291203      0.94782372    0.00010895011
 
353 32 4a      0.92550628    0.00011168432      0.92590043    0.00011280360      0.92638226    0.00011127256      0.92609866    0.00011226930      0.93061868    0.00036489332      0.93335202    0.00017140080      0.94131248    9.5161783e-05      0.93060586    0.00010232233
 
353 33 4b      0.92560740    0.00011535949      0.92601983    0.00011647515      0.92650963    0.00011494353      0.92622343    0.00011594320      0.93090737    0.00036576470      0.93376284    0.00017381066      0.94174044    9.8456132e-05      0.92965716    0.00010437055
 
353 53 5a      0.95292376    0.00012188150      0.95331003    0.00012272894      0.95368671    0.00012128687      0.95347921    0.00012222428      0.95752576    0.00037744312      0.96032758    0.00018013350      0.96572763    0.00010391665      0.95318252    0.00010850519
 
  353 54 5b      0.95198172    0.00012562110      0.95239373    0.00012634361      0.95278451    0.00012493622      0.95257109    0.00012584674      0.95690100    0.00037545442      0.95986476    0.00018092809      0.96530501    0.00010679503      0.95260819    0.00011099594
 
353 63 6a      0.94350543    0.00014632473      0.94391092    0.00014710047      0.94433192    0.00014560840      0.94409518    0.00014658422      0.94846347    0.00038237367      0.95136826    0.00019551997      0.95766012    0.00012481655      0.94499853    0.00012943610
 
353 64 6b      0.97439004    0.00014454517      0.97469099    0.00014551843      0.97494197    0.00014385611      0.97481163    0.00014494673      0.97777798    0.00039581401      0.97992890    0.00019859126      0.98317463    0.00012209450      0.97339239    0.00012809685
 
353 45 7      0.91695423    0.00012676198      0.91738734    0.00012748245      0.91791853    0.00012616718      0.91760559    0.00012702172      0.92260648    0.00036124111      0.92566524    0.00017782391      0.93439356    0.00010927645      0.92339661    0.00011439164
 
353 85 8      0.90384202    0.00012261582      0.90433854    0.00012348863      0.90494364    0.00012202853      0.90458747    0.00012296857      0.91038829    0.00036092882      0.91389086    0.00017417894      0.92373414    0.00010434520      0.91163173    0.00011010402
 
353 353 avg      0.93323585    4.4062606e-05      0.93365358    4.7070290e-05      0.93411831    4.4557970e-05      0.93385153    4.6199076e-05      0.93848877    0.00035164656      0.94145185    0.00014110258      0.94870194    3.7658049e-05      0.93676117    3.9614753e-05
 
545 14 1      0.92302463    0.00016861905      0.92461756    0.00016804803      0.92501464    0.00016771153      0.92493336    0.00016787094      0.91708546    0.00015851497      0.80636759    0.00014498146      0.94179218    0.00015444168      0.95363288    0.00015667609
 
545 34 2      0.94195694    0.00016871427      0.94336773    0.00016811001      0.94370224    0.00016774858      0.94364108    0.00016791952      0.93574149    0.00015708569      0.82275030    0.00014416656      0.95787017    0.00015381168      0.97068422    0.00015578950
 
545 55 3      0.93512338    0.00027655893      0.93656096    0.00027600560      0.93691226    0.00027552445      0.93684341    0.00027578629      0.93104992    0.00025985046      0.81875193    0.00023124526      0.95176550    0.00025712338      0.96419783    0.00025990306
 
545 73 4      0.93789657    0.00018106184      0.93929799    0.00018048351      0.93963862    0.00018012702      0.93957268    0.00018030030      0.93488316    0.00016869839      0.82191908    0.00015426500      0.95404589    0.00016606602      0.96719779    0.00016790120
 
545 545 avg      0.93456594    9.9769955e-05      0.93603315    9.9429455e-05      0.93639001    9.9225109e-05      0.93632077    9.9322420e-05      0.92946031    9.3581163e-05      0.81720996    8.5125376e-05      0.95148319    9.1245529e-05      0.96409014    9.2283397e-05
 
