Difference between revisions of "Catalogues"
(→Union Catalogue) |
(→Union Catalogue) |
||
Line 287: | Line 287: | ||
# The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0. | # The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0. | ||
# values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up; 20 = known cluster. | # values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up; 20 = known cluster. | ||
− | # The comments on the detections in the catalogue are contained in a text file called ''{{PLASingleFile|fileType= | + | # The comments on the detections in the catalogue are contained in a text file called ''{{PLASingleFile|fileType=catdoc | name=COM_PCCS_SZ-union_comments_R1.11.txt | link=COM_PCCS_SZ-union_comments_R1.11.txt}}'' <span style="color:red">OUTSTANDING: please check fileType </span>, which contains one line for each detection in the union catalogue with COMMENT = T. The line starts with the INDEX and NAME of the detection to facilitate cross-referencing. The remainder of the line is the comment on that detection. |
====Individual Catalogues==== | ====Individual Catalogues==== |
Revision as of 13:24, 31 July 2013
Contents
The Catalogue of Compact Sources[edit]
Product description[edit]
The PCCS is a set of nine single-frequencies lists of sources extracted from the Planck nominal mission data. By definition its reliability is > 80% and a special effort was made to use simple selection procedures in order to facilitate statistical analyses. With a common detection method for all the channels and the additional three photometries, spectral analysis can also be done safely. The deeper completeness levels and, as a consequence, the higher number of sources compared with its predecessor the ERCSC, will allow the extension of previous studies to more sources and to fainter flux densities. The PCCS is the natural evolution of the ERCSC, but both lack polarization and multi-frequency information. Future releases will take advantage of the full mission data and they will contain information on properties of sources not available in this release, such as polarization, multi-frequency and variability.
Channel | 30 | 44 | 70 | 100 | 143 | 217 | 353 | 545 | 857 |
---|---|---|---|---|---|---|---|---|---|
Frequency [GHz] | 28.4 | 44.1 | 70.4 | 100.0 | 143.0 | 217.0 | 353.0 | 545.0 | 857.0 |
Beam FWHM1 [arcmin] | 32.38 | 27.10 | 13.30 | 9.88 | 7.18 | 4.87 | 4.65 | 4.72 | 4.39 |
SNR threshold | 4.0 | 4.0 | 4.0 | 4.6 | 4.7 | 4.8 | 4.92/6.03 | 4.7/7.0 | 4.9/7.0 |
# of detections | 1256 | 731 | 939 | 3850 | 5675 | 16070 | 17689 | 26472 | 35719 |
# of detections for |b| > 30º) | 572 | 258 | 332 | 845 | 1051 | 1901 | 2035 | 4164 | 7851 |
Flux density uncertainty [mJy] | 109 | 198 | 149 | 61 | 38 | 35 | 74 | 132 | 189 |
Min flux density4 [mJy] | 461 | 825 | 566 | 266 | 169 | 149 | 298 | 479 | 671 |
90% completeness [mJ] | 575 | 1047 | 776 | 300 | 190 | 180 | 330 | 570 | 680 |
Position uncertainty5 [arcmin] | 1.8 | 2.1 | 1.4 | 1.0 | 0.7 | 0.7 | 0.8 | 0.5 | 0.4 |
Notes
- The Planck beams are described in #planck2013-p02d Planck-2013-IV ; #planck2013-p03c Planck-2013-VII . This table shows the values which were adopted for the PCCS (derived from the effective beams).
- In the extragalactic zone (48% of the sky; see Fig. 2 in #planck2013-p05 Planck-2013-XXVIII ).
- In the Galactic zone (52% of the sky; see Fig. 2 in #planck2013-p05 Planck-2013-XXVIII ).
- Minimum flux density of the catalogue at |b| > 30º after excluding the 10% faintest sources.
- Positional uncertainty derived by comparison with PACO sample (#PATCABright,#PATCAfaint,#PATCASpec) up to 353 GHz and with Herschel samples (HRS, KINGFISH, HeViCS, H-ATLAS) in the other channels.
