Difference between revisions of "Spectral response"

From Planck PLA 2015 Wiki
Jump to: navigation, search
(Testing the text placement pre and post tables)
 
(70 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== HFI Spectral Response ==
 
== HFI Spectral Response ==
 +
This section outlines the unit-conversion and colour-correction protocol for Planck/HFI, based on the measurements of the HFI detector chain spectral response (see {{PlanckPapers|planck2013-p03d}} and [[HFI_cold_optics#Spectral_response|here]] for the description of the spectral response pre-launch measurements).
  
This section outlines the unit conversion and colour correction protocol for Planck/HFI.  Tables of unit conversion and colour correction coefficients will be included (there is not room for these in the P03d Co-Paper).  Some of the checks on the unit conversion and colour correction coefficients will be described here alsoPlanet colour correction coefficients will be provided here (or perhaps in the joint HFI/LFI section). There will be links to the UcCC subsection of the PLA section, but the numbers and details belong here.  The PLA UcCC subsection is primarily to introduce the software tools.
+
The band-averaged HFI spectral response data are shown in the figure below, and provided in the [[the RIMO|the instrument model]]Similar data are available for individual detectors as well as sub-band averaged data sets (i.e., detset1, detset2, PSBs, SWBs). A table summarizing some of the spectral properties of the individual detectors, and band-averaged spectra, is shown at the bottom of this page.
  
The band-average HFI spectral response data are shown in the figure below, and provided in the RIMO file [FIXME].
+
<center>
 +
[[Image:map-cc-HFI_Spec_Bands_180mm.png|thumb|700px|center|Band-averaged HFI transmission spectra.  Vertical bars illustrate the CO rotational transition frequencies.]]
 +
</center>
  
FIXME: insert figure.
+
The band-averaged spectrum for a given frequency band is derived using a hit-map-normalized inverse-square noise-weighted detector spectrum average.  Thus, the effective band-averaged spectrum in question changes depending on Planck's coverage of the region of sky in question.  This may change between different subsets of the Planck data, e.g., surveys, detector sets, etc. The histograms below demonstrate the variation across the sky of the detector weight coefficients used to determine the band-averaged spectra. Thus, the validity of using a single band-averaged spectrum for an entire sky map, may require evaluation depending on the task at hand.  Some analyses may require incorporating the variation of the relative detector weights across the sky in order to understand the differential spectral transmission between complementary maps (e.g., detset-1 versus detset-2 maps).  There are four groupings to consider with respect to the relative weighting of the individual detector contribution to the Planck data, and hence the relative contribution of a given detector spectrum to a band-averaged spectrum or sub-band-average spectrum: ring; detset; survey; and mask.  There are three possible combinations for the ring grouping, accounting for whether the full ring is used in the map, just the first half, or the last half; the notation used here is F+L for the full ring, F for the first half, and L for the last half.  The detset grouping has between three and five combinations per frequency band, accounting for the detectors to include in the average, including all detectors, detset1, detset2, only the PSB detectors (PSBs), or only the SWB detectors (SWBs).  There are 11 possible survey options, including the full mission, nominal mission, Survey 1, Survey 2, Survey 3, Survey 4, Survey 5, Year 1, Year 2, Half-mission 1, and Half-mission 2.  There are also six nominal masking options for the maps including 100%, 99%, 97%, 90%, 80%, and 60% of the sky (various degrees of masking the Galactic plane).  Thus, for a given frequency band there could be up to almost 1000 (sub-)band-averaged spectra.  While the images below only show the variation of detector contribution to the average for the full and nominal missions, a similar evaluation was conducted across the entire parameter space to determine the relevant average spectrum.  This parameter space is also considered in determining the effective unit-conversion and colour-correction coefficients (see below).
  
The integration ranges used in determining the unit conversion and colour correction coefficients are verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges.  The figure below demonstrates the stability in the integral once a sufficient data range has been employed.  The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.
+
<center>
 +
<gallery widths="500px" heights="330px" perrow="2">
 +
File:100GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|100 GHz.
 +
File:143GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|143 GHz.
 +
File:217GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|217 GHz.
 +
File:353GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|353 GHz.
 +
File:545GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|545 GHz.
 +
File:857GHz_HitMapWeights_IMO_3_16_detilt_t2_ptcor6_Sfull_Plot_88mm.png|857 GHz.
 +
</gallery>
 +
<small>'''Variation of individual detector contributions to band-averaged frequency maps across the sky, for various HFI surveys.'''</small>
 +
</center>
  
FIXME: insert figure showing integral flattening once the range hs extended sufficiently out of band.
 
  
The band-average spectrum for a given frequency band is derived using a hit-map normalized inverse-square noise weighted detector spectrum average. Thus, the effective band-average spectrum changes depending on the region of sky in question, really the Planck coverage of any sky region. The histograms below demonstrate the variation across the sky of the detector weight coefficients, and thus the validity of using a single band-average spectrum for the entire sky mapFuture analysis with the full Planck dataset may require incorporating the variation of the relative detector weights across the sky into understanding the differential spectral transmission between complementary maps (e.g. detset -1 cf. detset-2 maps).   
+
As described in {{PlanckPapers|planck2013-p03d}}, several unit-conversion and colour-correction coefficients may be useful in the analysis of Planck data. These include conversion from CMB temperature units to MJy sr<sup>-1</sup>, and colour-correction coefficients for conversion to a variety of spectral profiles. Software routines to determine these coefficients are provided [[Unit_conversion_and_Color_correction|here]], and some example tables are provided [[UC_CC_Tables|here]]. A text file containing unit-conversion and colour-correction coefficients for all of the individual HFI detectors, as well as the band-averaged and sub-band-averaged spectra, is included at the bottom of this pageThis file contains all of the iterations for the sub-band-averaged spectra, including ring, detset, survey, and mask variations.   
  
