Difference between revisions of "Simulation data"

From Planck PLA 2015 Wiki
Jump to: navigation, search
Line 8: Line 8:
 
-----------------------
 
-----------------------
  
The Planck Sky model, a complete set data and code to simulate sky emission at millimeter-wave frequencies, is described in detail in [http://adsabs.harvard.edu/abs/2012arXiv1207.3675D Delabrouille et al., arXiv/1207.3675].
+
The Planck Sky model, a complete set data and code to simulate sky emission at millimeter-wave frequencies, is described in detail in the pre-launch [http://adsabs.harvard.edu/abs/2012arXiv1207.3675D PSM paper] (Delabrouille et al., arXiv/1207.3675).
  
 
The main simulations used to test and validate the Planck data anaysis pipelines (and, in particular, component separation) makes use of simulations generated with version 1.7.7 of the PSM software. Sky emission comprises the following components: CMB, thermal dust, spinning dust, synchrotron, CO lines, free-free, thermal Sunyaev-Zel'dovich (SZ) effect (with first order relativistic corrections), kinetic SZ effect, radio and infrared sources, Cosmic Infrared Background (CIB).
 
The main simulations used to test and validate the Planck data anaysis pipelines (and, in particular, component separation) makes use of simulations generated with version 1.7.7 of the PSM software. Sky emission comprises the following components: CMB, thermal dust, spinning dust, synchrotron, CO lines, free-free, thermal Sunyaev-Zel'dovich (SZ) effect (with first order relativistic corrections), kinetic SZ effect, radio and infrared sources, Cosmic Infrared Background (CIB).
Line 34: Line 34:
 
All other parameters are set to the default standard of the Jan 2012 version of CAMB. In addition, this simulated CMB contains non-gaussian corrections of the local type, with an f_NL parameter of 20.4075.
 
All other parameters are set to the default standard of the Jan 2012 version of CAMB. In addition, this simulated CMB contains non-gaussian corrections of the local type, with an f_NL parameter of 20.4075.
  
The Galactic ISM emission comprises 5 major components: Thermal dust, spinning dust, synchrotron, CO lines, and free-free emission. We refer the reader to the PSM publication for details. For the simulations generated here, however, the thermal dust model has been modified in the following way: Instead of being based on the 100 misron map of Schlegel, Finkbeiner and Davis (SFD; ), the dust template uses the 857 GHz Planck observed dust itself, in which point sources have been subtracted, and which has been locally filtered to remove CIB fluctuations in the regions of lowest column density. A caveat is that while this reduces the level of CIB fluctuations in the dust map in some of the regions, in regions of moderate dust column density the CIB contamination is actually larger than in the SFD map
+
The Galactic ISM emission comprises 5 major components: Thermal dust, spinning dust, synchrotron, CO lines, and free-free emission. We refer the reader to the PSM publication for details. For the simulations generated here, however, the thermal dust model has been modified in the following way: Instead of being based on the 100 misron map of Schlegel, Finkbeiner and Davis (SFD; 1998), the dust template uses an internal release of the 857 GHz Planck observed map itself, in which point sources have been subtracted, and which has been locally filtered to remove CIB fluctuations in the regions of lowest column density. A caveat is that while this reduces the level of CIB fluctuations in the dust map in some of the regions, in regions of moderate dust column density the CIB contamination is actually larger than in the SFD map.
 +
 
 +
The othe emissions of the galactic ISM are simulated using the prescription descibed in the PSM paper.
 +
Synchrotron, Free-free and spinning dust emission are based on WMAP observations, as analysed by Miville-Deschenes et al., 2008. Small scale fluctuations have been added to increase the variance on small scales and compensate the lower resolution of WMAP as compared to Planck (in particular HFI channels). The main limitation of these maps is the presence at high galactic latitude of fluctuations that may be imputable to WMAP noise.
 +
 
 +
The CO maps are simulated using the CO J=1-0 observations of Dame et al. (2001)
  
  

Revision as of 17:34, 7 March 2013

Introduction[edit]

The simulations process consists of modeling the sky using pre-Planck data, and then simulating the observations of that sky (actually those skies because they are simulated at many frequencies) using a model of the instruments and following the Planck scanning strategy. The first part is done by the Planck Sky Model (henceforth PSM), and the second part by the FFP6 (TBD- I guess this is the product, not the simulator) . A brief description of these is given below.