Before using the PCCS, please read the Cautionary Notes in the PCCS general description section. For full details, see paper #planck2013-p05 Planck-2013-XXVIII .
Production process[edit]
For a description of the production and validation processes of the PCCS see the corresponding section.
Inputs[edit]
The data obtained from the Planck nominal mission between (2009 August 12 and 2010 November 27) have been processed into full-sky maps by the HFI and LFI Data Processing Centres (DPCs). A description of the processing can be found in #planck2013-p02,#planck2013-p03 Planck-2013-II Planck-2013-VI . The data consist of two complete sky surveys and 60% of the third survey. This implies that the flux densities of sources obtained from the nominal mission maps are the average of at least two observations. The nine Planck frequency channel maps are used as input to the source detection pipelines. The relevant properties of the frequency maps and main parameters used to generate the catalogues are summarized in Table 1.
The input data used to generate this product are the following:
Related products[edit]
Other products that are related and share some commonalities with the product being described here are the other catalogues:
File names[edit]
- COM_PCCS_030_R1.30.fits
- COM_PCCS_044_R1.30.fits
- COM_PCCS_070_R1.30.fits
- COM_PCCS_100_R1.20.fits
- COM_PCCS_143_R1.20.fits
- COM_PCCS_217_R1.20.fits
- COM_PCCS_353_R1.20.fits
- COM_PCCS_545_R1.20.fits
- COM_PCCS_857_R1.20.fits
Meta Data[edit]
The PCCS source list in each frequency is structured as a FITS binary table having one row for each detected source. The details of the FITS file structure are below
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | LFI or HFI | |
VERSION | String | Version of PCCS | |
DATE | String | Date file created:yyyy-mm-dd | |
ORIGIN | String | Name of organization responsible for the data (LFI-DPC – HFI-DPC) | |
TELESCOP | String | PLANCK | |
CREATOR | String | Pipeline Version | |
DATE-OBS | String | days | Start-up time of the survey: yyyy-mm-dd |
DATE-END | String | days | Ending time of the survey: yyyy-mm-dd |
Extension 1: (BINTABLE) | |||
Column Name | Data Type | Units | Description |
Identification | |||
NAME | String | Source name (Note 1) | |
Source Position | |||
GLON | Real*8 | degrees | Galactic longitude based on extraction algorithm |
GLAT | Real*8 | degrees | Galactic latitude based on extraction algorithm |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT) |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT) |
Photometry | |||
DETFLUX | Real*4 | mJy | Flux density of source as determined by detection method |
DETFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from detection method |
APERFLUX | Real*4 | mJy | Flux density of source as determined from the aperture photometry |
APERFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from the aperture photometry |
PSFFLUX | Real*4 | mJy | Flux density of source as determined from PSF fitting |
PSFFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from PSF fitting |
GAUFLUX | Real*4 | mJy | Flux density of source as determined from 2-D Gaussian fitting |
GAUFLUX_ERR | Real*4 | mJy | Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting |
GAU_SEMI1 | Real*4 | arcmin | Gaussian fit along axis 1 (FWHM; see Note 4 for axis definition) |
GAU_SEMI1_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 1 |
GAU_SEMI2 | Real*4 | arcmin | Gaussian fit along axis 2 (FWHM) |
GAU_SEMI2_ERR | Real*4 | arcmin | Uncertainty (1 sigma) in derived Gaussian fit along axis 2 |
GAU_THETA | Real*4 | deg | Gaussian fit orientation angle (Note 4) |
GAU_THETA_ERR | Real*4 | deg | Uncertainty (1 sigma) in derived gaussian fit orientation angle |
GAU_FWHM_EFF | Real*4 | arcmin | Gaussian fit effective FWHM |
Flags and validation | |||
EXTENDED | Integer*2 | Extended source flag (Note 2) | |
CIRRUS_N | Integer*2 | Number of sources detected at 857 GHz within 1 degree | |
EXT_VAL | Integer*2 | External validation flag (Note 3) | |
ERCSC | String | Name of the ERCSC counterpart if any | |
ONLY 857 GHz Catalogue | |||
APERFLUX_217 | Real*4 | mJy | Estimated flux density at 217 GHz |
APERFLUX_ERR_217 | Real*4 | mJy | Uncertainty in source flux density at 217 GHz |
APERFLUX_353 | Real*4 | mJy | Estimated flux density at 353 GHz |
APERFLUX_ERR_353 | Real*4 | mJy | Uncertainty in source flux density at 353 GHz |
APERFLUX_545 | Real*4 | mJy | Estimated flux density at 545 GHz |
APERFLUX_ERR_545 | Real*4 | mJy | Uncertainty in source flux density at 545 GHz |
Notes
- Source names consist of a prefix and a position. The prefix used is PCCS1 fff for the catalogue at fff GHz. The position is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (l,b) values are truncated to two decimal places. For example, a source detected at (l,b) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PCCS1 545 G120.23±04.23.