857 25 1      0.96944437    0.00027856680      0.97151258    0.00027804692      0.97174365    0.00027784061      0.97174163    0.00027791474      0.98864826    0.00027967852      0.98899431    0.00027826822      0.98269193    0.00026752947      0.98870019    0.00026951231
 
857 35 2      0.98810255    0.00024194320      0.98982374    0.00024124537      0.99000266    0.00024103289      0.99000374    0.00024109823        1.0063799    0.00024222636        1.0057014    0.00024149148      0.99824571    0.00023048839        1.0042322    0.00023213953
 
857 65 3      0.97322233    0.00026529861      0.97521786    0.00026471472      0.97543817    0.00026450752      0.97543677    0.00026457792      0.99181933    0.00026601798      0.99151029    0.00026515330      0.98582708    0.00025417843      0.99174350    0.00025613279
 
857 74 4        1.0083172    0.00030474985        1.0094396    0.00030389953        1.0095398    0.00030362975        1.0095443    0.00030371607        1.0238004    0.00030485468        1.0254106    0.00030369029        1.0138754    0.00029033788        1.0204622    0.00029266176
 
857 857 avg      0.98090289    0.00013617145      0.98273089    0.00013584940      0.98292739    0.00013573943      0.98292724    0.00013577595      0.99918265    0.00013645470      0.99923102    0.00013587987      0.99210006    0.00013026850      0.99815419    0.00013122817
 
 
 
  
=== Conclusions ===
 
  
Summary remarks here...
+
[[Category:HFI data processing|006]]

Latest revision as of 14:32, 23 July 2014

HFI Spectral Response[edit]

This section outlines the unit conversion and colour correction protocol for Planck/HFI. Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper). Some of the checks on the unit conversion and colour correction coefficients will be described here also. Planet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section). There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here. The PLA UcCC subsection is primarily to introduce the software tools.

The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file (here).

Band-average HFI transmission spectra. Vertical bars illustrate the CO rotational transition frequencies.

The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges. The figure below demonstrates the stability in the integral once a sufficient data range has been employed. The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.

Colour Correction (alpha = -1 to +2) stability with integration cut-off variation. The horizontal bars illustrate the nominal colour correction values. Similar results are found for the integration cut-on.


The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average. Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region. The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky map. Future analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).

Variation of individual detector contribution to band-average frequency maps across the sky, for various HFI surveys.


The following table presents basic characteristics of the HFI detector spectral response, including optical efficiency, effective frequency, etc. Further details on the definition of these parameters are available in Planck-2013-IX[1].