FIXME: include detector weight histogram plots.
+
The integration ranges used in determining the unit-conversion and colour-correction coefficients provided were verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges.  The figure below demonstrates the stability in the integral once a sufficient data range has been employed.  The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.
  
The following table presents basic characteristics of the HFI detector spectral repsonse, inclusing optical efficiency, effective frequency, etc.
+
<center>
 +
<gallery widths=400px heights=500px perrow="3">
 +
File:CheckCCcutoff_v302_nuInu2RJ_100_GHz_bc100_avg.png|100 GHz.
 +
File:CheckCCcutoff_v302_nuInu2RJ_143_GHz_bc143_avg.png|143 GHz.
 +
File:CheckCCcutoff_v302_nuInu2RJ_217_GHz_bc217_avg.png|217 GHz.
 +
File:CheckCCcutoff_v302_nuInu2RJ_353_GHz_bc353_avg.png|353 GHz.
 +
File:CheckCCcutoff_v302_nuInu2RJ_545_GHz_bc545_avg.png|545 GHz.
 +
File:CheckCCcutoff_v302_nuInu2RJ_857_GHz_bc857_avg.png|857 GHz.
 +
</gallery>
 +
<small>'''Colour-correction (&alpha; = -1 to +2) stability with integration cut-off variation.  The horizontal bars illustrate the nominal colour-correction values.  Similar results are found for the integration cut-on.'''</small>
 +
</center>
  
FIXME: Add table from HFI_SPEC_TRANS_REPORT
 
  
=== Testing the text placement pre and post tables ===
+
The following table presents basic characteristics of the HFI detector spectral response, including optical efficiency, effective frequency, etc.  Further details on the definition of these parameters are available in {{PlanckPapers|planck2013-p03d}}.
  
This is a dummy section that I created to test a bug where the text after a table was turning up before the table. 
+
<center>
 
+
{| class="wikitable" align="center" style="text-align:center" border="1" cellpadding="5" cellspacing="0"
This will be deleted once I sort this problem out. 
+
|+ '''Properties of HFI detector spectra'''
 
+
|- bgcolor="ffdead"
 
+
| Band [GHz] || &nu;<sub>cut-on</sub> [GHz] || &nu;<sub>cut-off</sub> [GHz] || BW [GHz] || &nu;<sub>cen.</sub> [GHz] || &nu;<sub>eff.</sub> [GHz] || &epsilon; || &epsilon;<sub>Int.</sub> || &nu;<sub>-1</sub> [GHz] || &nu;<sub>+2</sub> [GHz] || &nu;<sub>+4</sub> [GHz]
This text should be before the first table, table XXX.
 
 
 
<br style="clear:both;">
 
 
 
Table XXX: MJy/sr/KCMB unit conversion table.
 
{| border = 1
 
|+
 
|-
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
 
|-
 
 
 
| 100 || 00 || 1a || 238.2871 ± 0.5039
 
|-
 
| 100 || 01 || 1b || 241.8530 ± 0.4899
 
|-
 
| 100 || 20 || 2a || 244.2375 ± 0.5301
 
|-
 
| 100 || 21 || 2b || 243.3572 ± 0.5621
 
|-
 
| 100 || 40 || 3a || 246.0715 ± 0.5254
 
|-
 
| 100 || 41 || 3b || 240.1739 ± 0.5075
 
|-
 
| 100 || 80 || 4a || 246.7316 ± 0.5607
 
|-
 
| 100 || 81 || 4b || 247.6289 ± 0.5442
 
|-
 
| 100 || 100 || avg || 244.0960 ± 0.2170
 
|-
 
 
 
<br style="clear:both;">
 
 
 
This text should be after the first table (XXX) and before the second (YYY)
 
 
 
<br style="clear:both;">
 
 
 
Table YYY: MJy/sr to Tb unit conversion.
 
{| border = 1
 
|+
 
|-
 
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
 
|-
 
| 100 || 100 || avg || 0.0032548074
 
|-
 
| 143 || 143 || avg || 0.0015916707
 
|-
 
| 217 || 217 || avg || 0.00069120334
 
|-
 
| 353 || 353 || avg || 0.00026120163
 
|-
 
| 545 || 545 || avg || 0.00010958025
 
|-
 
| 857 || 857 || avg || 4.4316316e-05
 
|-
 
 
 
<br style="clear:both;">
 
 
 
This text is after the second table (YYY) and before the third (ZZZ).
 
 
 
<br style="clear:both;">
 
 
 
Table ZZZ: KCMB to ySZ unit conversion
 
{| border = 1
 
|+
 
|-
 
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
 
|-
 
| 100 || 00 || 1a || -0.2461 ± 0.0001
 
|-
 
| 100 || 01 || 1b || -0.2470 ± 0.0001
 
|-
 
| 100 || 20 || 2a || -0.2483 ± 0.0001
 
|-
 
| 100 || 21 || 2b || -0.2480 ± 0.0001
 
|-
 
| 100 || 40 || 3a || -0.2487 ± 0.0001
 
|-
 
| 100 || 41 || 3b || -0.2469 ± 0.0001
 
|-
 
| 100 || 80 || 4a || -0.2491 ± 0.0001
 
|-
 
| 100 || 81 || 4b || -0.2492 ± 0.0001
 
|-
 
| 100 || 100 || avg || -0.2481 ± 5.2679e-05
 
|-
 
 
 
<br style="clear:both;">
 
 
 
This text is after all of the tables.
 
