Difference between revisions of "Catalogues"
Line 42: | Line 42: | ||
|- | |- | ||
|'''Wavelength''' [μm] || 10561 || 6807 || 4260 || 3000 || 2098 || 1382 || 850 || 550 || 350 | |'''Wavelength''' [μm] || 10561 || 6807 || 4260 || 3000 || 2098 || 1382 || 850 || 550 || 350 | ||
− | | | + | |- |
− | | | + | !colspan="1" |Number of sources |
− | | | + | |- |
− | | | + | | PCCS2 || 1435 || 830 || 1101 || 1742 || 2160 || 2135 || 1344 || 1694 || 4891 |
− | | | + | |- |
− | | | + | | PCCS2E ||125 || 104 || 195 || 2487 || 4139 || 16842 || 22665 || 31068 || 43290 |
− | | | + | |- |
− | | | + | | Union PCCS2+PCCS2E || 1560 || 934 || 1296 || 4229 || 6299 || 18977 || 24009 || 32762 || 48181 |
− | | | + | |- |
− | | | + | | PCCS<sup>a</sup> ||1256 || 731 || 939 || 3850 || 5675 || 16070 || 13613 || 16933 || 24381 |
− | | | + | |- |
− | |- || || || || || || || || || | + | !colspan="10" |Number of sources in the extragalactic zone. |
+ | |- | ||
+ | | PCCS2 || 723 || 346 || 441 || 1742 || 2160 || 2135 || 1344 || 1694 || 4891 | ||
+ | |- | ||
+ | | PCCS2E || 22 || 21 || 63 || 0 || 0 || 26 || 289 || 839 || 2097 | ||
+ | |- | ||
+ | | Union PCCS2+PCSS2E || 745 || 367 || 504 || 1742 || 2160 || 2161 || 1633 || 2533 || 6988 | ||
+ | |- | ||
+ | | PCCS<sup>a</sup> || 572 || 258 || 332 || 1483 || 1779 || 1745 || 1424 || 3566 || 7270 | ||
+ | |- | ||
+ | !colspan="10" |Flux densities [mJy] | ||
+ | |PCCS2 : minimum$^{c}$ || 378 || 621 || 456 || 232 || 147 || 127 || 242 || 535 || 720 | ||
+ | |- | ||
+ | | : 90\% completeness || 427 || 692 || 501 || 269 || 177 || 152 || 304 || 555 || 791 | ||
+ | | : uncertainty || 78 || 127 || 92 || 55 || 35 || 29 || 55 || 105 || 168 | ||
+ | |- | ||
+ | |PCCS2E: minimum$^{c}$ || 356 || 494 || 398 || \ldots || \ldots || 189 || 350 || 597 || 939 | ||
+ | | : 90\% completeness || 468 || 708 || 501 || \ldots || \ldots || 144 || 311 || 557 || 927 | ||
+ | | : uncertainty || 86 || 134 || 95 || \ldots || \ldots || 35 || 73 || 144 || 278 | ||
+ | |- | ||
+ | |PCCS : minimum$^{c}$ || 461 || 825 || 566 || 267 || 169 || 140 || 273 || 445 || 668 | ||
+ | | : 90\% completeness || 575 || 1047 || 776 || 300 || 190 || 180 || 330 || 570 || 680 | ||
+ | | : uncertainty || 109 || 198 || 149 || 62 || 39 || 33 || 65 || 119 || 188 | ||
|} | |} | ||
Revision as of 18:01, 18 December 2014
The Catalogue of Compact Sources[edit]
Product description[edit]
The 2013 Planck Catalogue of Compact Sources (PCCS), and the 2015 new version of the catalogue (PCCS2 and PCCS2E), are single-frequency lists of sources extracted from the Planck full mission maps. In the PCCS, the analaysis was done on the total intensity nominal mission maps. In the PCCS2/PCCS2E, the full mission maps in total intensity and polarization have been used.
The main difference between the PCCS2 and PCCS2E is that the sources in the PCCS2 have been validated, either statistically or with external catalogues, while the PCCS2E contains all the remaining sources where an estimate of their reliability has not been made. By definition, the reliability of the PCCS2 is > 80%, but a new flag has been added to the PCCS2 catalogues that allows one to select a subsample of sources with a higher level of reliability (e.g., 90%, 95%, etc.).
Four different photometry methods have been used. For one of the methods, the native photometry from the Mexican Hat Wavelet detection algorithm, the analysis is performed on projected flat patches. For the other methods (Point Spread Function fitting, Gaussian fitting and Aperture photometry), the analysis is performed directly on the maps.
The deeper completeness levels and, as a consequence, the higher number of sources compared with its predecessors the PCCS and the ERCSC, allows the extension of previous studies to more sources and to fainter flux densities.
The analysis in polarization has been performed in a non-blind fashion, looking at the position of the sources previously detected in total intensity. As a result, polarization flux densities and polarization angles have been measured for hundreds of sources with a significance >99.99%. This high threshold in significance has been chosen to minimize the possibility of misinterpreting a peak of the polarized background as being a source. This implies that, in general, most of the polarized sources are very bright, introducing an additional selection effect.