- The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
- The EXT_VAL flag takes the value of 0, 1, or 2, based on the following conditions:
- = 2: The source has a clear counterpart in one of the catalogues considered as ancillary data.
- = 1: The source has no clear counterpart in one of the ancillary catalogues but it has been detected by the internal multi-frequency method (LFI channels) or match with neighbouring frequencies, above or below (HFI channels).
- = 0: The source has no clear counterpart in one of the ancillary catalogues and it has not been detected by the internal multi-frequency method or neighbouring frequencies.
- The x-axis is defined for each source as parallel to the line of constant colatitude, with the same direction as the longitude. Therefore the position angles are measured anticlockwise from the y-axis.
The SZ catalogues[edit]
The Planck SZ catalogue is constructed as described in SZ catalogue and in section 2 of #planck2013-p05a Planck-2013-XXIX .
Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The individual catalogues are provided for the expert user in order to assess the consistency of the pipelines. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in sections 3-6 of #planck2013-p05a Planck-2013-XXIX .
The union catalogue contains the coordinates and the signal-to-noise ratio of the detections and a summary of the external validation information, including external identification of a cluster and its redshift if it is available.
The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue.
The size of a detection is given in terms of the scale size, $\theta_\mathrm{s}$, and the flux is given in terms of the total integrated Comptonization parameter, $Y = Y_{5r_{500}}$. The parameters of the GNFW profile assumed by the detection pipelines is written in the headers in the catalogues. For the sake of convenience, the conversion factor from $Y$ to $Y_{500}$ is also written in the header.
The full information on the degeneracy between $\theta_\mathrm{s}$ and $Y$ is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. The degeneracy information is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters.
Union Catalogue[edit]
The union catalogue is contained in a file called COM_PCCS_SZ-union_R1.11.fits.
Extension 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | Instrument. | |
VERSION | String | Version of catalogue. | |
DATE | String | Date file created: yyyy-mm-dd. | |
ORIGIN | String | Name of organization responsible for the data. | |
TELESCOP | String | PLANCK. | |
CREATOR | String | Pipeline version. | |
DATE-OBS | String | Start time of the survey: yyyy-mm-dd. | |
DATE-END | String | End time of the survey: yyyy-mm-dd. | |
PROCVER | String | Data version. | |
PP_ALPHA | Real*4 | GNFW pressure profile $\alpha$ parameter. | |
PP_BETA | Real*4 | GNFW pressure profile $\beta$ parameter. | |
PP_GAMMA | Real*4 | GNFW pressure profile $\gamma$ parameter. | |
PP_C500 | Real*4 | GNFW pressure profile $c_{500}$ parameter. | |
PP_Y2YFH | Real*4 | Conversion factor from $Y$ to $Y_{500}$. | |
Extension 1: data extension (BINTABLE) | |||
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index. Used to cross-reference with individual catalogues. | |
NAME | String | Source name, (Note 1) | |
GLON | Real*8 | degrees | Galactic longitude. |
GLAT | Real*8 | degrees | Galactic latitude. |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT). |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT). |
POS_ERR | Real*4 | arcmin | Position uncertainty (95% confidence level). |
SNR | Real*4 | Signal-to-noise ratio of the detection. | |
PIPELINE | Int*4 | Souce pipeline: 1= MMF1; 2 = MMF3; 3 = PwS. | |
PIPE_DET | Int*4 | Pipelines which detect this object (note 2). | |
PCCS | Bool | Indicates whether detection matches any PCCS source. | |
VALIDATION | Int*4 | External validation status (Note 3) | |
ID_EXT | String | External identifier of cluster. | |
REDSHIFT | Real*4 | Redshift of cluster. | |
COSMO | Bool | Detection is in the cosmology sample. | |
COMMENT | Bool | Detection has a comment in the associated text file (Note 4). |
Notes
- format is PSZ1 Glll.ll+mn;bb.b where (l,b) are the Galactic and truncated to 2 decimal places.