 
 
=== Unit Conversion Tables ===
 
 
 
This section presents unit conversion coefficients for the HFI detectors (and LFI in some instances), including uncertainty estimates based on the uncertainty of the HFI detector spectral response.  The derivation of the unit conversion coefficients is provided in <cite>planck2013-p02d</cite>.
 
 
 
Table XX: MJy/sr/KCMB unit conversion table.
 
{| border = 1
 
|+
 
|-
 
| Band (GHz) || BC || Det. || U_C [MJy/sr/K'_CMB_']
 
|-
 
 
 
| 100 || 00 || 1a || 238.2871 ± 0.5039
 
|-
 
| 100 || 01 || 1b || 241.8530 ± 0.4899
 
|-
 
| 100 || 20 || 2a || 244.2375 ± 0.5301
 
|-
 
| 100 || 21 || 2b || 243.3572 ± 0.5621
 
|-
 
| 100 || 40 || 3a || 246.0715 ± 0.5254
 
|-
 
| 100 || 41 || 3b || 240.1739 ± 0.5075
 
|-
 
| 100 || 80 || 4a || 246.7316 ± 0.5607
 
|-
 
| 100 || 81 || 4b || 247.6289 ± 0.5442
 
|-
 
| 100 || 100 || avg || 244.0960 ± 0.2170
 
|-
 
| 143 || 02 || 1a || 366.4108 ± 0.1726
 
|-
 
| 143 || 03 || 1b || 369.5905 ± 0.1823
 
|-
 
| 143 || 30 || 2a || 366.7249 ± 0.1788
 
|-
 
| 143 || 31 || 2b || 370.7001 ± 0.1703
 
|-
 
| 143 || 50 || 3a || 360.0418 ± 0.1892
 
|-
 
| 143 || 51 || 3b || 365.9529 ± 0.1835
 
|-
 
| 143 || 82 || 4a || 371.3469 ± 0.1811
 
|-
 
| 143 || 83 || 4b || 369.0953 ± 0.1758
 
|-
 
| 143 || 10 || 5 || 380.1162 ± 0.1659
 
|-
 
| 143 || 42 || 6 || 373.3413 ± 0.1744
 
|-
 
| 143 || 60 || 7 || 381.2511 ± 0.1745
 
|-
 
| 143 || 70 || 8 || 376.1461 ± 0.1777
 
|-
 
| 143 || 143 || avg || 371.7327 ± 0.0558
 
|-
 
| 217 || 04 || 1 || 486.0322 ± 0.0252
 
|-
 
| 217 || 22 || 2 || 486.4008 ± 0.0262
 
|-
 
| 217 || 52 || 3 || 486.8924 ± 0.0257
 
|-
 
| 217 || 84 || 4 || 486.0164 ± 0.0248
 
|-
 
| 217 || 11 || 5a || 479.8049 ± 0.0286
 
|-
 
| 217 || 12 || 5b || 480.4364 ± 0.0280
 
|-
 
| 217 || 43 || 6a || 480.3416 ± 0.0281
 
|-
 
| 217 || 44 || 6b || 480.3544 ± 0.0284
 
|-
 
| 217 || 61 || 7a || 481.0486 ± 0.0265
 
|-
 
| 217 || 62 || 7b || 480.0012 ± 0.0283
 
|-
 
| 217 || 71 || 8a || 479.8096 ± 0.0289
 
|-
 
| 217 || 72 || 8b || 480.7686 ± 0.0271
 
|-
 
| 217 || 217 || avg || 483.6874 ± 0.0084
 
|-
 
| 353 || 05 || 1 || 288.4183 ± 0.0150
 
|-
 
| 353 || 13 || 2 || 287.8701 ± 0.0158
 
|-
 
| 353 || 23 || 3a || 289.2493 ± 0.0176
 
|-
 
| 353 || 24 || 3b || 289.1951 ± 0.0159
 
|-
 
| 353 || 32 || 4a || 286.6167 ± 0.0155
 
|-
 
| 353 || 33 || 4b || 286.5976 ± 0.0161
 
|-
 
| 353 || 53 || 5a || 289.9808 ± 0.0157
 
|-
 
| 353 || 54 || 5b || 289.9004 ± 0.0161
 
|-
 
| 353 || 63 || 6a || 288.8151 ± 0.0190
 
|-
 
| 353 || 64 || 6b || 292.8348 ± 0.0179
 
|-
 
| 353 || 45 || 7 || 285.3414 ± 0.0192
 
|-
 
| 353 || 85 || 8 || 283.5120 ± 0.0177
 
|-
 
| 353 || 353 || avg || 287.4517 ± 0.0061
 
|-
 
| 545 || 14 || 1 || 57.0831 ± 0.0343
 
|-
 
| 545 || 34 || 2 || 58.8825 ± 0.0320
 
|-
 
| 545 || 55 || 3 || 57.8794 ± 0.0595
 
|-
 
| 545 || 73 || 4 || 58.0595 ± 0.0368
 
|-
 
| 545 || 545 || avg || 58.0356 ± 0.0199
 
|-
 
| 857 || 25 || 1 || 2.1891 ± 0.0391
 
|-
 
| 857 || 35 || 2 || 2.3457 ± 0.0323
 
|-
 
| 857 || 65 || 3 || 2.2133 ± 0.0363
 
|-
 
| 857 || 74 || 4 || 2.4022 ± 0.0402
 
|-
 
| 857 || 857 || avg || 2.2681 ± 0.0188
 
|-
 
 
 
<br style="clear:both;">
 
 
 
The unit conversion from MJy/sr to K_RJ (i.e. Tb) does not depend on the spectrum, so is the same across each frequency band.
 
 
 
<br style="clear:both;">
 
 
 
Table YY: MJy/sr to Tb unit conversion.
 