Channel | 30 | 44 | 70 | 100 | 143 | 217 | 353 | 545 | 857 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency [GHz] | 28.4 | 44.1 | 70.4 | 100.0 | 143.0 | 217.0 | 353.0 | 545.0 | 857.0 | ||||||||||||||||||||
Wavelength [μm] | 10561 | 6807 | 4260 | 3000 | 2098 | 1382 | 850 | 550 | 350 | ||||||||||||||||||||
Number of sources | |||||||||||||||||||||||||||||
PCCS2 | 1435 | 830 | 1101 | 1742 | 2160 | 2135 | 1344 | 1694 | 4891 | ||||||||||||||||||||
PCCS2E | 125 | 104 | 195 | 2487 | 4139 | 16842 | 22665 | 31068 | 43290 | ||||||||||||||||||||
Union PCCS2+PCCS2E | 1560 | 934 | 1296 | 4229 | 6299 | 18977 | 24009 | 32762 | 48181 | ||||||||||||||||||||
PCCSa | 1256 | 731 | 939 | 3850 | 5675 | 16070 | 13613 | 16933 | 24381 | ||||||||||||||||||||
Number of sources in the extragalactic zone. | |||||||||||||||||||||||||||||
PCCS2 | 723 | 346 | 441 | 1742 | 2160 | 2135 | 1344 | 1694 | 4891 | ||||||||||||||||||||
PCCS2E | 22 | 21 | 63 | 0 | 0 | 26 | 289 | 839 | 2097 | ||||||||||||||||||||
Union PCCS2+PCSS2E | 745 | 367 | 504 | 1742 | 2160 | 2161 | 1633 | 2533 | 6988 | ||||||||||||||||||||
PCCSa | 572 | 258 | 332 | 1483 | 1779 | 1745 | 1424 | 3566 | 7270 | ||||||||||||||||||||
Flux densities [mJy] | PCCS2 : minimum$^{c}$ | 378 | 621 | 456 | 232 | 147 | 127 | 242 | 535 | 720 | |||||||||||||||||||
: 90\% completeness | 427 | 692 | 501 | 269 | 177 | 152 | 304 | 555 | 791 | : uncertainty | 78 | 127 | 92 | 55 | 35 | 29 | 55 | 105 | 168 | ||||||||||
PCCS2E: minimum$^{c}$ | 356 | 494 | 398 | \ldots | \ldots | 189 | 350 | 597 | 939 | : 90\% completeness | 468 | 708 | 501 | \ldots | \ldots | 144 | 311 | 557 | 927 | : uncertainty | 86 | 134 | 95 | \ldots | \ldots | 35 | 73 | 144 | 278 |
PCCS : minimum$^{c}$ | 461 | 825 | 566 | 267 | 169 | 140 | 273 | 445 | 668 | : 90\% completeness | 575 | 1047 | 776 | 300 | 190 | 180 | 330 | 570 | 680 | : uncertainty | 109 | 198 | 149 | 62 | 39 | 33 | 65 | 119 | 188 |
Channel | 30 | 44 | 70 | 100 | 143 | 217 | 353 | 545 | 857 |
---|---|---|---|---|---|---|---|---|---|
Frequency [GHz] | 28.4 | 44.1 | 70.4 | 100.0 | 143.0 | 217.0 | 353.0 | 545.0 | 857.0 |
Beam FWHM1 [arcmin] | 32.38 | 27.10 | 13.30 | 9.88 | 7.18 | 4.87 | 4.65 | 4.72 | 4.39 |
SNR threshold | 4.0 | 4.0 | 4.0 | 4.6 | 4.7 | 4.8 | 4.92/6.03 | 4.7/7.0 | 4.9/7.0 |
# of detections | 1256 | 731 | 939 | 3850 | 5675 | 16070 | 17689 | 26472 | 35719 |
# of detections for |b| > 30º) | 572 | 258 | 332 | 845 | 1051 | 1901 | 2035 | 4164 | 7851 |
Flux density uncertainty [mJy] | 109 | 198 | 149 | 61 | 38 | 35 | 74 | 132 | 189 |
Min flux density4 [mJy] | 461 | 825 | 566 | 266 | 169 | 149 | 298 | 479 | 671 |
90% completeness [mJ] | 575 | 1047 | 776 | 300 | 190 | 180 | 330 | 570 | 680 |
Position uncertainty5 [arcmin] | 1.8 | 2.1 | 1.4 | 1.0 | 0.7 | 0.7 | 0.8 | 0.5 | 0.4 |
Before using the PCCS2, please read the Cautionary Notes in the PCCS2 general description section. For full details, see paper [1].
Production process[edit]
For a description of the production and validation processes of the PCCS see the corresponding section.
Inputs[edit]
The data obtained from the Planck nominal mission (August 12 2009 - November 27 2010) and the Planck full mission (August 12 2009 - August 3 2013) have been processed into full-sky maps by the HFI and LFI Data Processing Centres (DPCs). A description of the processing can be found in [2][2].
The PCCS2 full mission data consist of five complete sky surveys for HFI and eigth complete sky surveys for LFI. This implies that the flux densities of sources obtained from the full mission maps are the average of at least 5 to 8 observations, in the LFI and HFI. The nine Planck frequency channel maps are used as input to the source detection pipelines. The relevant properties of the frequency maps and main parameters used to generate the catalogues are summarized in Table 1.
The input data used to generate this product are the following:
Related products[edit]
Other products that are related and share some commonalities with the product being described here are the other catalogues:
2013 PCCS File names[edit]
- COM_PCCS_030_R1.30.fits
- COM_PCCS_044_R1.30.fits
- COM_PCCS_070_R1.30.fits
- COM_PCCS_100_R1.20.fits
- COM_PCCS_143_R1.20.fits
- COM_PCCS_217_R1.20.fits
- COM_PCCS_353_R1.20.fits
- COM_PCCS_545_R1.20.fits
- COM_PCCS_857_R1.20.fits
2014 PCCS2 File names[edit]
- COM_PCCS_030_R2.30.fits
- COM_PCCS_044_R2.30.fits
- COM_PCCS_070_R2.30.fits
- COM_PCCS_100_R2.20.fits
- COM_PCCS_143_R2.20.fits
- COM_PCCS_217_R2.20.fits
- COM_PCCS_353_R2.20.fits
- COM_PCCS_545_R2.20.fits
- COM_PCCS_857_R2.20.fits
Meta Data[edit]
The PCCS source list in each frequency is structured as a FITS binary table having one row for each detected source. The details of the FITS file structure are below
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | LFI or HFI | |
VERSION | String | Version of PCCS (PCCS2 / PCCS2_E) | |
DATE | String | Date file created:yyyy-mm-dd | |
ORIGIN | String | Name of organization responsible for the data (LFI-DPC – HFI-DPC) | |
TELESCOP | String | PLANCK | |
CREATOR | String | Pipeline Version | |
DATE-OBS | String | days | Start-up time of the survey: yyyy-mm-dd |
DATE-END | String | days | Ending time of the survey: yyyy-mm-dd |
FWHM | Real*4 | Arcmin | From an elliptical Gaussian fit to the beam |
OMEGA_B | Real*4 | Arcmin^2 | Area of the main beam |
FWHM_EFF | Real*4 | Arcmin | Computed from OMEGA_B assuming a Gaussian beam |
OMEGA_B1 | Real*4 | Arcmin^2 | Beam area within a 1xFWHM_EFF radius |
OMEGA_B2 | Real*4 | Arcmin^2 | Beam area within a 2xFWHM_EFF radius |
Extension 1: (BINTABLE) | |||
Column Name | Data Type | Units | Description |
Identification | |||
NAME | String | Source name (Note 1) | |
Source Position | |||
GLON | Real*8 | degrees | Galactic longitude based on extraction algorithm |
GLAT | Real*8 | degrees | Galactic latitude based on extraction algorithm |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT) |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT) |
Photometry | |||
DETFLUX | Real*4 | mJy | Flux density of source as determined by detection method |
DETFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from detection method |
APERFLUX | Real*4 | mJy | Flux density of source as determined from the aperture photometry |
APERFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from the aperture photometry |
PSFFLUX | Real*4 | mJy | Flux density of source as determined from PSF fitting |
PSFFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from PSF fitting |
GAUFLUX | Real*4 | mJy | Flux density of source as determined from 2-D Gaussian fitting |
GAUFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting |
GAU_SEMI1 | Real*4 | arcmin | Gaussian fit along axis 1 (FWHM; see Note 4 for axis definition) |
GAU_SEMI1_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 1 |
GAU_SEMI2 | Real*4 | arcmin | Gaussian fit along axis 2 (FWHM) |
GAU_SEMI2_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 2 |
GAU_THETA | Real*4 | deg | Gaussian fit orientation angle (Note 4) |
GAU_THETA_ERR | Real*4 | deg | Uncertainty (1 sigma) in derived gaussian fit orientation angle |
GAU_FWHM_EFF | Real*4 | arcmin | Gaussian fit effective FWHM |
Polarization Measurements (30-353 GHz catalogues only) | |||
P | Real*4 | mJy | Polarisation flux density of the sources as determined by a matched filter – see Note 4 |
P_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived polarisation flux density – see Note 4 |
ANGLE_P | Real*4 | degrees | Orientation of polarisation (wrt NGP) – see Note 4, 5 |
ANGLE_P_ERR | Real*4 | degrees | Uncertainty (1 sigma) in orientation of polarisation – see Note 4 |
APER_P | Real*4 | mJy | Polarisation flux density of the sources as determined by aperture photometry – see Note 4 |
APER_P_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived polarisation flux density – see Note 4 |
APER_ANGLE_P | Real*4 | degrees | Orientation of polarisation (wrt NGP) – see Note 4, 5 |
APER_ANGLE_P_ERR | Real*4 | degrees | Uncertainty (1 sigma) in orientation of polarisation – see Note 4 |
P_UPPER_LIMIT | Real*4 | mJy | Polarisation flux density 99.99% upper limit. This is provided only when P column is set to NULL; otherwise this column itself contains a NULL. |
APER_P_UPPER_LIMIT | Real*4 | mJy | Polarisation flux density 99.99% upper limit. This is provided only when APER_P column is set to NULL; otherwise this column itself contains a NULL. |
Marginal Polarization Measurements (100-353 GHz catalogues only) | |||
P_STAT | Integer*2 | 3, 2, 1, 0 | Polarisation detection status – see note 6 |
PX | Real*4 | mJy | Polarisation flux density of the sources as determined by a matched filter; Bayesian polarisation estimator – see note 6 |
PX_ERR_LOWER | Real*4 | mJy | “PX” uncertainty; lower 95% error bar – see note 6 |
PX_ERR_UPPER | Real*4 | mJy | “PX” uncertainty; upper 95% error bar – see note 6 |
ANGLE_PX | Real*4 | degrees | Orientation of polarisation (wrt NGP); Bayesian polarisation estimator – see Note 5,6 |
ANGLE_PX_ERR_LOWER | Real*4 | degrees | “ANGLE_PX” uncertainty; lower 95% error bar – see note 6 |
ANGLE_PX_ERR_UPPER | Real*4 | degrees | “ANGLE_PX” uncertainty; upper 95% error bar – see note 6 |
Flags and validation | |||
EXTENDED | Integer*2 | Extended source flag (Note 2) | |
EXT_VAL | Integer*2 | External validation flag (Note 3) | |
ERCSC | String | Name of the ERCSC counterpart if any | |
PCCS | String | Name of the PCCS counterpart if any | |
HIGHEST_RELIABILITY_CAT | Integer*4 | See Note 8 | |
Flags and validation (100-857 GHz catalogues only) | |||
WHICH_ZONE | Integer*2 | See Note 7 | |
Flags and validation (217-857 GHz catalogues only) | |||
CIRRUS_N | Integer*2 | Number of sources (S/N>5) detected at 857 GHz within a 1-degree radius. | |
SKY_BRIGHTNESS | Real*4 | MJy/sr | The mean 857 GHz brightness within a 2- degree radius. This may be used as another indicator of cirrus contamination. |
ONLY 857 GHz Catalogue | |||
APERFLUX_217 | Real*4 | mJy | Estimated flux density at 217 GHz |
APERFLUX_ERR_217 | Real*4 | mJy | Uncertainty in source flux density at 217 GHz |
APERFLUX_353 | Real*4 | mJy | Estimated flux density at 353 GHz |
APERFLUX_ERR_353 | Real*4 | mJy | Uncertainty in source flux density at 353 GHz |
APERFLUX_545 | Real*4 | mJy | Estimated flux density at 545 GHz |
APERFLUX_ERR_545 | Real*4 | mJy | Uncertainty in source flux density at 545 GHz |
Notes 2015 PCCS2
- Source names consist of a prefix and a position. The prefix used is PCCS1 fff for the catalogue at fff GHz. The position is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (l,b) values are truncated to two decimal places. For example, a source detected at (l,b) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PCCS1 545 G120.23±04.23.
- The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
- The EXT_VAL flag takes the value of 0, 1, 2, or 3 based on the following conditions:
- 3 – The source has a clear counterpart in one of the catalogues considered as ancillary data.
- 2 – The source does NOT have a clear counterpart in one of the catalogues considered as ancillary data but it has been detected by the internal multi-frequency method.
- 1 – The source does NOT have a clear counterpart in one of the catalogues considered as ancillary data and it has NOT been detected by the internal multi-frequency method, but it has been detected in a previous Planck source catalogue.
- 0 – The source does NOT have a clear counterpart in one of the catalogues considered as ancillary data and it has NOT been detected by the internal multi-frequency method.
- Provided when the significance of the polarization measurement is >99.99% and set to NULL otherwise.
- We follow the IAU/ IEEE convention (Hamaker & Bregman 1996 ), for defining the angle of polarization of a source. The polarization angle is measured from the North Galactic Pole in a clockwise direction from -90 to 90 degrees.
- The “PX” fields are only available for the channels: 100, 143, 217 and 353 GHz. All “PX” fields contain NULL each time a “Bright” detection is found and the “P” field contains a value different from “0”.
- - Polarisation detection status (P_STAT):
- 3 – Bright. “P” field filled in; All “PX” fields set to NULL.
- 2 – Significant. “P” field set to NULL; “0” is outside of the “PX” 95% HPD; All “PX” fields are filled.
- 1 – Marginal. “P” field set to NULL; “0” is inside of the “PX” 95% HPD, but mode of “PX” posterior distribution is different from “0”; All “PX” fields are filled.
- 0 – No detection. . “P” field set to NULL; mode of “PX” posterior distribution is “0”; “PX_ERRL”, “ANGLE_PX”, “ANGLE_PX_ERR_LOWER”, “ANGLE_PX_ERR_UPPER” set to NULL.
- WHICH_ZONE this column encodes the zone or zones in which the source lies. (1 - source lies inside filament mask, 2 – source lies inside galactic zone, 3 – sources lies in both filament mask and galactic zone). NOTE: this column is only present when the version keyword in the primary header is set to PCCS2_E.
- The HIGHEST_RELIABILTY_CAT column contains the highest reliability catalogue to which the source belongs. As the full catalogue reliability is targeted at 80%, this will be the lowest possible value in this column. Where possible this will be provided in steps of 1% otherwise it will be in steps of 5%. NOTE: this column is only present when the version keyword in the primary header is set to PCCS2.