- The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
- values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up; 20 = known cluster.
- The comments on the detections in the catalogue are contained in a text file called COM_PCCS_SZ-union_comments_R1.11.txt OUTSTANDING: please check fileType , which contains one line for each detection in the union catalogue with COMMENT = T. The line starts with the INDEX and NAME of the detection to facilitate cross-referencing. The remainder of the line is the comment on that detection.
Individual Catalogues[edit]
The individual pipeline catalogues are contained in the FITS files
- COM_PCCS_SZ-MMF1_R1.11.fits (Matched Multi-Filter method #1)
- COM_PCCS_SZ-MMF3_R1.11.fits (Matched Multi-Filter method #3)
- COM_PCCS_SZ-PwS_R1.11.fits (Powell Snakes method)
Their structure is as follows:
Ext. 0: Primary header, no data | |||
---|---|---|---|
FITS Keyword | Data Type | Units | Description |
INSTRUME | String | Instrument. | |
VERSION | String | Version of catalogue. | |
DATE | String | Date file created: yyyy-mm-dd. | |
ORIGIN | String | Name of organization responsible for the data. | |
TELESCOP | String | PLANCK. | |
CREATOR | String | Pipeline version. | |
DATE-OBS | String | Start time of the survey: yyyy-mm-dd. | |
DATE-END | String | End time of the survey: yyyy-mm-dd. | |
PROCVER | String | Data version. | |
PP_ALPHA | Real*4 | GNFW pressure profile $\alpha$ parameter. | |
PP_BETA | Real*4 | GNFW pressure profile $\beta$ parameter. | |
PP_GAMMA | Real*4 | GNFW pressure profile $\gamma$ parameter. | |
PP_C500 | Real*4 | GNFW pressure profile $c_{500}$ parameter. | |
PP_Y2YFH | Real*4 | Conversion factor from $Y$ to $Y_{500}$. | |
Ext. 1: EXTNANE = PSZ_INDIVIDUAL (BINTABLE) | |||
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index from union catalogue. | |
NAME | String | Source name - see Note1 | |
GLON | Real*8 | degrees | Galactic longitude. |
GLAT | Real*8 | degrees | Galactic latitude. |
RA | Real*8 | degrees | Right ascension (J2000) transformed from (GLON,GLAT). |
DEC | Real*8 | degrees | Declination (J2000) transformed from (GLON,GLAT). |
POS_ERR | Real*4 | arcmin | Position uncertainty (95% confidence interval). |
SNR | Real*4 | Signal-to-noise ratio of the detection. | |
SNR_COMPAT | Real*4 | SNR of the detection in compatibility mode (Note 2) | |
TS_MIN | Real*4 | Minimum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below). | |
TS_MAX | Real*4 | Maximum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below). | |
Y_MIN | Real*4 | Minimum value of $Y$ in grid in second extension HDU (see below). | |
Y_MAX | Real*4 | Maximum value of $Y$ in grid in second extension HDU (see below). | |
Keyword | Data Type | Value | Description |
PIPELINE | String | Name of detection pipeline. | |
Ext. 2: EXTNAME = PSZ_PROBABILITY (IMAGE) - Note 3 | |||
Keyword | Data Type | Value | Description |
NAXIS1 | Integer | 256 | Dim 1 |
NAXIS2 | Integer | 256 | Dim 2 |
NAXIS3 | Integer | Nsources | Dim 3 = Number of sources |
Keyword | Data Type | Value | Description |
PIPELINE | String | Name of detection pipeline. |
Notes
- Format PSZ1 Glll.ll±bb.bb where (l, b) are the Galactic coordinates truncated to 2 decimal places.
