Beams LFI

From Planck PLA 2015 Wiki
Revision as of 13:12, 25 February 2013 by Fvilla (talk | contribs) (Overview)
Jump to: navigation, search

Wish List[edit]

list of information to be inserted in the explanatory supplements

- Description of LFI FOV.

- Description of various telescope models as reported in the beam paper.

- Format of beam data

- Definition of various coordinate frames for beams

Overview[edit]

LFI is observing the sky with 11 pairs of beams associated with the 22 pseudo-correlation radiometers. Each beam of the radiometer pair (Radiometer Chain Assembly - RCA) is named as LFIXXM or LFIXXS. XX is the RCA number ranging from 18 to 28; M and S are the two polarization namely main-arm and side-arm of the Orthomode transduccers #darcangelo2009b.


The optimization of the LFI optical system leading to the focal plane configuration used in flight is described in \cite{sandri2010}, while the preliminary characterisation of the LFI beams based on the first in-flight data are reported in \cite{planck2011-1.4} and \cite{planck2011-1.6}.


LFI is coupled to the telescope by eleven dual-profiled, corrugated, conical horns #sandri2010,villa2010: six feed horns at 70 GHz (FH18 – FH23), three feed horns at 44 GHz (FH24 – FH26), and two feed horns at 30 GHz (FH27 and FH28). Each feed horn is connected to an orthomode transducer (OMT) to divide the field propagating into the horn into two orthogonal linear polarization components, X and Y #darcangelo2010a.

Figure 1. A CAD model of the Planck focal plane, which is located directly below the telescope primary mirror. It comprises the HFI bolometric detector array (small feed horns on golden circular base) and the LFI radio receiver array (larger feed horns around the HFI). The box holding the feedhorns appears to be transparent in this view, to also show the elements inside and behind it. ESA/Thales.

The feeds and corresponding OMTs are adjusted in the focal surface so that the main beam polarization directions of the two symmetrically located feed horns in the focal plane unit (FPU) are at an angle of 45 degrees when observed in the same direction in the sky. This configuration permits measurement of the Q and U Stokes parameters and thus the linear polarization of the CMB.

The separation of the power pattern into a main beam and sidelobes can be somewhat arbitrary and is basically governed by convention. Different definitions of these regions could in principle be used: electromagnetic definitions, science-related definitions, and simulation-related definitions. In this framework the main beam region was defined by taking care that not only the relevant main beam characteristics are computed (angular resolution, ellipticity, directivity, cross polar discrimination factor, and so on), but also that the main beam distortion, at a level of about –60 dB (mainly due to the off-axis location of the LFI feed horns), can be evaluated.

Main Beams and Focal Plane calibration[edit]

Describe the RIMO content (beam section)


The beam solid angle, Ω[math]_A [/math], of an antenna is given by

[math] Ω_A \; = \; \int_{4π} \; P_n(θ,φ) \; dΩ \; = \; \int^{2π}_0 \int^π_0 \; P_n(θ,φ) \; sinθ \; dθ \; dφ [/math]

\Omega where [math]P_n (θ, φ) \; [/math] is the normalized power pattern and the field computed by GRASP is normalised to a total power of 4π watt, i.e.,

[math] \int^{2π}_0 \int^π_0 \; P_n(θ,φ) \; sinθ \; dθ \; dφ \; = \; 4π [/math]

Effective beams[edit]

TBW

Window Functions[edit]

TBW

Sidelobes[edit]

TBW

References[edit]

<biblio force=false>

  1. References

</biblio>

(Planck) Low Frequency Instrument

Field-Of-View

LFI Radiometer Chain Assembly

LFI Ortho Module Transducer

(Planck) High Frequency Instrument

European Space Agency

Focal Plane Unit

Cosmic Microwave background

[LFI meaning]: absolute calibration refers to the 0th order calibration for each channel, 1 single number, while the relative calibration refers to the component of the calibration that varies pointing period by pointing period.