Associated Data:
The Zone Mask For each frequency channel there will be an associated Healpix map which will contain the information as to where the quantified-reliability and unquantified-reliability zones are on the sky (quantified zone=0, unquantified zone>0).
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
NSIDE | Integer | - | NSIDE of Healpix map |
ORDERING | String | - | Galactic |
FREQ_CHL | String | - | Frequency Channel |
The FITS extension would contain an Integer Healpix Map which would encode the information of the 4 possible regions on the sky (0 – quantified-reliability zone, 1-filament mask, 2-galactic zone, 3 –filament mask and galactic zone).
S/N threshold map
For each HFI frequency channel there will be an associated Healpix map which will contain the S/N threshold used to accept sources into the PCCS2 and PCCS2E catalogues.
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
NSIDE | Integer | - | NSIDE of Healpix map |
ORDERING | String | - | Galactic |
FREQ_CHL | String | - | Frequency Channel |
The FITS extension would contain a Real*4 Healpix Map which would contain the S/N threshold applied in the generation of the catalogue at that position on the sky.
Noise map
For each HFI frequency channel there will be an associated Healpix map which will contain the detection noise as a function of position on the sky.
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
NSIDE | Integer | - | NSIDE of Healpix map |
ORDERING | String | - | Galactic |
FREQ_CHL | String | - | Frequency Channel |
The FITS extension would contain a Real*4 Healpix Map which would hold the detection noise at each location on the sky.
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | LFI or HFI | |
VERSION | String | Version of PCCS | |
DATE | String | Date file created:yyyy-mm-dd | |
ORIGIN | String | Name of organization responsible for the data (LFI-DPC – HFI-DPC) | |
TELESCOP | String | PLANCK | |
CREATOR | String | Pipeline Version | |
DATE-OBS | String | days | Start-up time of the survey: yyyy-mm-dd |
DATE-END | String | days | Ending time of the survey: yyyy-mm-dd |
Extension 1: (BINTABLE) | |||
Column Name | Data Type | Units | Description |
Identification | |||
NAME | String | Source name (Note 1) | |
Source Position | |||
GLON | Real*8 | degrees | Galactic longitude based on extraction algorithm |
GLAT | Real*8 | degrees | Galactic latitude based on extraction algorithm |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT) |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT) |
Photometry | |||
DETFLUX | Real*4 | mJy | Flux density of source as determined by detection method |
DETFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from detection method |
APERFLUX | Real*4 | mJy | Flux density of source as determined from the aperture photometry |
APERFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from the aperture photometry |
PSFFLUX | Real*4 | mJy | Flux density of source as determined from PSF fitting |
PSFFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from PSF fitting |
GAUFLUX | Real*4 | mJy | Flux density of source as determined from 2-D Gaussian fitting |
GAUFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting |
GAU_SEMI1 | Real*4 | arcmin | Gaussian fit along axis 1 (FWHM; see Note 4 for axis definition) |
GAU_SEMI1_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 1 |
GAU_SEMI2 | Real*4 | arcmin | Gaussian fit along axis 2 (FWHM) |
GAU_SEMI2_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 2 |
GAU_THETA | Real*4 | deg | Gaussian fit orientation angle (Note 4) |
GAU_THETA_ERR | Real*4 | deg | Uncertainty (1 sigma) in derived gaussian fit orientation angle |
GAU_FWHM_EFF | Real*4 | arcmin | Gaussian fit effective FWHM |
Flags and validation | |||
EXTENDED | Integer*2 | Extended source flag (Note 2) | |
CIRRUS_N | Integer*2 | Number of sources detected at 857 GHz within 1 degree | |
EXT_VAL | Integer*2 | External validation flag (Note 3) | |
ERCSC | String | Name of the ERCSC counterpart if any | |
ONLY 857 GHz Catalogue | |||
APERFLUX_217 | Real*4 | mJy | Estimated flux density at 217 GHz |
APERFLUX_ERR_217 | Real*4 | mJy | Uncertainty in source flux density at 217 GHz |
APERFLUX_353 | Real*4 | mJy | Estimated flux density at 353 GHz |
APERFLUX_ERR_353 | Real*4 | mJy | Uncertainty in source flux density at 353 GHz |
APERFLUX_545 | Real*4 | mJy | Estimated flux density at 545 GHz |
APERFLUX_ERR_545 | Real*4 | mJy | Uncertainty in source flux density at 545 GHz |
Notes 2013 PCCS
- Source names consist of a prefix and a position. The prefix used is PCCS1 fff for the catalogue at fff GHz. The position is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (l,b) values are truncated to two decimal places. For example, a source detected at (l,b) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PCCS1 545 G120.23±04.23.
- The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
- The EXT_VAL flag takes the value of 0, 1, or 2, based on the following conditions:
- = 2: The source has a clear counterpart in one of the catalogues considered as ancillary data.
- = 1: The source has no clear counterpart in one of the ancillary catalogues but it has been detected by the internal multi-frequency method (LFI channels) or match with neighbouring frequencies, above or below (HFI channels).
- = 0: The source has no clear counterpart in one of the ancillary catalogues and it has not been detected by the internal multi-frequency method or neighbouring frequencies.
- The x-axis is defined for each source as parallel to the line of constant colatitude, with the same direction as the longitude. Therefore the position angles are measured anticlockwise from the y-axis.
The SZ catalogues[edit]
The Planck SZ catalogue is constructed as described in SZ catalogue and in section 2 of Planck-2013-XXIX[3].
Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The individual catalogues are provided for the expert user in order to assess the consistency of the pipelines. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in sections 3-6 of Planck-2013-XXIX[3].
The union catalogue contains the coordinates and the signal-to-noise ratio of the detections and a summary of the external validation information, including external identification of a cluster and its redshift if it is available.
The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue.
The size of a detection is given in terms of the scale size, $\theta_\mathrm{s}$, and the flux is given in terms of the total integrated Comptonization parameter, $Y = Y_{5r_{500}}$. The parameters of the GNFW profile assumed by the detection pipelines is written in the headers in the catalogues. For the sake of convenience, the conversion factor from $Y$ to $Y_{500}$ is also written in the header.
The full information on the degeneracy between $\theta_\mathrm{s}$ and $Y$ is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. The degeneracy information is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters.
Union Catalogue[edit]
The union catalogue is contained in COM_PCCS_SZ-union_R1.12.fits.