Properties of HFI detector spectra
Band (GHz) [math]\nu[/math]cut-on [GHz] [math]\nu[/math]cut-off [GHz] BW [GHz] [math]\nu[/math]cen. [GHz] [math]\nu[/math]eff. [GHz] [math]\varepsilon[/math] [math]\epsilon[/math]Int. [math]\nu[/math] -1 [GHz] [math]\nu[/math] +2 [GHz] [math]\nu[/math] +4 [GHz]
100-1a 84.8 ± 0.5 113.96 ± 0.16 29.1 ± 0.6 99.4 ± 0.3 100.28 ± 0.11 0.419 ± 0.008 0.310 ± 0.008 99.45 ± 0.12 101.93 ± 0.11 103.59 ± 0.10
100-1b 86.5 ± 1.0 115.32 ± 0.08 28.8 ± 1.0 100.9 ± 0.5 100.87 ± 0.11 0.563 ± 0.011 0.324 ± 0.011 100.06 ± 0.11 102.51 ± 0.10 104.18 ± 0.09
100-2a 86.0 ± 0.6 116.4 ± 0.4 30.4 ± 0.9 101.2 ± 0.3 101.34 ± 0.12 0.550 ± 0.012 0.372 ± 0.012 100.38 ± 0.12 103.34 ± 0.11 105.47 ± 0.10
100-2b 84.3 ± 0.5 115.5 ± 0.4 31.3 ± 0.7 99.9 ± 0.3 101.19 ± 0.11 0.634 ± 0.009 0.334 ± 0.009 100.23 ± 0.11 103.14 ± 0.10 105.16 ± 0.09
100-3a 84.21 ± 0.17 117.36 ± 0.06 33.14 ± 0.18 100.78 ± 0.09 101.64 ± 0.12 0.493 ± 0.005 0.331 ± 0.005 100.68 ± 0.12 103.60 ± 0.10 105.60 ± 0.09
100-3b 84.19 ± 0.19 116.81 ± 0.16 32.6 ± 0.2 100.50 ± 0.13 100.63 ± 0.12 0.426 ± 0.004 0.281 ± 0.004 99.74 ± 0.12 102.45 ± 0.11 104.35 ± 0.10
100-4a 84.74 ± 0.07 118.09 ± 0.09 33.34 ± 0.12 101.42 ± 0.05 101.77 ± 0.12 0.461 ± 0.003 0.255 ± 0.003 100.77 ± 0.13 103.82 ± 0.11 105.96 ± 0.10
100-4b 84.9 ± 0.3 118.30 ± 0.05 33.4 ± 0.3 101.58 ± 0.14 101.91 ± 0.13 0.396 ± 0.003 0.258 ± 0.003 100.92 ± 0.13 103.92 ± 0.12 105.98 ± 0.10
100-avg 84.4 ± 0.3 117.36 ± 0.05 32.9 ± 0.3 100.89 ± 0.13 101.31 ± 0.05 0.479 ± 0.003 0.304 ± 0.003 100.36 ± 0.05 103.24 ± 0.05 105.25 ± 0.04
100-detset1 84.77 ± 0.05 117.81 ± 0.06 33.03 ± 0.08 101.29 ± 0.04 101.43 ± 0.07 0.4199 ± 0.0020 0.2645 ± 0.0020 100.49 ± 0.07 103.35 ± 0.06 105.34 ± 0.06
100-detset2 84.3 ± 0.3 117.14 ± 0.05 32.8 ± 0.3 100.72 ± 0.13 101.25 ± 0.06 0.505 ± 0.003 0.321 ± 0.003 100.31 ± 0.06 103.19 ± 0.06 105.21 ± 0.05
143-1a 121.2 ± 0.4 162 ± 2 41 ± 2 141.5 ± 1.1 141.71 ± 0.04 0.66 ± 0.02 0.43 ± 0.02 140.37 ± 0.04 144.48 ± 0.04 147.35 ± 0.03
143-1b 119.99 ± 0.03 162.8 ± 0.7 42.8 ± 0.8 141.4 ± 0.4 142.29 ± 0.04 0.608 ± 0.007 0.347 ± 0.007 140.97 ± 0.04 145.02 ± 0.04 147.79 ± 0.04
143-2a 119.7 ± 0.2 162.76 ± 0.05 43.1 ± 0.2 141.21 ± 0.11 141.79 ± 0.04 0.626 ± 0.003 0.449 ± 0.003 140.42 ± 0.04 144.61 ± 0.04 147.51 ± 0.04
