Difference between revisions of "LFI systematic effect uncertainties"

From Planck PLA 2015 Wiki
Jump to: navigation, search
(Summary of uncertainties due to systematic effects)
(Summary of uncertainties due to systematic effects)
Line 20: Line 20:
 
|width="220" |
 
|width="220" |
 
|width="220" |
 
|width="220" |
|width="120" |
+
|width="140" |
 
|-
 
|-
 
|width="280" | White noise correlation
 
|width="280" | White noise correlation
 
|width="220" | Phase switch imbalance
 
|width="220" | Phase switch imbalance
 
|width="220" | Diode weighting
 
|width="220" | Diode weighting
|width="120" | {{PlanckPapers|planck2013-p02a}} {{PlanckPapers|planck2014-a04||Planck-2015-A04}}
+
|width="140" | {{PlanckPapers|planck2013-p02a}} {{PlanckPapers|planck2014-a04||Planck-2015-A04}}
 
|-
 
|-
 
|width="280" | 1/<math>f</math> noise
 
|width="280" | 1/<math>f</math> noise
 
|width="220" | RF amplifiers
 
|width="220" | RF amplifiers
 
|width="220" | Pseudo-correlation and destriping
 
|width="220" | Pseudo-correlation and destriping
|width="120" | {{PlanckPapers|planck2013-p02a}} {{PlanckPapers|planck2014-a04||Planck-2015-A04}}
+
|width="140" | {{PlanckPapers|planck2013-p02a}} {{PlanckPapers|planck2014-a04||Planck-2015-A04}}
 
|-  
 
|-  
 
|width="280" | Bias fluctuations  
 
|width="280" | Bias fluctuations  
 
|width="220" | RF amplifiers, back-end electronics&
 
|width="220" | RF amplifiers, back-end electronics&
 
|width="220" | Pseudo-correlation and destriping  
 
|width="220" | Pseudo-correlation and destriping  
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-  
 
|-  
 
|width="280" | Thermal fluctuations
 
|width="280" | Thermal fluctuations
 
|width="220" | 4 K, 20 K and 300 K thermal stages
 
|width="220" | 4 K, 20 K and 300 K thermal stages
 
|width="220" | Calibration, destriping
 
|width="220" | Calibration, destriping
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-  
 
|-  
 
|width="280" | 1 Hz spikes
 
|width="280" | 1 Hz spikes
 
|width="220" | Back-end electronics
 
|width="220" | Back-end electronics
 
|width="220" | Template fitting and removal
 
|width="220" | Template fitting and removal
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
!width="280" | Effects dependent on sky signal (T and P)
 
!width="280" | Effects dependent on sky signal (T and P)
 
|width="220" |
 
|width="220" |
 
|width="220" |
 
|width="220" |
|width="120" |
+
|width="140" |
 
|-
 
|-
 
|width="280" | Main beam ellipticity
 
|width="280" | Main beam ellipticity
 
|width="220" | Main beams
 
|width="220" | Main beams
 
|width="220" | Accounted for in window function
 
|width="220" | Accounted for in window function
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Near sidelobes pickup
 
|width="280" | Near sidelobes pickup
 
|width="220" | Optical response at angles <math> <5^\circ</math> from the main beam
 
|width="220" | Optical response at angles <math> <5^\circ</math> from the main beam
 
|width="220" | Masking of Galaxy and point sources
 
|width="220" | Masking of Galaxy and point sources
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Far sidelobes pickup
 
|width="280" | Far sidelobes pickup
 
|width="220" | Main and sub-reflector spillovers
 
|width="220" | Main and sub-reflector spillovers
 
|width="220" | Model sidelobes removed from timelines  
 
|width="220" | Model sidelobes removed from timelines  
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Analogue-to-digital converter non linearity
 