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | Instrument. | |
VERSION | String | Version of catalogue. | |
DATE | String | Date file created: yyyy-mm-dd. | |
ORIGIN | String | Name of organization responsible for the data. | |
TELESCOP | String | PLANCK. | |
CREATOR | String | Pipeline version. | |
DATE-OBS | String | Start time of the survey: yyyy-mm-dd. | |
DATE-END | String | End time of the survey: yyyy-mm-dd. | |
PROCVER | String | Data version. | |
PP_ALPHA | Real*4 | GNFW pressure profile $\alpha$ parameter. | |
PP_BETA | Real*4 | GNFW pressure profile $\beta$ parameter. | |
PP_GAMMA | Real*4 | GNFW pressure profile $\gamma$ parameter. | |
PP_C500 | Real*4 | GNFW pressure profile $c_{500}$ parameter. | |
PP_Y2YFH | Real*4 | Conversion factor from $Y$ to $Y_{500}$. | |
Extension 1: data extension (BINTABLE) | |||
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index. Used to cross-reference with individual catalogues. | |
NAME | String | Source name, (Note 1) | |
GLON | Real*8 | degrees | Galactic longitude. |
GLAT | Real*8 | degrees | Galactic latitude. |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT). |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT). |
POS_ERR | Real*4 | arcmin | Position uncertainty (approximate 68% confidence interval). See Caveats below. |
SNR | Real*4 | Signal-to-noise ratio of the detection. | |
PIPELINE | Int*4 | Souce pipeline: 1= MMF1; 2 = MMF3; 3 = PwS. | |
PIPE_DET | Int*4 | Pipelines which detect this object (note 2). | |
PCCS | Bool | Indicates whether detection matches any PCCS source. | |
VALIDATION | Int*4 | External validation status (Note 3) | |
ID_EXT | String | External identifier of cluster. | |
REDSHIFT | Real*4 | Redshift of cluster. | |
COSMO | Bool | Detection is in the cosmology sample. | |
COMMENT | Bool | Detection has a comment in the associated text file (Note 4). |
Notes
- format is PSZ1 Glll.ll+mn;bb.b where (l,b) are the Galactic and truncated to 2 decimal places.
- The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
- values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up; 20 = known cluster.
- The comments on the detections in the catalogue are contained in a text file called COM_PCCS_SZ-union_comments_R1.11.txt, which contains one line for each detection in the union catalogue with COMMENT = T. The line starts with the INDEX and NAME of the detection to facilitate cross-referencing. The remainder of the line is the comment on that detection.
Individual Catalogues[edit]
The individual pipeline catalogues are contained in the FITS files
- COM_PCCS_SZ-MMF1_R1.11.fits (Matched Multi-Filter method #1)
- COM_PCCS_SZ-MMF3_R1.12.fits (Matched Multi-Filter method #3)
- COM_PCCS_SZ-PwS_R1.11.fits (Powell Snakes method)
Their structure is as follows:
Ext. 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | Instrument. | |
VERSION | String | Version of catalogue. | |
DATE | String | Date file created: yyyy-mm-dd. | |
ORIGIN | String | Name of organization responsible for the data. | |
TELESCOP | String | PLANCK. | |
CREATOR | String | Pipeline version. | |
DATE-OBS | String | Start time of the survey: yyyy-mm-dd. | |
DATE-END | String | End time of the survey: yyyy-mm-dd. | |
PROCVER | String | Data version. | |
PP_ALPHA | Real*4 | GNFW pressure profile $\alpha$ parameter. | |
PP_BETA | Real*4 | GNFW pressure profile $\beta$ parameter. | |
PP_GAMMA | Real*4 | GNFW pressure profile $\gamma$ parameter. | |
PP_C500 | Real*4 | GNFW pressure profile $c_{500}$ parameter. | |
PP_Y2YFH | Real*4 | Conversion factor from $Y$ to $Y_{500}$. | |
Ext. 1: EXTNANE = PSZ_INDIVIDUAL (BINTABLE) | |||
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index from union catalogue. | |
NAME | String | Source name - see Note1 | |
GLON | Real*8 | degrees | Galactic longitude. |
GLAT | Real*8 | degrees | Galactic latitude. |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT). |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT). |
POS_ERR | Real*4 | arcmin | Position uncertainty (approximate 68% confidence interval). See Caveats below. |
SNR | Real*4 | Signal-to-noise ratio of the detection. | |
SNR_COMPAT | Real*4 | SNR of the detection in compatibility mode (Note 2) | |
TS_MIN | Real*4 | Minimum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below). | |
TS_MAX | Real*4 | Maximum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below). | |
Y_MIN | Real*4 | Minimum value of $Y$ in grid in second extension HDU (see below). | |
Y_MAX | Real*4 | Maximum value of $Y$ in grid in second extension HDU (see below). | |
Keyword | Data Type | Value | Description |
PIPELINE | String | Name of detection pipeline. | |
Ext. 2: EXTNAME = PSZ_PROBABILITY (IMAGE) - Note 3 | |||
Keyword | Data Type | Value | Description |
NAXIS1 | Integer | 256 | Dim 1 |
NAXIS2 | Integer | 256 | Dim 2 |
NAXIS3 | Integer | Nsources | Dim 3 = Number of sources |
Keyword | Data Type | Value | Description |
PIPELINE | String | Name of detection pipeline. |
Notes
- Format PSZ1 Glll.ll±bb.bb where (l, b) are the Galactic coordinates truncated to 2 decimal places.
- For PwS, this is the S/N evaluated in a manner compatible with the MMF pipelines. For MMF1 and MMF3, it is identical to SNR.
- Ext. 2 contains a three-dimensional image with the two-dimensional probability distribution in $\theta_\mathrm{s}$ and $Y$ for each detection. The probability distributions are evaluated on a 256 × 256 linear grid between the limits specified in Ext. 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 × 256 × n, where n is the number of detections. The first dimension is $\theta_\mathrm{s}$ and the second dimension is $Y$.
Mask[edit]
The mask used to construct the catalogue is contained in a file
It is in GALACTIC coordinates, NESTED ordering, NSIDE=2048.
Additional information[edit]
A set of comments on the union catalogue is available in
Additional information on the SZ detections was retrieved from external sources and written into the FITS file
(for more details see Planck-2013-XXIX[3]). This file contains a single BINTABLE extension. The table contains 1 line per source, and the columns and their meaning are given below.
Ext. 0: (BINTABLE) | |||
---|---|---|---|
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index from union catalogue. | |
NAME | String | Source name in union catalogue | |
REDSHIFT | Real*4 | Redshift | |
REDSHIFT_SOURCE | Int*4 | Source for redshift - see Note 4. | |
ALT_NAME | String | Alternative names. | |
RA_MCXC | Real*4 | degrees | Right Ascension of the MCXC identifier. |
DEC_MCXC | Real*4 | degrees | Declination of the MCXC identifier. |
YZ_500 | Real*4 | 10-4 arcmin2 | Compton parameter in R500 from SZ-proxy. |
ERRP_YZ_500 | Real*4 | 10-4 arcmin2 | Error sup. in YZ_500 |
ERRM_YZ_500 | Real*4 | 10-4 arcmin2 | Error inf. in YZ_500 |
M_YZ_500 | Real*4 | 1014 Msol | Derived mass estimate (M_YZ_500) from SZ proxy. |
ERRP_M_YZ_500 | Real*4 | 1014 Msol | Error sup. on M_YZ_500. |
ERRM_M_YZ_500 | Real*4 | 1014 Msol | Error sup. on M_YZ_500. |
S_X | Real*4 | erg/s/cm2 | Unabsorbed X-ray flux - see Note 1. |
ERR_S_X | Real*4 | erg/s/cm2 | Error on unabsorbed X-ray flux. |
Y_PSX_500 | Real*4 | 10-4 arcmin2 | SZ signal for PSZ clusters identified with MCXC clusters- see Note 2. |
SN_PSX | Real*4 | Signal to noise for PSZ clusters identified with MCXC clusters - see Note 3. |
Notes
- Unabsorbed X-ray flux measured in an aperture of 5 arcmin in the band [0.1-2.4] keV. The aperture is centered on the Planck position, except for candidates associated with a BSC source for which we adopt the X-ray position. For sources with , we only quote an upper limit.