143-2b 119.2 ± 0.4 163.3 ± 0.5 44.1 ± 0.6 141.3 ± 0.3 142.50 ± 0.04 0.619 ± 0.007 0.443 ± 0.007 141.17 ± 0.05 145.21 ± 0.04 148.00 ± 0.04
143-3a 120.2 ± 0.3 158.8 ± 0.4 38.6 ± 0.5 139.5 ± 0.2 140.51 ± 0.05 0.970 ± 0.008 0.539 ± 0.008 139.17 ± 0.05 143.28 ± 0.05 146.09 ± 0.05
143-3b 119.88 ± 0.04 161.3 ± 1.0 41.4 ± 1.0 140.6 ± 0.5 141.63 ± 0.05 0.718 ± 0.012 0.457 ± 0.012 140.28 ± 0.05 144.41 ± 0.04 147.22 ± 0.04
143-4a 118.7 ± 0.2 168.21 ± 0.03 49.5 ± 0.2 143.47 ± 0.12 142.71 ± 0.04 0.532 ± 0.002 0.324 ± 0.002 141.29 ± 0.05 145.61 ± 0.04 148.56 ± 0.04
143-4b 119.0 ± 0.3 161.58 ± 0.04 42.6 ± 0.3 140.27 ± 0.14 142.19 ± 0.05 0.538 ± 0.003 0.339 ± 0.003 140.87 ± 0.05 144.87 ± 0.04 147.59 ± 0.04
143-5 119.9 ± 0.3 166.608 ± 0.016 46.7 ± 0.3 143.28 ± 0.16 144.24 ± 0.04 0.386 ± 0.002 0.305 ± 0.002 142.93 ± 0.04 146.86 ± 0.04 149.48 ± 0.03
143-6 119.97 ± 0.20 166.14 ± 0.04 46.2 ± 0.2 143.06 ± 0.10 143.00 ± 0.04 0.4531 ± 0.0016 0.3128 ± 0.0016 141.66 ± 0.05 145.72 ± 0.04 148.49 ± 0.04
143-7 120.39 ± 0.07 167.5 ± 0.3 47.1 ± 0.3 143.95 ± 0.15 144.46 ± 0.04 0.427 ± 0.002 0.308 ± 0.002 143.14 ± 0.05 147.09 ± 0.04 149.69 ± 0.04
143-8 120.7 ± 0.4 165.59 ± 0.06 44.8 ± 0.4 143.16 ± 0.18 143.55 ± 0.04 0.393 ± 0.002 0.277 ± 0.002 142.18 ± 0.05 146.30 ± 0.04 149.02 ± 0.04
143-avg 119.994 ± 0.018 165.76 ± 0.04 45.76 ± 0.05 142.876 ± 0.018 142.710 ± 0.012 0.5069 ± 0.0007 0.3669 ± 0.0007 141.363 ± 0.012 145.458 ± 0.011 148.235 ± 0.011
143-detset1 120.05 ± 0.03 160.18 ± 0.09 40.13 ± 0.10 140.12 ± 0.05 141.45 ± 0.02 0.7049 ± 0.0017 0.4614 ± 0.0017 140.11 ± 0.02 144.22 ± 0.02 147.05 ± 0.02
143-detset2 118.95 ± 0.08 164.9 ± 0.8 45.9 ± 0.8 141.9 ± 0.4 142.27 ± 0.02 0.507 ± 0.007 0.379 ± 0.007 140.91 ± 0.02 145.05 ± 0.02 147.902 ± 0.019
143-SWBs 120.17 ± 0.03 166.308 ± 0.018 46.14 ± 0.04 143.238 ± 0.017 143.96 ± 0.02 0.3967 ± 0.0006 0.3123 ± 0.0006 142.64 ± 0.02 146.63 ± 0.02 149.282 ± 0.020
217-1 189.0 ± 0.4 251.24 ± 0.05 62.2 ± 0.4 220.14 ± 0.20 222.817 ± 0.016 0.414 ± 0.002 0.322 ± 0.002 221.099 ± 0.016 226.274 ± 0.017 229.76 ± 0.02
217-2 188.66 ± 0.02 253.68 ± 0.02 65.03 ± 0.04 221.169 ± 0.017 223.231 ± 0.018 0.4575 ± 0.0004 0.3624 ± 0.0004 221.430 ± 0.018 226.814 ± 0.018 230.35 ± 0.02
217-3 190.49 ± 0.05 253.174 ± 0.018 62.68 ± 0.06 221.83 ± 0.03 223.116 ± 0.016 0.4125 ± 0.0004 0.3257 ± 0.0004 221.440 ± 0.017 226.458 ± 0.016 229.774 ± 0.019