{| border = 1
 
|+
 
 
|-
 
|-
| Band (GHz) || BC || Det. || U_C [K'_RJ_'/(MJy/sr)]
+
| 100-1a || 84.8 ± 0.5 || 113.96 ± 0.16 || 29.1 ± 0.6 || 99.4 ± 0.3 || 100.28 ± 0.11 || 0.419 ± 0.008 || 0.310 ± 0.008 || 99.45 ± 0.12 || 101.93 ± 0.11 || 103.59 ± 0.10
 
|-
 
|-
| 100 || 100 || avg || 0.0032548074
+
| 100-1b || 86.5 ± 1.0 || 115.32 ± 0.08 || 28.8 ± 1.0 || 100.9 ± 0.5 || 100.87 ± 0.11 || 0.563 ± 0.011 || 0.324 ± 0.011 || 100.06 ± 0.11 || 102.51 ± 0.10 || 104.18 ± 0.09
 
|-
 
|-
| 143 || 143 || avg || 0.0015916707
+
| 100-2a || 86.0 ± 0.6 || 116.4 ± 0.4 || 30.4 ± 0.9 || 101.2 ± 0.3 || 101.34 ± 0.12 || 0.550 ± 0.012 || 0.372 ± 0.012 || 100.38 ± 0.12 || 103.34 ± 0.11 || 105.47 ± 0.10
 
|-
 
|-
| 217 || 217 || avg || 0.00069120334
+
| 100-2b || 84.3 ± 0.5 || 115.5 ± 0.4 || 31.3 ± 0.7 || 99.9 ± 0.3 || 101.19 ± 0.11 || 0.634 ± 0.009 || 0.334 ± 0.009 || 100.23 ± 0.11 || 103.14 ± 0.10 || 105.16 ± 0.09
 
|-
 
|-
| 353 || 353 || avg || 0.00026120163
+
| 100-3a || 84.21 ± 0.17 || 117.36 ± 0.06 || 33.14 ± 0.18 || 100.78 ± 0.09 || 101.64 ± 0.12 || 0.493 ± 0.005 || 0.331 ± 0.005 || 100.68 ± 0.12 || 103.60 ± 0.10 || 105.60 ± 0.09
 
|-
 
|-
| 545 || 545 || avg || 0.00010958025
+
| 100-3b || 84.19 ± 0.19 || 116.81 ± 0.16 || 32.6 ± 0.2 || 100.50 ± 0.13 || 100.63 ± 0.12 || 0.426 ± 0.004 || 0.281 ± 0.004 || 99.74 ± 0.12 || 102.45 ± 0.11 || 104.35 ± 0.10
 
|-
 
|-
| 857 || 857 || avg || 4.4316316e-05  
+
| 100-4a || 84.74 ± 0.07 || 118.09 ± 0.09 || 33.34 ± 0.12 || 101.42 ± 0.05 || 101.77 ± 0.12 || 0.461 ± 0.003 || 0.255 ± 0.003 || 100.77 ± 0.13 || 103.82 ± 0.11 || 105.96 ± 0.10
 
|-
 
|-
 
+
| 100-4b || 84.9 ± 0.3 || 118.30 ± 0.05 || 33.4 ± 0.3 || 101.58 ± 0.14 || 101.91 ± 0.13 || 0.396 ± 0.003 || 0.258 ± 0.003 || 100.92 ± 0.13 || 103.92 ± 0.12 || 105.98 ± 0.10
<br style="clear:both;">
 
 
 
The following is for the SZ coefficients.
 
 
 
<br style="clear:both;">
 
 
 
Table ZZ: KCMB to ySZ unit conversion
 
{| border = 1
 
|+
 
 
|-
 
|-
| Band (GHz) || BC || Det. || U_C [y'_SZ_'/K'_CMB_']
+
| 100-avg || 84.4 ± 0.3 || 117.36 ± 0.05 || 32.9 ± 0.3 || 100.89 ± 0.13 || 101.31 ± 0.05 || 0.479 ± 0.003 || 0.304 ± 0.003 || 100.36 ± 0.05 || 103.24 ± 0.05 || 105.25 ± 0.04
 
|-
 
|-
| 100 || 00 || 1a || -0.2461 ± 0.0001
+
| 100-detset1 || 84.77 ± 0.05 || 117.81 ± 0.06 || 33.03 ± 0.08 || 101.29 ± 0.04 || 101.43 ± 0.07 || 0.4199 ± 0.0020 || 0.2645 ± 0.0020 || 100.49 ± 0.07 || 103.35 ± 0.06 || 105.34 ± 0.06
 
|-
 
|-
| 100 || 01 || 1b || -0.2470 ± 0.0001
+
| 100-detset2 || 84.3 ± 0.3 || 117.14 ± 0.05 || 32.8 ± 0.3 || 100.72 ± 0.13 || 101.25 ± 0.06 || 0.505 ± 0.003 || 0.321 ± 0.003 || 100.31 ± 0.06 || 103.19 ± 0.06 || 105.21 ± 0.05
 
|-
 
|-
| 100 || 20 || 2a || -0.2483 ± 0.0001
+
| 143-1a || 121.2 ± 0.4 || 162 ± 2 || 41 ± 2 || 141.5 ± 1.1 || 141.71 ± 0.04 || 0.66 ± 0.02 || 0.43 ± 0.02 || 140.37 ± 0.04 || 144.48 ± 0.04 || 147.35 ± 0.03
 
|-
 
|-
| 100 || 21 || 2b || -0.2480 ± 0.0001
+
| 143-1b || 119.99 ± 0.03 || 162.8 ± 0.7 || 42.8 ± 0.8 || 141.4 ± 0.4 || 142.29 ± 0.04 || 0.608 ± 0.007 || 0.347 ± 0.007 || 140.97 ± 0.04 || 145.02 ± 0.04 || 147.79 ± 0.04
 