|width="280" | Analogue-to-digital converter non linearity
 
|width="220" | Back-end analogue-to-digital converter
 
|width="220" | Back-end analogue-to-digital converter
 
|width="220" | Template fitting and removal  
 
|width="220" | Template fitting and removal  
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Imperfect photometric calibration
 
|width="280" | Imperfect photometric calibration
 
|width="220" | Sidelobe pickup, radiometer noise temperature changes and other non-idealities
 
|width="220" | Sidelobe pickup, radiometer noise temperature changes and other non-idealities
 
|width="220" | Calibration using the 4 K reference load voltage output
 
|width="220" | Calibration using the 4 K reference load voltage output
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Pointing  
 
|width="280" | Pointing  
 
|width="220" | Uncertainties in pointing reconstruction, thermal changes affecting focal plane geometry
 
|width="220" | Uncertainties in pointing reconstruction, thermal changes affecting focal plane geometry
 
|width="220" | Negligible impact anisotropy measurements
 
|width="220" | Negligible impact anisotropy measurements
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
!width="280" | Effects specifically impacting polarization
 
!width="280" | Effects specifically impacting polarization
 
|width="220" |
 
|width="220" |
 
|width="220" |
 
|width="220" |
|width="120" |
+
|width="140" |
 
|-
 
|-
 
|width="280" | Bandpass asymmetries
 
|width="280" | Bandpass asymmetries
 
|width="220" | Differential orthomode transducer and receiver bandpass response
 
|width="220" | Differential orthomode transducer and receiver bandpass response
 
|width="220" | Spurious polarisation removal
 
|width="220" | Spurious polarisation removal
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Polarization angle uncertainty
 
|width="280" | Polarization angle uncertainty
 
|width="220" | Uncertainty in the polarization angle in-flight measurement
 
|width="220" | Uncertainty in the polarization angle in-flight measurement
 
|width="220" | Negligible impact
 
|width="220" | Negligible impact
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|width="280" | Orthomode transducer cross-polarization
 
|width="280" | Orthomode transducer cross-polarization
 
|width="220" | Imperfect polarization separation  
 
|width="220" | Imperfect polarization separation  
 
|width="220" | Negligible impact  
 
|width="220" | Negligible impact  
|width="120" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
+
|width="140" | {{PlanckPapers|planck2014-a03||Planck-2015-A03}}
 
|-
 
|-
 
|}
 
|}
Line 115: Line 115:
 
{| border="0" cellspacing="0" cellpadding="2" align="center"
 
{| border="0" cellspacing="0" cellpadding="2" align="center"
 
|width="450"| <center>'''30 GHz'''</center>   
 
|width="450"| <center>'''30 GHz'''</center>   
 +
|-
 +
|width="450"| [[File:Selection_263.png|450px]]
 +
|-
 
|width="450"| <center>'''44 GHz'''</center>  
 
|width="450"| <center>'''44 GHz'''</center>  
 +
|-
 +
|width="450"| [[File:Selection_261.png|450px]]
 +
|-
 
|width="450"| <center>'''70 GHz'''</center>  
 
|width="450"| <center>'''70 GHz'''</center>  
 
|-
 
|-
|width="450"| [[File:Selection_263.png|450px]]
 
|width="450"| [[File:Selection_261.png|450px]]
 
 
|width="450"| [[File:Selection_262.png|450px]]
 
|width="450"| [[File:Selection_262.png|450px]]
 
 
|}
 
|}
  
Line 128: Line 131:
 
Our assessment shows that the global impact of systematic effects uncertainties in the LFI do not limit either temperature or E-mode spectra measurements.
 
Our assessment shows that the global impact of systematic effects uncertainties in the LFI do not limit either temperature or E-mode spectra measurements.
 