217-4 190.8 ± 0.4 253.219 ± 0.017 62.4 ± 0.4 222.03 ± 0.18 222.717 ± 0.018 0.4043 ± 0.0018 0.3132 ± 0.0018 221.033 ± 0.018 226.116 ± 0.017 229.55 ± 0.02
217-5a 182.69 ± 0.07 253.2 ± 0.6 70.5 ± 0.6 217.9 ± 0.3 220.421 ± 0.017 0.548 ± 0.003 0.387 ± 0.003 218.489 ± 0.018 224.293 ± 0.017 228.15 ± 0.02
217-5b 182.75 ± 0.06 250.1 ± 0.4 67.3 ± 0.4 216.41 ± 0.19 220.655 ± 0.018 0.621 ± 0.002 0.377 ± 0.002 218.746 ± 0.018 224.465 ± 0.018 228.234 ± 0.020
217-6a 182.284 ± 0.020 253.70 ± 0.02 71.41 ± 0.03 217.991 ± 0.014 220.619 ± 0.018 0.4497 ± 0.0003 0.3019 ± 0.0003 218.705 ± 0.018 224.441 ± 0.018 228.24 ± 0.02
217-6b 182.85 ± 0.04 253.373 ± 0.015 70.52 ± 0.04 218.113 ± 0.019 220.619 ± 0.017 0.5274 ± 0.0004 0.3349 ± 0.0004 218.707 ± 0.017 224.408 ± 0.016 228.109 ± 0.017
217-7a 188.217 ± 0.019 253.88 ± 0.02 65.66 ± 0.03 221.049 ± 0.012 220.766 ± 0.016 0.4299 ± 0.0003 0.3065 ± 0.0003 218.925 ± 0.016 224.458 ± 0.016 228.122 ± 0.018
217-7b 189.22 ± 0.03 250.88 ± 0.02 61.66 ± 0.04 220.054 ± 0.018 220.332 ± 0.018 0.4371 ± 0.0003 0.2776 ± 0.0003 218.468 ± 0.018 224.055 ± 0.018 227.718 ± 0.019
217-8a 181.98 ± 0.02 253.722 ± 0.018 71.74 ± 0.03 217.852 ± 0.013 220.510 ± 0.018 0.5282 ± 0.0003 0.3768 ± 0.0003 218.544 ± 0.019 224.432 ± 0.018 228.32 ± 0.02
217-8b 181.875 ± 0.013 252.99 ± 0.04 71.12 ± 0.04 217.433 ± 0.018 220.712 ± 0.017 0.6265 ± 0.0004 0.3872 ± 0.0004 218.837 ± 0.018 224.440 ± 0.017 228.127 ± 0.020
217-avg 188.892 ± 0.012 253.419 ± 0.007 64.527 ± 0.014 221.156 ± 0.006 221.915 ± 0.005 0.39900 ± 0.00013 0.33846 ± 0.00013 220.113 ± 0.005 225.517 ± 0.005 229.097 ± 0.006
217-detset1 183.32 ± 0.15 253.61 ± 0.02 70.29 ± 0.15 218.46 ± 0.07 220.548 ± 0.009 0.4577 ± 0.0007 0.3053 ± 0.0007 218.666 ± 0.010 224.312 ± 0.009 228.038 ± 0.010
217-detset2 182.159 ± 0.012 253.592 ± 0.008 71.433 ± 0.015 217.875 ± 0.007 220.614 ± 0.009 0.47458 ± 0.00016 0.34838 ± 0.00016 218.697 ± 0.009 224.429 ± 0.009 228.200 ± 0.010
217-SWBs 189.02 ± 0.06 253.247 ± 0.014 64.22 ± 0.06 221.14 ± 0.03 222.957 ± 0.008 0.4072 ± 0.0003 0.3226 ± 0.0003 221.241 ± 0.008 226.395 ± 0.008 229.834 ± 0.010
353-1 306.3 ± 0.5 406.8 ± 0.4 100.5 ± 0.7 356.5 ± 0.3 360.289 ± 0.018 0.540 ± 0.003 0.390 ± 0.003 357.546 ± 0.018 365.762 ± 0.019 371.15 ± 0.02