|-
 
|-
| 100 || 40 || 3a || -0.2487 ± 0.0001
+
| 143-2a || 119.7 ± 0.2 || 162.76 ± 0.05 || 43.1 ± 0.2 || 141.21 ± 0.11 || 141.79 ± 0.04 || 0.626 ± 0.003 || 0.449 ± 0.003 || 140.42 ± 0.04 || 144.61 ± 0.04 || 147.51 ± 0.04
 
|-
 
|-
| 100 || 41 || 3b || -0.2469 ± 0.0001
+
| 143-2b || 119.2 ± 0.4 || 163.3 ± 0.5 || 44.1 ± 0.6 || 141.3 ± 0.3 || 142.50 ± 0.04 || 0.619 ± 0.007 || 0.443 ± 0.007 || 141.17 ± 0.05 || 145.21 ± 0.04 || 148.00 ± 0.04
 
|-
 
|-
| 100 || 80 || 4a || -0.2491 ± 0.0001
+
| 143-3a || 120.2 ± 0.3 || 158.8 ± 0.4 || 38.6 ± 0.5 || 139.5 ± 0.2 || 140.51 ± 0.05 || 0.970 ± 0.008 || 0.539 ± 0.008 || 139.17 ± 0.05 || 143.28 ± 0.05 || 146.09 ± 0.05
 
|-
 
|-
| 100 || 81 || 4b || -0.2492 ± 0.0001
+
| 143-3b || 119.88 ± 0.04 || 161.3 ± 1.0 || 41.4 ± 1.0 || 140.6 ± 0.5 || 141.63 ± 0.05 || 0.718 ± 0.012 || 0.457 ± 0.012 || 140.28 ± 0.05 || 144.41 ± 0.04 || 147.22 ± 0.04
 
|-
 
|-
| 100 || 100 || avg || -0.2481 ± 5.2679e-05
+
| 143-4a || 118.7 ± 0.2 || 168.21 ± 0.03 || 49.5 ± 0.2 || 143.47 ± 0.12 || 142.71 ± 0.04 || 0.532 ± 0.002 || 0.324 ± 0.002 || 141.29 ± 0.05 || 145.61 ± 0.04 || 148.56 ± 0.04
 
|-
 
|-
| 143 || 02 || 1a || -0.3550 ± 0.0001
+
| 143-4b || 119.0 ± 0.3 || 161.58 ± 0.04 || 42.6 ± 0.3 || 140.27 ± 0.14 || 142.19 ± 0.05 || 0.538 ± 0.003 || 0.339 ± 0.003 || 140.87 ± 0.05 || 144.87 ± 0.04 || 147.59 ± 0.04
 
|-
 
|-
| 143 || 03 || 1b || -0.3574 ± 0.0001
+
| 143-5 || 119.9 ± 0.3 || 166.608 ± 0.016 || 46.7 ± 0.3 || 143.28 ± 0.16 || 144.24 ± 0.04 || 0.386 ± 0.002 || 0.305 ± 0.002 || 142.93 ± 0.04 || 146.86 ± 0.04 || 149.48 ± 0.03
 
|-
 
|-
| 143 || 30 || 2a || -0.3555 ± 0.0001
+
| 143-6 || 119.97 ± 0.20 || 166.14 ± 0.04 || 46.2 ± 0.2 || 143.06 ± 0.10 || 143.00 ± 0.04 || 0.4531 ± 0.0016 || 0.3128 ± 0.0016 || 141.66 ± 0.05 || 145.72 ± 0.04 || 148.49 ± 0.04
 
|-
 
|-
| 143 || 31 || 2b || -0.3582 ± 0.0001
+
| 143-7 || 120.39 ± 0.07 || 167.5 ± 0.3 || 47.1 ± 0.3 || 143.95 ± 0.15 || 144.46 ± 0.04 || 0.427 ± 0.002 || 0.308 ± 0.002 || 143.14 ± 0.05 || 147.09 ± 0.04 || 149.69 ± 0.04
 
|-
 
|-
| 143 || 50 || 3a || -0.3502 ± 0.0001
+
| 143-8 || 120.7 ± 0.4 || 165.59 ± 0.06 || 44.8 ± 0.4 || 143.16 ± 0.18 || 143.55 ± 0.04 || 0.393 ± 0.002 || 0.277 ± 0.002 || 142.18 ± 0.05 || 146.30 ± 0.04 || 149.02 ± 0.04
 
|-
 
|-
| 143 || 51 || 3b || -0.3548 ± 0.0001
+
| 143-avg || 119.994 ± 0.018 || 165.76 ± 0.04 || 45.76 ± 0.05 || 142.876 ± 0.018 || 142.710 ± 0.012 || 0.5069 ± 0.0007 || 0.3669 ± 0.0007 || 141.363 ± 0.012 || 145.458 ± 0.011 || 148.235 ± 0.011
 
|-
 
|-
| 143 || 82 || 4a || -0.3596 ± 0.0001
+
| 143-detset1 || 120.05 ± 0.03 || 160.18 ± 0.09 || 40.13 ± 0.10 || 140.12 ± 0.05 || 141.45 ± 0.02 || 0.7049 ± 0.0017 || 0.4614 ± 0.0017 || 140.11 ± 0.02 || 144.22 ± 0.02 || 147.05 ± 0.02
 