- SZ signal re-extracted fixing the size to the X-ray size provided in the MCXC catalogue at the X-ray position, for PSZ clusters identified with MCXC clusters.
- Computed in the Planck data at the X-ray position fixing the size to the X-ray size provided in the MCXC catalogue, for PSZ clusters identified with MCXC clusters.
- Source for redshifts:
-1 : No redshift available 1 : MCXC updated compilation[4] 2 : Databases NED and SIMBAD-CDS 3 : SDSS cluster catalogue[5] 4 : SDSS cluster catalogue[6] 5 : SPT[7][8][9][10][11][12][13] 6 : ACT[14][15][16][17] 7 : Search in SDSS galaxy catalogue from Planck Collab. 20 : XMM-Newton confirmation from Planck Collab. 50 : ENO-imaging confirmation from Planck Collab. 60 : WFI-imaging confirmation from Planck Collab. 65 : NTT-spectroscopic confirmation from Planck Collab. 500 : RTT-spectroscopic confirmation from Planck Collab. 600 : NOT-spectroscopic confirmation from Planck Collab. 650 : GEMINI-spectroscopic confirmation from Planck Collab. 700 : ENO-spectroscopic confirmation from Planck Collab.
Caveats[edit]
The following issue was found in Feb. 2014 in R1.11 of the MMF3 catalogue: the POS_ERR field values are overestimated by a factor 3.125 on average. This issue has been resolved in R1.12. A corrected version of the union catalogue has also been produced (also R1.12)
The approximate 68% (1-sigma) confidence interval in the POS_ERR field is computed as half of the 95% (2-sigma) confidence interval. Previously this was erroneously described as a 95% confidence interval.
The ERCSC[edit]
The Plank Early Release Compact Source Catalogue was the first Planck product to be publicly released in Jan 2011. It was produced with a very rapid turnaround to facilitate follow-up observations with existing c ryogenic observatories such as Herschel. It contained a list of all high reliability sources, both Galactic and extragalactic, that were derived from the first all sky coverage by Planck. i.e., using observations obtained from 12 August 2009 to 6 June 2010. Thus the full sky was covered once, and ~60% of the sky was covered twice. The goals were to achieve a photometric accuracy of 30% and a positional accuracy 1/5 of the beam FWHM in the RMS sense.
The ERCSC consisted of nine source lists, one at each of the nine Planck frequency channels. The number of sources in the lists range from 705 at 30 GHz to 8988 at 857 GHz. No attempt was made to cross-match the sources from the different frequencies due to the wide range of spatial resolutions (33 arcmin at 30 GHz to 4.3 arcmin at 857 GHz) spanned by Planck. Furthermore, a list of Cold Cores of interstellar molecular clouds within the Galaxy and a list of galaxy clusters detected through the Sunyaev- Zel’dovich effect (SZ), were also provided. These consisted of candidate sources that were detected using multifrequency algorithms that use the distinct spectral signature of such sources. The Cold Cores catalogue contained 915 sources while the SZ cluster catalogue consisted of 189 sources
In order to generate the ERCSC, four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >90%. Reliability is defined as the fraction of sources in the catalog which have measured flux densities which are within 30% of their true flux density. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux density limit of the catalogue at $|b| > 30$ deg is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. The sensitivity of the ERCSC is shown in the figure below. The ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs.
The multifrequency information from Planck allows some basic classification of the sources to be undertaken. In the Galactic plane, at frequencies below 100 GHz, the majority of the sources are dominated by synchrotron or free-free emission. At the higher frequencies, the sources are almost exclusively dominated by thermal dust emission. At high Galactic latitudes however, the synchrotron sources dominate the source counts to 217 GHz with dusty sources being the primary source population at 353 GHz and higher. Recent attempts to classify a subset of the Planck 857 GHz sources at high latitudes based on cross-correlations with sources in other catalogs such as WISE and SDSS, found that almost half of them are associated with stars and low-redshift galaxies while a significant fraction (44%) might be interstellar medium features [18].
Full details on the construction, contents and usage of the ERCSC, ECC and ESZ catalogues can be found in Planck-Early-VII[19], Planck-Early-VIII[20], Planck-Early-XXIII[21].
The figure shows the ERCSC flux density limits, quanitfied as the faintest ERCSC source at |b|<10 deg (dashed black line) and at |b|>30 deg (solid black line), compared to those of other wide area surveys (Planck-Early-VII[19]). Also shown are spectra of known sources of foreground emission as red lines. The ERCSC sensitivity is worse in the Galactic plane due to the strong contribution of ISM emission, especially at submillimeter wavelengths. At face value, the WMAP and Planck flux density limits appear to be comparable at the lowest frequencies, but the Planck ERCSC is much more complete as discussed in Planck-Early-VII[19].
References[edit]
- ↑
- ↑ 2.02.1
- ↑ 3.03.13.2 Planck 2013 results. XXIX. The Planck Catalogue of Sunyaev-Zeldovich sources, Planck Collaboration, 2014, A&A, 571, A29
- ↑ The MCXC: a meta-catalogue of x-ray detected clusters of galaxies, R. Piffaretti, M. Arnaud, G. W. Pratt, E. Pointecouteau, J.-B. Melin, A&A, 534, A109, (2011).
- ↑ A Catalog of 132,684 Clusters of Galaxies Identified from Sloan Digital Sky Survey III, Z. L. Wen, J. L. Han, F. S. Liu, ApJS, 199, 34, (2012).
- ↑ An Optical Catalog of Galaxy Clusters Obtained from an Adaptive Matched Filter Finder Applied to Sloan Digital Sky Survey Data Release 6, T. Szabo, E. Pierpaoli, F. Dong, A. Pipino, J. Gunn, ApJ, 736, 21, (2011).