- For PwS, this is the S/N evaluated in a manner compatible with the MMF pipelines. For MMF1 and MMF3, it is identical to SNR.
- Ext. 2 contains a three-dimensional image with the two-dimensional probability distribution in $\theta_\mathrm{s}$ and $Y$ for each detection. The probability distributions are evaluated on a 256 × 256 linear grid between the limits specified in Ext. 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 × 256 × n, where n is the number of detections. The first dimension is $\theta_\mathrm{s}$ and the second dimension is $Y$.
Mask[edit]
The mask used to construct the catalogue is contained in a file
- COM_PCCS_SZ-unionMask_2048_R1.10.fits. OUTSTANDING: please check fileType
It is in GALACTIC coordinates, NESTED ordering, NSIDE=2048.
Additional information[edit]
Additional information on the SZ detections was retrieved from external sources and written into the FITS file
- COM_PCCS_SZ-validation_R1.11.fits OUTSTANDING: please check fileType
(for more details see #planck2013-p05a). This file contains a single BINTABLE extension. The table contains 1 line per source, and the columns and their meaning are given below.
Ext. 0: (BINTABLE) | |||
---|---|---|---|
Column Name | Data Type | Units | Description |
INDEX | Int*4 | Index from union catalogue. | |
NAME | String | Source name | |
REDSHIFT | Real*4 | Redshift | |
REDSHIFT_SOURCE | Int*4 | Source for redshift - see Note 1. | |
ALT_NAME | String | Alternative names. | |
RA_MCXC | Real*4 | degrees | Right Ascension of the MCXC identifier. |
DEC_MCXC | Real*4 | degrees | Declination of the MCXC identifier. |
YZ_500 | Real*4 | 10-4 arcmin squared | Compton parameter in R500 from SZ-proxy. |
ERRP_YZ_500 | Real*4 | 10-4 arcmin squared | Error sup. |
ERRM_YZ_500 | Real*4 | 10-4 arcmin squared | Error inf. |
M_YZ_500 | Real*4 | 1014 Msol | Derived mass estimatefrom SZ proxy. |
ERRP_M_YZ_500 | Real*4 | 1014 Msol | Error sup. on M_YZ_500. |
ERRM_M_YZ_500 | Real*4 | 1014 Msol | Error sup. on M_YZ_500. |
S_X | Real*4 | erg/s/cm2 | unabsorbed X-ray flux - see Note 2. |
ERR_S_X | Real*4 | erg/s/cm2 | Error on unabsorbed X-ray flux. |
Y_PSX_500 | Real*4 | 10-4erg/s/cm2 | SZ signal - see Note 3. |
Notes
- Source for redshifts
- MCXC updated compilation #Piffaretti2011
- Databases NED and SIMBAD-CDS
- SDSS cluster catalogue #Wen2012,#Szabo2011
- SPT #Vanderlinde2010,#Williamson2011,#Andersson2011,#Plagge2010,#Reichardt2013,#Story2011,#Song2012
- ACT #Hasselfield2013,#Marriage2011,#Menanteau2010,#Sifon2013
- Search in SDSS galaxy catalogue from Planck Collab.
- XMM-Newton confirmation from Planck Collab.
- ENO-imaging confirmation from Planck Collab.
- WFI-imaging confirmation from Planck Collab.
- NTT-spectroscopic confirmation from Planck Collab.
- RTT-spectroscopic confirmation from Planck Collab.
- NOT-spectroscopic confirmation from Planck Collab.
- GEMINI-spectroscopic confirmation from Planck Collab.