|-
 
|-
| 143 || 83 || 4b || -0.3569 ± 0.0001
+
| 143-detset2 || 118.95 ± 0.08 || 164.9 ± 0.8 || 45.9 ± 0.8 || 141.9 ± 0.4 || 142.27 ± 0.02 || 0.507 ± 0.007 || 0.379 ± 0.007 || 140.91 ± 0.02 || 145.05 ± 0.02 || 147.902 ± 0.019
 
|-
 
|-
| 143 || 10 || 5 || -0.3656 ± 0.0001
+
| 143-SWBs || 120.17 ± 0.03 || 166.308 ± 0.018 || 46.14 ± 0.04 || 143.238 ± 0.017 || 143.96 ± 0.02 || 0.3967 ± 0.0006 || 0.3123 ± 0.0006 || 142.64 ± 0.02 || 146.63 ± 0.02 || 149.282 ± 0.020
 
|-
 
|-
| 143 || 42 || 6 || -0.3604 ± 0.0001
+
| 217-1 || 189.0 ± 0.4 || 251.24 ± 0.05 || 62.2 ± 0.4 || 220.14 ± 0.20 || 222.817 ± 0.016 || 0.414 ± 0.002 || 0.322 ± 0.002 || 221.099 ± 0.016 || 226.274 ± 0.017 || 229.76 ± 0.02
 
|-
 
|-
| 143 || 60 || 7 || -0.3666 ± 0.0001
+
| 217-2 || 188.66 ± 0.02 || 253.68 ± 0.02 || 65.03 ± 0.04 || 221.169 ± 0.017 || 223.231 ± 0.018 || 0.4575 ± 0.0004 || 0.3624 ± 0.0004 || 221.430 ± 0.018 || 226.814 ± 0.018 || 230.35 ± 0.02
 
|-
 
|-
| 143 || 70 || 8 || -0.3629 ± 0.0001
+
| 217-3 || 190.49 ± 0.05 || 253.174 ± 0.018 || 62.68 ± 0.06 || 221.83 ± 0.03 || 223.116 ± 0.016 || 0.4125 ± 0.0004 || 0.3257 ± 0.0004 || 221.440 ± 0.017 || 226.458 ± 0.016 || 229.774 ± 0.019
 
|-
 
|-
| 143 || 143 || avg || -0.3592 ± 4.2195e-05
+
| 217-4 || 190.8 ± 0.4 || 253.219 ± 0.017 || 62.4 ± 0.4 || 222.03 ± 0.18 || 222.717 ± 0.018 || 0.4043 ± 0.0018 || 0.3132 ± 0.0018 || 221.033 ± 0.018 || 226.116 ± 0.017 || 229.55 ± 0.02
 
|-
 
|-
| 217 || 04 || 1 || 4.3470 ± 0.0090
+
| 217-5a || 182.69 ± 0.07 || 253.2 ± 0.6 || 70.5 ± 0.6 || 217.9 ± 0.3 || 220.421 ± 0.017 || 0.548 ± 0.003 || 0.387 ± 0.003 || 218.489 ± 0.018 || 224.293 ± 0.017 || 228.15 ± 0.02
 
|-
 
|-
| 217 || 22 || 2 || 4.0275 ± 0.0081
+
| 217-5b || 182.75 ± 0.06 || 250.1 ± 0.4 || 67.3 ± 0.4 || 216.41 ± 0.19 || 220.655 ± 0.018 || 0.621 ± 0.002 || 0.377 ± 0.002 || 218.746 ± 0.018 || 224.465 ± 0.018 || 228.234 ± 0.020
 
|-
 
|-
| 217 || 52 || 3 || 4.1184 ± 0.0082
+
| 217-6a || 182.284 ± 0.020 || 253.70 ± 0.02 || 71.41 ± 0.03 || 217.991 ± 0.014 || 220.619 ± 0.018 || 0.4497 ± 0.0003 || 0.3019 ± 0.0003 || 218.705 ± 0.018 || 224.441 ± 0.018 || 228.24 ± 0.02
 
|-
 
|-
| 217 || 84 || 4 || 4.4334 ± 0.0094
+
| 217-6b || 182.85 ± 0.04 || 253.373 ± 0.015 || 70.52 ± 0.04 || 218.113 ± 0.019 || 220.619 ± 0.017 || 0.5274 ± 0.0004 || 0.3349 ± 0.0004 || 218.707 ± 0.017 || 224.408 ± 0.016 || 228.109 ± 0.017
 
|-
 
|-
| 217 || 11 || 5a || 7.4840 ± 0.0288
+
| 217-7a || 188.217 ± 0.019 || 253.88 ± 0.02 || 65.66 ± 0.03 || 221.049 ± 0.012 || 220.766 ± 0.016 || 0.4299 ± 0.0003 || 0.3065 ± 0.0003 || 218.925 ± 0.016 || 224.458 ± 0.016 || 228.122 ± 0.018
 
|-
 
|-
| 217 || 12 || 5b || 6.9766 ± 0.0244
+
| 217-7b || 189.22 ± 0.03 || 250.88 ± 0.02 || 61.66 ± 0.04 || 220.054 ± 0.018 || 220.332 ± 0.018 || 0.4371 ± 0.0003 || 0.2776 ± 0.0003 || 218.468 ± 0.018 || 224.055 ± 0.018 || 227.718 ± 0.019
 
|-
 
|-
| 217 || 43 || 6a || 7.0507 ± 0.0249
+
| 217-8a || 181.98 ± 0.02 || 253.722 ± 0.018 || 71.74 ± 0.03 || 217.852 ± 0.013 || 220.510 ± 0.018 || 0.5282 ± 0.0003 || 0.3768 ± 0.0003 || 218.544 ± 0.019 || 224.432 ± 0.018 || 228.32 ± 0.02
 