- ↑ Galaxy Clusters Selected with the Sunyaev-Zel'dovich Effect from 2008 South Pole Telescope Observations, K. Vanderlinde, T. M. Crawford, T. de Haan, J. P. Dudley, L. Shaw, P. A. R. Ade, K. A. Aird, B. A. Benson, L. E. Bleem, M. Brodwin, J. E. Carlstrom, C. L. Chang, A. T. Crites, S. Desai, M. A. Dobbs, R. J. Foley, E. M. George, M. D. Gladders, N. R. Hall, N. W. Halverson, F. W. High, G. P. Holder, W. L. Holzapfel, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, A. Loehr, M. Lueker, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, J.J. Mohr, T. E. Montroy, C.-C. Ngeow, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, A. Rest, J. Ruel, J. E. Ruhl, K. K. Schaffer, E. Shirokoff, J. Song, H. G. Spieler, B. Stalder, Z. Staniszewski, A. A. Stark, C. W. Stubbs, A. van Engelen, J. D. Vieira, R. Williamson, Y. Yang, O. Zahn, A. Zenteno, ApJ, 722, 1180-1196, (2010).
- ↑ A Sunyaev-Zel'dovich-selected Sample of the Most Massive Galaxy Clusters in the 2500 deg$^{2}$ South Pole Telescope Survey, R. Williamson, B. A. Benson, F. W. High, K. Vanderlinde, P. A. R. Ade, K. A. Aird, K. Andersson, R. Armstrong, M. L. N. Ashby, M. Bautz, G. Bazin, E. Bertin, L. E. Bleem, M. Bonamente, M. Brodwin, J. E. Carlstrom, C. L. Chang, S. C. Chapman, A. Clocchiatti, T. M. Crawford, A. T. Crites, T. de Haan, S. Desai, M. A. Dobbs, J. P. Dudley, G. G. Fazio, R. J. Foley, W. R. Forman, G. Garmire, E. M. George, M. D. Gladders, A. H. Gonzalez, N. W. Halverson, G. P. Holder, W. L. Holzapfel, S. Hoover, J. D. Hrubes, C. Jones, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. Luong-Van, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. S. Murray, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, A. Rest, J. Ruel, J. E. Ruhl, B. R. Saliwanchik, A. Saro, K. K. Schaffer, L. Shaw, E. Shirokoff, J. Song, H. G. Spieler, B. Stalder, S. A. Stanford, Z. Staniszewski, A. A. Stark, K. Story, C. W. Stubbs, J. D. Vieira, A. Vikhlinin, A. Zenteno, ApJ, 738, 139, (2011).
- ↑ X-Ray Properties of the First Sunyaev-Zel'dovich Effect Selected Galaxy Cluster Sample from the South Pole Telescope, K. Andersson, B. A. Benson, P. A. R. Ade, K. A. Aird, B. Armstrong, M. Bautz, L. E. Bleem, M. Brodwin, J. E. Carlstrom, C. L. Chang, T. M. Crawford, A. T. Crites, T. de Haan, S. Desai, M. A. Dobbs, J. P. Dudley, R. J. Foley, W. R. Forman, G. Garmire, E. M. George, M. D. Gladders, N. W. Halverson, F. W. High, G. P. Holder, W. L. Holzapfel, J. D. Hrubes, C. Jones, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. S. Murray, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, A. Rest, J. Ruel, J. E. Ruhl, K. K. Schaffer, L. Shaw, E. Shirokoff, J. Song, H. G. Spieler, B. Stalder, Z. Staniszewski, A. A. Stark, C. W. Stubbs, K. Vanderlinde, J. D. Vieira, A. Vikhlinin, R. Williamson, Y. Yang, O. Zahn, A. Zenteno, ApJ, 738, 48, (2011).
- ↑ Sunyaev-Zel'dovich Cluster Profiles Measured with the South Pole Telescope, T. Plagge, B. A. Benson, P. A. R. Ade, K. A. Aird, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H.-M. Cho, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, E. M. George, N. R. Hall, N. W. Halverson, G. P. Holder, W. L. Holzapfel, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. Padin, C. Pryke, C. L. Reichardt, J. E. Ruhl, K. K. Schaffer, L. Shaw, E. Shirokoff, H. G. Spieler, B. Stalder, Z. Staniszewski, A. A. Stark, K. Vanderlinde, J. D. Vieira, R. Williamson, O. Zahn, ApJ, 716, 1118-1135, (2010).
- ↑ Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the First 720 Square Degrees of the South Pole Telescope Survey, C. L. Reichardt, B. Stalder, L. E. Bleem, T. E. Montroy, K. A. Aird, K. Andersson, R. Armstrong, M. L. N. Ashby, M. Bautz, M. Bayliss, G. Bazin, B. A. Benson, M. Brodwin, J. E. Carlstrom, C. L. Chang, H. M. Cho, A. Clocchiatti, T. M. Crawford, A. T. Crites, T. de Haan, S. Desai, M. A. Dobbs, J. P. Dudley, R. J. Foley, W. R. Forman, E. M. George, M. D. Gladders, A. H. Gonzalez, N. W. Halverson, N. L. Harrington, F. W. High, G. P. Holder, W. L. Holzapfel, S. Hoover, J. D. Hrubes, C. Jones, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, J. Liu, M. Lueker, D. Luong-Van, A. Mantz, D. P. Marrone, M. McDonald, J. J. McMahon, J. Mehl, S. S. Meyer, L. Mocanu, J. J. Mohr, S. S. Murray, T. Natoli, S. Padin, T. Plagge, C. Pryke, A. Rest, J. Ruel, J. E. Ruhl, B. R. Saliwanchik, A. Saro, J. T. Sayre, K. K. Schaffer, L. Shaw, E. Shirokoff, J. Song, H. G. Spieler, Z. Staniszewski, A. A. Stark, K. Story, C. W. Stubbs, R. Suhada, A. van Engelen, K. Vanderlinde, J. D. Vieira, A. Vikhlinin, R. Williamson, O. Zahn, A. Zenteno, ApJ, 763, 127, (2013).
- ↑ South Pole Telescope Detections of the Previously Unconfirmed Planck Early Sunyaev-Zel'dovich Clusters in the Southern Hemisphere, K. Story, K. A. Aird, K. Andersson, R. Armstrong, G. Bazin, B. A. Benson, L. E. Bleem, M. Bonamente, M. Brodwin, J. E. Carlstrom, C. L. Chang, A. Clocchiatti, T. M. Crawford, A. T. Crites, T. de Haan, S. Desai, M. A. Dobbs, J. P. Dudley, R. J. Foley, E. M. George, M. D. Gladders, A. H. Gonzalez, N. W. Halverson, F. W. High, G. P. Holder, W. L. Holzapfel, S. Hoover, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, M. Lueker, D. Luong-Van, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, A. Rest, J. Ruel, J. E. Ruhl, B. R. Saliwanchik, A. Saro, K. K. Schaffer, L. Shaw, E. Shirokoff, J. Song, H. G. Spieler, B. Stalder, Z. Staniszewski, A. A. Stark, C. W. Stubbs, K. Vanderlinde, J. D. Vieira, R. Williamson, A. Zenteno, ApJ, 735, L36, (2011).