The Planck Sky Model[edit]


The Planck Sky model, a complete set data and code to simulate sky emission at millimeter-wave frequencies, is described in detail in the pre-launch PSM paper (Delabrouille et al., arXiv/1207.3675).

The main simulations used to test and validate the Planck data anaysis pipelines (and, in particular, component separation) makes use of simulations generated with version 1.7.7 of the PSM software. Sky emission comprises the following components: CMB, thermal dust, spinning dust, synchrotron, CO lines, free-free, thermal Sunyaev-Zel'dovich (SZ) effect (with first order relativistic corrections), kinetic SZ effect, radio and infrared sources, Cosmic Infrared Background (CIB).

The CMB is a based on adiabatic initial perturbations, with the following cosmological parameters:

  • T_CMB = 2.725
  • H = 0.684
  • OMEGA_M = 0.292
  • OMEGA_B = 0.04724
  • OMEGA_NU = 0
  • OMEGA_K = 0
  • SIGMA_8 = 0.789
  • N_S = 0.9732
  • N_S_RUNNING = 0
  • N_T = 0
  • R = 0.0844
  • TAU_REION = 0.085
  • HE_FRACTION = 0.245
  • N_MASSLESS_NU = 3.04
  • N_MASSIVE_NU = 0
  • W_DARK_ENERGY = -1
  • K_PIVOT = 0.002
  • SCALAR_AMPLITUDE = 2.441e-9

All other parameters are set to the default standard of the Jan 2012 version of CAMB. In addition, this simulated CMB contains non-gaussian corrections of the local type, with an f_NL parameter of 20.4075.

The Galactic ISM emission comprises 5 major components: Thermal dust, spinning dust, synchrotron, CO lines, and free-free emission. We refer the reader to the PSM publication for details. For the simulations generated here, however, the thermal dust model has been modified in the following way: Instead of being based on the 100 misron map of Schlegel, Finkbeiner and Davis (SFD; 1998), the dust template uses an internal release of the 857 GHz Planck observed map itself, in which point sources have been subtracted, and which has been locally filtered to remove CIB fluctuations in the regions of lowest column density. A caveat is that while this reduces the level of CIB fluctuations in the dust map in some of the regions, in regions of moderate dust column density the CIB contamination is actually larger than in the SFD map.

The othe emissions of the galactic ISM are simulated using the prescription descibed in the PSM paper. Synchrotron, Free-free and spinning dust emission are based on WMAP observations, as analysed by Miville-Deschenes et al., 2008. Small scale fluctuations have been added to increase the variance on small scales and compensate the lower resolution of WMAP as compared to Planck (in particular HFI channels). The main limitation of these maps is the presence at high galactic latitude of fluctuations that may be imputable to WMAP noise.

The CO maps are simulated using the CO J=1-0 observations of Dame et al. (2001)


TBW by J. Delabrouille

The Planck simulator a better name is welcome[edit]


TBW by J. Borril

Products delivered[edit]


What follows is the plan for the sims to be delivered as of mid Jan 2013. The text below is to be replaced by the description of the products described (AMo - 7/3/13)


Modelled sky (PSM outputs)[edit]

Full channel / nominal mission sky maps, Temperature only, in 9 Planck bands, of 10 components: cmb (lensed), CO, FIRB, free-free, synchrotron, thermal dust, spinning dust, kinetic SZ, thermal SZ, point sources

==> 10x9 maps for all components except CO) + 6 CO maps (present at freq > 100 GHz only) for a total of 96 maps which are to be grouped by frequency (as SkyMap products, into 10 FITS files, one for each component, names like COM_PSMMap-{component)_Nside_Relname.fits


Observed sky[edit]

A nominal mission map for each of the following

  • a total map, i.e., sum of all components + noise
  • a foregrounds map, i.e., sum of all components except cmb, including noise
  • a point sources map, with the point sources alone
  • the noise maps, with the noise alone

==> for a total of 36 maps grouped into 4 FITS files. Names like COM_SimMap-{total | foregrounds | sources | noise)_Nside_Relname.fits

Planck Sky Model

To be defined / determined

Cosmic Microwave background

Sunyaev-Zel'dovich

(Planck) High Frequency Instrument

Flexible Image Transfer Specification