|-
 
|-
| 217 || 44 || 6b || 7.0169 ± 0.0249
+
| 217-8b || 181.875 ± 0.013 || 252.99 ± 0.04 || 71.12 ± 0.04 || 217.433 ± 0.018 || 220.712 ± 0.017 || 0.6265 ± 0.0004 || 0.3872 ± 0.0004 || 218.837 ± 0.018 || 224.440 ± 0.017 || 228.127 ± 0.020
 
|-
 
|-
| 217 || 61 || 7a || 6.7975 ± 0.0228
+
| 217-avg || 188.892 ± 0.012 || 253.419 ± 0.007 || 64.527 ± 0.014 || 221.156 ± 0.006 || 221.915 ± 0.005 || 0.39900 ± 0.00013 || 0.33846 ± 0.00013 || 220.113 ± 0.005 || 225.517 ± 0.005 || 229.097 ± 0.006
 
|-
 
|-
| 217 || 62 || 7b || 7.6995 ± 0.0307
+
| 217-detset1 || 183.32 ± 0.15 || 253.61 ± 0.02 || 70.29 ± 0.15 || 218.46 ± 0.07 || 220.548 ± 0.009 || 0.4577 ± 0.0007 || 0.3053 ± 0.0007 || 218.666 ± 0.010 || 224.312 ± 0.009 || 228.038 ± 0.010
 
|-
 
|-
| 217 || 71 || 8a || 7.2564 ± 0.0273
+
| 217-detset2 || 182.159 ± 0.012 || 253.592 ± 0.008 || 71.433 ± 0.015 || 217.875 ± 0.007 || 220.614 ± 0.009 || 0.47458 ± 0.00016 || 0.34838 ± 0.00016 || 218.697 ± 0.009 || 224.429 ± 0.009 || 228.200 ± 0.010
 
|-
 
|-
| 217 || 72 || 8b || 6.8621 ± 0.0231
+
| 217-SWBs || 189.02 ± 0.06 || 253.247 ± 0.014 || 64.22 ± 0.06 || 221.14 ± 0.03 || 222.957 ± 0.008 || 0.4072 ± 0.0003 || 0.3226 ± 0.0003 || 221.241 ± 0.008 || 226.395 ± 0.008 || 229.834 ± 0.010
 
|-
 
|-
| 217 || 217 || avg || 5.1531 ± 0.0042
+
| 353-1 || 306.3 ± 0.5 || 406.8 ± 0.4 || 100.5 ± 0.7 || 356.5 ± 0.3 || 360.289 ± 0.018 || 0.540 ± 0.003 || 0.390 ± 0.003 || 357.546 ± 0.018 || 365.762 ± 0.019 || 371.15 ± 0.02
 
|-
 
|-
| 353 || 05 || 1 || 0.1623 ± 1.7570e-05
+
| 353-2 || 305.82 ± 0.16 || 409.697 ± 0.020 || 103.88 ± 0.16 || 357.76 ± 0.08 || 360.866 ± 0.019 || 0.5947 ± 0.0008 || 0.4515 ± 0.0008 || 358.005 ± 0.019 || 366.615 ± 0.020 || 372.29 ± 0.02
 
|-
 
|-
| 353 || 13 || 2 || 0.1620 ± 1.7967e-05
+
| 353-3a || 308.5 ± 0.3 || 404.77 ± 0.03 || 96.3 ± 0.3 || 356.63 ± 0.13 || 359.59 ± 0.02 || 0.4106 ± 0.0008 || 0.2862 ± 0.0008 || 357.16 ± 0.02 || 364.49 ± 0.02 || 369.37 ± 0.02
 
|-
 
|-
| 353 || 23 || 3a || 0.1623 ± 2.2104e-05
+
| 353-3b || 308.3 ± 0.4 || 406.230 ± 0.015 || 98.0 ± 0.4 || 357.24 ± 0.19 || 359.65 ± 0.02 || 0.4689 ± 0.0014 || 0.3546 ± 0.0014 || 357.02 ± 0.02 || 365.01 ± 0.02 || 370.41 ± 0.02
 
|-
 
|-
| 353 || 24 || 3b || 0.1628 ± 1.8225e-05
+
| 353-4a || 321.275 ± 0.018 || 407.94 ± 0.11 || 86.66 ± 0.11 || 364.61 ± 0.06 || 362.224 ± 0.018 || 0.4334 ± 0.0004 || 0.3119 ± 0.0004 || 359.944 ± 0.017 || 366.853 ± 0.019 || 371.52 ± 0.02
 
|-
 
|-
| 353 || 32 || 4a || 0.1589 ± 1.6673e-05
+
| 353-4b || 311.71 ± 0.05 || 407.71 ± 0.03 || 96.00 ± 0.06 || 359.71 ± 0.02 || 362.212 ± 0.019 || 0.4152 ± 0.0003 || 0.3123 ± 0.0003 || 359.739 ± 0.019 || 367.22 ± 0.02 || 372.23 ± 0.02
 
|-
 
|-
| 353 || 33 || 4b || 0.1594 ± 1.7566e-05
+
| 353-5a || 302.25 ± 0.04 || 406.41 ± 0.15 || 104.17 ± 0.16 || 354.33 ± 0.08 || 358.73 ± 0.02 || 0.3991 ± 0.0005 || 0.2965 ± 0.0005 || 355.88 ± 0.02 || 364.42 ± 0.02 || 370.01 ± 0.02
 
|-
 
|-
| 353 || 53 || 5a || 0.1645 ± 1.8971e-05
+
| 353-5b || 301.37 ± 0.05 || 416.77 ± 0.05 || 115.40 ± 0.07 || 359.07 ± 0.03 || 358.84 ± 0.02 || 0.3626 ± 0.0002 || 0.2542 ± 0.0002 || 355.80 ± 0.02 || 364.98 ± 0.02 || 371.11 ± 0.03
 