<center>
 
<center>
[[File:Selection_264.png|1200px]]
+
[[File:Selection_264.png|900px]]
  
[[File:Selection_265.png|1200px]]
+
[[File:Selection_265.png|900px]]
  
[[File:Selection_266.png|1200px]]
+
[[File:Selection_266.png|900px]]
  
 
'''Figure 1. Angular power spectra of the various systematic effects compared to the Planck beam-filtered temperature and polarization spectra. The dark-gray thick curve represents the total contribution. The dark-green dotted curve represent the contribution from far sidelobes that has been removed from the data and, therefore not considered in the total.  The CMB TT and EE curves correspond to the Planck best-fit power spectra. The theoretical $B$-mode CMB spectrum assumes a tensor-to-scalar ratio r = 0.1, a tensor spectral index nT=0 and has not been beam-filtered. ''Rows'': 30, 44 and 70 GHz spectra. ''Columns'': temperature, E-mode and B-mode spectra. .'''
 
'''Figure 1. Angular power spectra of the various systematic effects compared to the Planck beam-filtered temperature and polarization spectra. The dark-gray thick curve represents the total contribution. The dark-green dotted curve represent the contribution from far sidelobes that has been removed from the data and, therefore not considered in the total.  The CMB TT and EE curves correspond to the Planck best-fit power spectra. The theoretical $B$-mode CMB spectrum assumes a tensor-to-scalar ratio r = 0.1, a tensor spectral index nT=0 and has not been beam-filtered. ''Rows'': 30, 44 and 70 GHz spectra. ''Columns'': temperature, E-mode and B-mode spectra. .'''

Revision as of 10:49, 3 February 2015

Overview[edit]

Known systematic effects in the Planck-LFI data can be divided into two broad categories: effects independent of the sky signal, which can be considered as additive or multiplicative spurious contributions to the measured timelines, and effects which are dependent on the sky and that cannot be considered independently from the observation strategy.

Here we report a brief summary of these effects, all the details can be found in Planck-2013-III[1] and Planck-2015-A04[2].

Summary of uncertainties due to systematic effects[edit]

In this section we provide a top-level overview of the uncertainties due to systematic effects in the Planck-LFI CMB temperature maps and power spectra. Table 1 provides a list of these effects with short indications of their cause, strategies for removal and references to sections and/or papers where more information is found.

Table 1. List of known instrumental systematic effects in Planck LFI.
Effect Source Control/Removal Reference
Effects independent of sky signal (T and P)
White noise correlation Phase switch imbalance Diode weighting Planck-2013-III[1]Planck-2015-A04[2]
1/[math]f[/math] noise RF amplifiers Pseudo-correlation and destriping Planck-2013-III[1]Planck-2015-A04[2]
Bias fluctuations RF amplifiers, back-end electronics& Pseudo-correlation and destriping Planck-2015-A03[3]
Thermal fluctuations 4 K, 20 K and 300 K thermal stages Calibration, destriping Planck-2015-A03[3]
1 Hz spikes Back-end electronics Template fitting and removal Planck-2015-A03[3]
Effects dependent on sky signal (T and P)
Main beam ellipticity Main beams Accounted for in window function Planck-2015-A03[3]
Near sidelobes pickup Optical response at angles [math] \lt 5^\circ[/math] from the main beam Masking of Galaxy and point sources Planck-2015-A03[3]
Far sidelobes pickup Main and sub-reflector spillovers Model sidelobes removed from timelines Planck-2015-A03[3]
Analogue-to-digital converter non linearity Back-end analogue-to-digital converter Template fitting and removal Planck-2015-A03[3]
Imperfect photometric calibration Sidelobe pickup, radiometer noise temperature changes and other non-idealities Calibration using the 4 K reference load voltage output Planck-2015-A03[3]
Pointing Uncertainties in pointing reconstruction, thermal changes affecting focal plane geometry Negligible impact anisotropy measurements Planck-2015-A03[3]
Effects specifically impacting polarization
Bandpass asymmetries Differential orthomode transducer and receiver bandpass response Spurious polarisation removal Planck-2015-A03[3]
Polarization angle uncertainty Uncertainty in the polarization angle in-flight measurement Negligible impact Planck-2015-A03[3]
Orthomode transducer cross-polarization Imperfect polarization separation Negligible impact Planck-2015-A03[3]