353-2 305.82 ± 0.16 409.697 ± 0.020 103.88 ± 0.16 357.76 ± 0.08 360.866 ± 0.019 0.5947 ± 0.0008 0.4515 ± 0.0008 358.005 ± 0.019 366.615 ± 0.020 372.29 ± 0.02
353-3a 308.5 ± 0.3 404.77 ± 0.03 96.3 ± 0.3 356.63 ± 0.13 359.59 ± 0.02 0.4106 ± 0.0008 0.2862 ± 0.0008 357.16 ± 0.02 364.49 ± 0.02 369.37 ± 0.02
353-3b 308.3 ± 0.4 406.230 ± 0.015 98.0 ± 0.4 357.24 ± 0.19 359.65 ± 0.02 0.4689 ± 0.0014 0.3546 ± 0.0014 357.02 ± 0.02 365.01 ± 0.02 370.41 ± 0.02
353-4a 321.275 ± 0.018 407.94 ± 0.11 86.66 ± 0.11 364.61 ± 0.06 362.224 ± 0.018 0.4334 ± 0.0004 0.3119 ± 0.0004 359.944 ± 0.017 366.853 ± 0.019 371.52 ± 0.02
353-4b 311.71 ± 0.05 407.71 ± 0.03 96.00 ± 0.06 359.71 ± 0.02 362.212 ± 0.019 0.4152 ± 0.0003 0.3123 ± 0.0003 359.739 ± 0.019 367.22 ± 0.02 372.23 ± 0.02
353-5a 302.25 ± 0.04 406.41 ± 0.15 104.17 ± 0.16 354.33 ± 0.08 358.73 ± 0.02 0.3991 ± 0.0005 0.2965 ± 0.0005 355.88 ± 0.02 364.42 ± 0.02 370.01 ± 0.02
353-5b 301.37 ± 0.05 416.77 ± 0.05 115.40 ± 0.07 359.07 ± 0.03 358.84 ± 0.02 0.3626 ± 0.0002 0.2542 ± 0.0002 355.80 ± 0.02 364.98 ± 0.02 371.11 ± 0.03
353-6a 302.4 ± 0.4 407.99 ± 0.03 105.6 ± 0.4 355.19 ± 0.19 359.91 ± 0.03 0.3036 ± 0.0007 0.1946 ± 0.0007 357.09 ± 0.03 365.58 ± 0.03 371.18 ± 0.03
353-6b 314.08 ± 0.03 398.19 ± 0.04 84.11 ± 0.05 356.13 ± 0.02 356.06 ± 0.02 0.2990 ± 0.0002 0.2193 ± 0.0002 353.67 ± 0.02 360.93 ± 0.02 365.83 ± 0.03
353-7 323.2 ± 1.6 406.0 ± 0.9 83 ± 2 364.6 ± 0.7 363.35 ± 0.03 0.313 ± 0.006 0.272 ± 0.006 360.84 ± 0.03 368.40 ± 0.02 373.41 ± 0.03
353-8 309 ± 3 408.20 ± 0.08 99 ± 3 358.5 ± 1.7 365.10 ± 0.02 0.374 ± 0.011 0.294 ± 0.011 362.25 ± 0.02 370.82 ± 0.02 376.53 ± 0.04
353-avg 306.8 ± 0.6 408.22 ± 0.02 101.4 ± 0.6 357.5 ± 0.3 361.290 ± 0.008 0.4057 ± 0.0019 0.3353 ± 0.0019 358.564 ± 0.008 366.764 ± 0.009 372.193 ± 0.010
353-detset1 303.582 ± 0.016 406.333 ± 0.018 102.75 ± 0.03 354.957 ± 0.011 359.156 ± 0.011 0.39123 ± 0.00015 0.29902 ± 0.00015 356.386 ± 0.011 364.744 ± 0.011 370.302 ± 0.012
353-detset2 318.885 ± 0.015 407.86 ± 0.02 88.97 ± 0.03 363.372 ± 0.013 360.870 ± 0.013 0.35915 ± 0.00014 0.28730 ± 0.00014 358.409 ± 0.013 365.850 ± 0.013 370.837 ± 0.013
353-SWBs 306.3 ± 0.4 408.81 ± 0.03 102.5 ± 0.4 357.56 ± 0.18 361.921 ± 0.013 0.4381 ± 0.0013 0.3575 ± 0.0013 359.158 ± 0.013 367.455 ± 0.013 372.930 ± 0.015