- ↑ Redshifts, Sample Purity, and BCG Positions for the Galaxy Cluster Catalog from the First 720 Square Degrees of the South Pole Telescope Survey, J. Song, A. Zenteno, B. Stalder, S. Desai, L. E. Bleem, K. A. Aird, R. Armstrong, M. L. N. Ashby, M. Bayliss, G. Bazin, B. A. Benson, E. Bertin, M. Brodwin, J. E. Carlstrom, C. L. Chang, H. M. Cho, A. Clocchiatti, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, J. P. Dudley, R. J. Foley, E. M. George, D. Gettings, M. D. Gladders, A. H. Gonzalez, N. W. Halverson, N. L. Harrington, F. W. High, G. P. Holder, W. L. Holzapfel, S. Hoover, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, J. Liu, M. Lueker, D. Luong-Van, D. P. Marrone, M. McDonald, J. J. McMahon, J. Mehl, S. S. Meyer, L. Mocanu, J. J. Mohr, T. E. Montroy, T. Natoli, D. Nurgaliev, S. Padin, T. Plagge, C. Pryke, C. L. Reichardt, A. Rest, J. Ruel, J. E. Ruhl, B. R. Saliwanchik, A. Saro, J. T. Sayre, K. K. Schaffer, L. Shaw, E. Shirokoff, R. Suhada, H. G. Spieler, S. A. Stanford, Z. Staniszewski, A. A. Stark, K. Story, C. W. Stubbs, A. van Engelen, K. Vanderlinde, J. D. Vieira, R. Williamson, O. Zahn, ApJ, 761, 22, (2012).
- ↑ The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data, M. Hasselfield, M. Hilton, T. A. Marriage, G. E. Addison, L. F. Barrientos, N. Battaglia, E. S. Battistelli, J. R. Bond, D. Crichton, S. Das, M. J. Devlin, S. R. Dicker, J. Dunkley, R. Dünner, J. W. Fowler, M. B. Gralla, A. Hajian, M. Halpern, A. D. Hincks, R. Hlozek, J. P. Hughes, L. Infante, K. D. Irwin, A. Kosowsky, D. Marsden, F. Menanteau, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, B. Partridge, E. D. Reese, B. L. Schmitt, N. Sehgal, B. D. Sherwin, J. Sievers, C. Sifóon, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton, H. Trac, E. J. Wollack, J. Cosmology Astropart. Phys., 7, 8, (2013).
- ↑ The Atacama Cosmology Telescope: Sunyaev-Zel'dovich-Selected Galaxy Clusters at 148 GHz in the 2008 Survey, T. A. Marriage, V. Acquaviva, P. A. R. Ade, P. Aguirre, M. Amiri, J. W. Appel, L. F. Barrientos, E. S. Battistelli, J. R. Bond, B. Brown, B. Burger, J. Chervenak, S. Das, M. J. Devlin, S. R. Dicker, W. Bertrand Doriese, J. Dunkley, R. Dünner, T. Essinger-Hileman, R. P. Fisher, J. W. Fowler, A. Hajian, M. Halpern, M. Hasselfield, C. Hernández-Monteagudo, G. C. Hilton, M. Hilton, A. D. Hincks, R. Hlozek, K. M. Huffenberger, D. Handel Hughes, J. P. Hughes, L. Infante, K. D. Irwin, J. Baptiste Juin, M. Kaul, J. Klein, A. Kosowsky, J. M. Lau, M. Limon, Y.-T. Lin, R. H. Lupton, D. Marsden, K. Martocci, P. Mauskopf, F. Menanteau, K. Moodley, H. Moseley, C. B. Netterfield, M. D. Niemack, M. R. Nolta, L. A. Page, L. Parker, B. Partridge, H. Quintana, E. D. Reese, B. Reid, N. Sehgal, B. D. Sherwin, J. Sievers, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton, H. Trac, C. Tucker, R. Warne, G. Wilson, E. Wollack, Y. Zhao, ApJ, 737, 61, (2011).
- ↑ The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect, F. Menanteau, J. González, J.-B. Juin, T. A. Marriage, E. D. Reese, V. Acquaviva, P. Aguirre, J. W. Appel, A. J. Baker, L. F. Barrientos, E. S. Battistelli, J. R. Bond, S. Das, A. J. Deshpande, M. J. Devlin, S. Dicker, J. Dunkley, R. Dünner, T. Essinger-Hileman, J. W. Fowler, A. Hajian, M. Halpern, M. Hasselfield, C. Hernández-Monteagudo, M. Hilton, A. D. Hincks, R. Hlozek, K. M. Huffenberger, J. P. Hughes, L. Infante, K. D. Irwin, J. Klein, A. Kosowsky, Y.-T. Lin, D. Marsden, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, L. Parker, B. Partridge, N. Sehgal, J. Sievers, D. N. Spergel, S. T. Staggs, D. Swetz, E. Switzer, R. Thornton, H. Trac, R. Warne, E. Wollack, Apj, 723, 1523-1541, (2010).
- ↑ The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'dovich Effect Selected Galaxy Clusters, C. Sifón, F. Menanteau, M. Hasselfield, T. A. Marriage, J. P. Hughes, L. F. Barrientos, J. González, L. Infante, G. E. Addison, A. J. Baker, N. Battaglia, J. R. Bond, D. Crichton, S. Das, M. J. Devlin, J. Dunkley, R. Dünner, M. B. Gralla, A. Hajian, M. Hilton, A. D. Hincks, A. B. Kosowsky, D. Marsden, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, B. Partridge, E. D. Reese, N. Sehgal, J. Sievers, D. N. Spergel, S. T. Staggs, R. J. Thornton, H. Trac, E. J. Wollack, ApJ, 772, 25, (2013).
- ↑ Classification of Compact Submillimeter Sources in the Planck Archive, C. H. Johnson, C. Border, K. O'Connor, D. Rothrock, R. Chary, M. Bingham, M. Clark, M. Ernst, S. Gilbert, S. Koop, M. Maddaus, I. Miller, A. O'Bryan, T. Ravelomanantsoa, D. San Miguel, L. Schmidt, E. Searls, W. Tong, O. Torres, A. Zeidner, NITARP, in American Astronomical Society Meeting Abstracts American Astronomical Society Meeting Abstracts, 221, 352.18, (2013).
- ↑ 19.019.119.2 Planck early results. VII. The Early Release Compact Source Catalogue, Planck Collaboration VII, A&A, 536, A7, (2011).
- ↑ Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample, Planck Collaboration VIII, A&A, 536, A8, (2011).
- ↑ Planck early results. XXIII. The Galactic cold core population revealed by the first all-sky survey, Planck Collaboration XXIII, A&A, 536, A23, (2011).
Early Release Compact Source Catalog
Full-Width-at-Half-Maximum
(Planck) High Frequency Instrument
(Planck) Low Frequency Instrument
Flexible Image Transfer Specification
Data Processing Center
Sunyaev-Zel'dovich