The impact of 1/[math]f[/math] noise has been assessed using half-ring noise maps normalised to the white noise estimate at each pixel obtained from the white noise covariance matrix, so that a perfectly white noise map would be Gaussian and isotropic with unit variance. Deviations from unity trace the contribution of residual 1/f noise in the final maps, which ranges from 0.06% at 70 GHz to 2% at 30 GHz. Pixel uncertainties due to other systematic effects have been calculated on simulated maps degraded at Nside = 128 at 30 and 44 GHz and Nside = 256 at 70 GHz in order to approximate the optical beam size. This downgrading has been applied in all cases a systematic effect has been evaluated at map level.

In Table 2 we list the r.m.s. and the difference between the 99% and the 1% quantities in the pixel value distributions. For simplicity we refer to this difference as peak-to-peak (p-p) difference although it neglects outliers but effectively approximates the peak-to-peak variation of the effect on the map.

Table 2. Summary of systematic effects uncertainties on maps in μKCMB.

30 GHz
Selection 263.png
44 GHz
Selection 261.png
70 GHz
Selection 262.png

Angular power spectra have been obtained from full resolution (Nside = 1024) systematic effect maps at each frequency using HEALPix Anafast [4]. In Fig. 1 we show how the power spectrum of the various effects compared with the Planck best-fit spectra and with the noise level coming from the half-ring difference maps.

Our assessment shows that the global impact of systematic effects uncertainties in the LFI do not limit either temperature or E-mode spectra measurements.

Selection 264.png

Selection 265.png

Selection 266.png

Figure 1. Angular power spectra of the various systematic effects compared to the Planck beam-filtered temperature and polarization spectra. The dark-gray thick curve represents the total contribution. The dark-green dotted curve represent the contribution from far sidelobes that has been removed from the data and, therefore not considered in the total. The CMB TT and EE curves correspond to the Planck best-fit power spectra. The theoretical $B$-mode CMB spectrum assumes a tensor-to-scalar ratio r = 0.1, a tensor spectral index nT=0 and has not been beam-filtered. Rows: 30, 44 and 70 GHz spectra. Columns: temperature, E-mode and B-mode spectra. .

Effects independent of sky signal[edit]

Noise correlations and 1/f noise[edit]

TBW

Thermal effects[edit]

TBW


Bias fluctuations[edit]

TBW


1-Hz spikes[edit]

TBW


Main Beam Ellipticity[edit]

TBW

Near Sidelobes pickup[edit]

TBW

Effects dependent on sky signal[edit]

Sidelobe pick-up[edit]

TBW


ADC non linearity[edit]

TBW


Imperfect photometric calibration[edit]

Pointing effects[edit]

TBW


Polarization Angle Uncertainty[edit]

TBW

Ortho-Mode Transducer Cross-Polarization[edit]

TBW

References[edit]

  1. 1.01.11.2 Planck 2013 results. III. Low Frequency Instrument systematic uncertainties, Planck Collaboration, 2014, A&A, 571, A3
  2. 2.02.12.2 Planck 2015 results. III. LFI systematics, Planck Collaboration, 2016, A&A, 594, A3.
  3. 3.003.013.023.033.043.053.063.073.083.093.103.11 Planck 2015 results. II. LFI processing, Planck Collaboration, 2016, A&A, 594, A2.
  4. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ApJ, 622, 759-771, (2005).

(Planck) Low Frequency Instrument

Cosmic Microwave background

[LFI meaning]: absolute calibration refers to the 0th order calibration for each channel, 1 single number, while the relative calibration refers to the component of the calibration that varies pointing period by pointing period.

(Hierarchical Equal Area isoLatitude Pixelation of a sphere, <ref name="Template:Gorski2005">HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ApJ, 622, 759-771, (2005).

analog to digital converter