545-1 466.41 ± 0.03 642.58 ± 0.05 176.17 ± 0.06 554.50 ± 0.03 559.83 ± 0.05 0.37600 ± 0.00018 0.29576 ± 0.00018 554.44 ± 0.07 570.00 ± 0.03 579.24 ± 0.02
545-2 466.78 ± 0.03 641.44 ± 0.07 174.66 ± 0.08 554.11 ± 0.04 556.05 ± 0.05 0.31937 ± 0.00019 0.26874 ± 0.00019 550.61 ± 0.07 566.37 ± 0.03 575.78 ± 0.03
545-3 470.6 ± 0.9 637.44 ± 0.05 166.9 ± 0.9 554.0 ± 0.4 557.40 ± 0.08 0.2536 ± 0.0011 0.2127 ± 0.0011 552.26 ± 0.13 567.14 ± 0.04 576.05 ± 0.03
545-4 470.9 ± 0.3 638.52 ± 0.10 167.6 ± 0.3 554.73 ± 0.16 556.85 ± 0.05 0.2630 ± 0.0004 0.2143 ± 0.0004 551.76 ± 0.08 566.48 ± 0.03 575.32 ± 0.02
545-avg 469.5 ± 0.6 640.81 ± 0.03 171.3 ± 0.6 555.2 ± 0.3 557.53 ± 0.03 0.3036 ± 0.0008 0.2612 ± 0.0008 552.22 ± 0.04 567.596 ± 0.016 576.778 ± 0.014
545-detset1 466.44 ± 0.02 642.36 ± 0.04 175.91 ± 0.05 554.40 ± 0.02 557.86 ± 0.03 0.32548 ± 0.00013 0.28031 ± 0.00013 552.43 ± 0.05 568.118 ± 0.020 577.458 ± 0.018
545-detset2 470.9 ± 0.3 638.52 ± 0.09 167.6 ± 0.3 554.73 ± 0.18 556.85 ± 0.05 0.2631 ± 0.0004 0.2143 ± 0.0004 551.76 ± 0.08 566.48 ± 0.03 575.32 ± 0.02
857-1 748.7 ± 0.9 992.5 ± 0.3 243.8 ± 1.0 870.6 ± 0.5 866.05 ± 0.10 0.2595 ± 0.0010 0.2283 ± 0.0010 858.1 ± 0.3 880.89 ± 0.03 894.38 ± 0.03
857-2 726.3 ± 0.4 989.09 ± 0.13 262.8 ± 0.4 857.7 ± 0.2 860.55 ± 0.08 0.2435 ± 0.0003 0.1973 ± 0.0003 852.28 ± 0.19 876.22 ± 0.03 890.59 ± 0.03
857-3 742.0 ± 0.5 991.7 ± 1.4 249.7 ± 1.5 866.8 ± 0.7 864.92 ± 0.09 0.2888 ± 0.0015 0.2573 ± 0.0015 857.0 ± 0.2 879.90 ± 0.03 893.53 ± 0.03
857-4 731.4 ± 0.4 979.9 ± 0.2 248.4 ± 0.4 855.7 ± 0.2 854.75 ± 0.09 0.1414 ± 0.0002 0.1189 ± 0.0002 847.2 ± 0.2 868.94 ± 0.03 881.94 ± 0.03
857-avg 743.9 ± 0.5 989.78 ± 0.08 245.9 ± 0.5 866.8 ± 0.3 862.68 ± 0.05 0.2412 ± 0.0005 0.2165 ± 0.0005 854.69 ± 0.11 877.724 ± 0.017 891.462 ± 0.014
857-detset1 736.9 ± 0.3 990.38 ± 0.06 253.4 ± 0.3 863.65 ± 0.13 863.42 ± 0.07 0.2446 ± 0.0002 0.2121 ± 0.0002 855.33 ± 0.16 878.67 ± 0.02 892.59 ± 0.02
857-detset2 741.79 ± 0.14 987.01 ± 0.09 245.22 ± 0.18 864.40 ± 0.08 861.74 ± 0.08 0.23780 ± 0.00017 0.21419 ± 0.00017 853.89 ± 0.18 876.53 ± 0.03 890.03 ± 0.03

References[edit]

  1. Planck 2013 results: HFI spectral response, Planck Collaboration 2013 IX, A&A, in press, (2014).

(Planck) High Frequency Instrument

(Planck) Low Frequency Instrument

Planck Legacy Archive