- ENO-spectroscopic confirmation from Planck Collab.
- Unabsorbed X-ray flux measured in an aperture of 5 arcmin in the band [0.1-2.4] keV. The aperture is centered on the Planck position, except for candidates associated with a BSC source for which we adopt the X-ray position. For sources with , we only quote an upper limit.
- SZ signal re-extracted fixing the size to the X-ray size provided in the MCXC catalogue at the X-ray position, for PSZ clusters identified with MCXC clusters.
The ERCSC[edit]
The Plank Early Release Compact Source Catalogue was the first Planck product to be publicly released in Jan 2011. It was produced with a very rapid turnaround to facilitate follow-up observations with existing c ryogenic observatories such as Herschel. It contained a list of all high reliability sources, both Galactic and extragalactic, that were derived from the first all sky coverage by Planck. i.e., using observations obtained from 12 August 2009 to 6 June 2010. Thus the full sky was covered once, and ~60% of the sky was covered twice. The goals were to achieve a photometric accuracy of 30% and a positional accuracy 1/5 of the beam FWHM in the RMS sense.
The ERCSC consisted of nine source lists, one at each of the nine Planck frequency channels. The number of sources in the lists range from 705 at 30 GHz to 8988 at 857 GHz. No attempt was made to cross-match the sources from the different frequencies due to the wide range of spatial resolutions (33 arcmin at 30 GHz to 4.3 arcmin at 857 GHz) spanned by Planck. Furthermore, a list of Cold Cores of interstellar molecular clouds within the Galaxy and a list of galaxy clusters detected through the Sunyaev- Zel’dovich effect (SZ), were also provided. These consisted of candidate sources that were detected using multifrequency algorithms that use the distinct spectral signature of such sources. The Cold Cores catalogue contained 915 sources while the SZ cluster catalogue consisted of 189 sources
In order to generate the ERCSC, four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >90%. Reliability is defined as the fraction of sources in the catalog which have measured flux densities which are within 30% of their true flux density. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux density limit of the catalogue at $|b| > 30$ deg is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion. The sensitivity of the ERCSC is shown in the figure below. The ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs.
The multifrequency information from Planck allows some basic classification of the sources to be undertaken. In the Galactic plane, at frequencies below 100 GHz, the majority of the sources are dominated by synchrotron or free-free emission. At the higher frequencies, the sources are almost exclusively dominated by thermal dust emission. At high Galactic latitudes however, the synchrotron sources dominate the source counts to 217 GHz with dusty sources being the primary source population at 353 GHz and higher. Recent attempts to classify a subset of the Planck 857 GHz sources at high latitudes based on cross-correlations with sources in other catalogs such as WISE and SDSS, found that almost half of them are associated with stars and low-redshift galaxies while a significant fraction (44%) might be interstellar medium features #Johnson2013.
Full details on the construction, contents and usage of the ERCSC, ECC and ESZ catalogues can be found in #planck2011-1-10 Planck early paper VII , #planck2011-5-1a Planck early paper VIII , #planck2011-7-7b Planck early paper XXIII .
The figure shows the ERCSC flux density limits, quanitfied as the faintest ERCSC source at |b|<10 deg (dashed black line) and at |b|>30 deg (solid black line), compared to those of other wide area surveys (#planck2011-1-10 Planck early paper VII ). Also shown are spectra of known sources of foreground emission as red lines. The ERCSC sensitivity is worse in the Galactic plane due to the strong contribution of ISM emission, especially at submillimeter wavelengths. At face value, the WMAP and Planck flux density limits appear to be comparable at the lowest frequencies, but the Planck ERCSC is much more complete as discussed in #planck2011-1-10 Planck early paper VII .
References[edit]
<biblio force=false>
</biblio>
Early Release Compact Source Catalog
Full-Width-at-Half-Maximum
(Planck) High Frequency Instrument
(Planck) Low Frequency Instrument
Flexible Image Transfer Specification
Data Processing Center
Sunyaev-Zel'dovich