|-
 
|-
| 353 || 54 || 5b || 0.1649 ± 1.9322e-05
+
| 353-6a || 302.4 ± 0.4 || 407.99 ± 0.03 || 105.6 ± 0.4 || 355.19 ± 0.19 || 359.91 ± 0.03 || 0.3036 ± 0.0007 || 0.1946 ± 0.0007 || 357.09 ± 0.03 || 365.58 ± 0.03 || 371.18 ± 0.03
 
|-
 
|-
| 353 || 63 || 6a || 0.1630 ± 2.2397e-05
+
| 353-6b || 314.08 ± 0.03 || 398.19 ± 0.04 || 84.11 ± 0.05 || 356.13 ± 0.02 || 356.06 ± 0.02 || 0.2990 ± 0.0002 || 0.2193 ± 0.0002 || 353.67 ± 0.02 || 360.93 ± 0.02 || 365.83 ± 0.03
 
|-
 
|-
| 353 || 64 || 6b || 0.1665 ± 2.1640e-05
+
| 353-7 || 323.2 ± 1.6 || 406.0 ± 0.9 || 83 ± 2 || 364.6 ± 0.7 || 363.35 ± 0.03 || 0.313 ± 0.006 || 0.272 ± 0.006 || 360.84 ± 0.03 || 368.40 ± 0.02 || 373.41 ± 0.03
 
|-
 
|-
| 353 || 45 || 7 || 0.1582 ± 2.4010e-05
+
| 353-8 || 309 ± 3 || 408.20 ± 0.08 || 99 ± 3 || 358.5 ± 1.7 || 365.10 ± 0.02 || 0.374 ± 0.011 || 0.294 ± 0.011 || 362.25 ± 0.02 || 370.82 ± 0.02 || 376.53 ± 0.04
 
|-
 
|-
| 353 || 85 || 8 || 0.1571 ± 1.8646e-05
+
| 353-avg || 306.8 ± 0.6 || 408.22 ± 0.02 || 101.4 ± 0.6 || 357.5 ± 0.3 || 361.290 ± 0.008 || 0.4057 ± 0.0019 || 0.3353 ± 0.0019 || 358.564 ± 0.008 || 366.764 ± 0.009 || 372.193 ± 0.010
 
|-
 
|-
| 353 || 353 || avg || 0.1611 ± 7.0587e-06
+
| 353-detset1 || 303.582 ± 0.016 || 406.333 ± 0.018 || 102.75 ± 0.03 || 354.957 ± 0.011 || 359.156 ± 0.011 || 0.39123 ± 0.00015 || 0.29902 ± 0.00015 || 356.386 ± 0.011 || 364.744 ± 0.011 || 370.302 ± 0.012
 
|-
 
|-
| 545 || 14 || 1 || 0.0688 ± 3.9623e-05
+
| 353-detset2 || 318.885 ± 0.015 || 407.86 ± 0.02 || 88.97 ± 0.03 || 363.372 ± 0.013 || 360.870 ± 0.013 || 0.35915 ± 0.00014 || 0.28730 ± 0.00014 || 358.409 ± 0.013 || 365.850 ± 0.013 || 370.837 ± 0.013
 
|-
 
|-
| 545 || 34 || 2 || 0.0696 ± 3.6313e-05
+
| 353-SWBs || 306.3 ± 0.4 || 408.81 ± 0.03 || 102.5 ± 0.4 || 357.56 ± 0.18 || 361.921 ± 0.013 || 0.4381 ± 0.0013 || 0.3575 ± 0.0013 || 359.158 ± 0.013 || 367.455 ± 0.013 || 372.930 ± 0.015
 
|-
 
|-
| 545 || 55 || 3 || 0.0690 ± 6.9471e-05
+
| 545-1 || 466.41 ± 0.03 || 642.58 ± 0.05 || 176.17 ± 0.06 || 554.50 ± 0.03 || 559.83 ± 0.05 || 0.37600 ± 0.00018 || 0.29576 ± 0.00018 || 554.44 ± 0.07 || 570.00 ± 0.03 || 579.24 ± 0.02
 
|-
 
|-
| 545 || 73 || 4 || 0.0690 ± 4.2375e-05
+
| 545-2 || 466.78 ± 0.03 || 641.44 ± 0.07 || 174.66 ± 0.08 || 554.11 ± 0.04 || 556.05 ± 0.05 || 0.31937 ± 0.00019 || 0.26874 ± 0.00019 || 550.61 ± 0.07 || 566.37 ± 0.03 || 575.78 ± 0.03
 
|-
 
|-
| 545 || 545 || avg || 0.0692 ± 2.2699e-05
+
| 545-3 || 470.6 ± 0.9 || 637.44 ± 0.05 || 166.9 ± 0.9 || 554.0 ± 0.4 || 557.40 ± 0.08 || 0.2536 ± 0.0011 || 0.2127 ± 0.0011 || 552.26 ± 0.13 || 567.14 ± 0.04 || 576.05 ± 0.03
 
|-
 
|-
| 857 || 25 || 1 || 0.0378 ± 0.0006
+
| 545-4 || 470.9 ± 0.3 || 638.52 ± 0.10 || 167.6 ± 0.3 || 554.73 ± 0.16 || 556.85 ± 0.05 || 0.2630 ± 0.0004 || 0.2143 ± 0.0004 || 551.76 ± 0.08 || 566.48 ± 0.03 || 575.32 ± 0.02
 
|-
 
|-
| 857 || 35 || 2 || 0.0382 ± 0.0004
+
| 545-avg || 469.5 ± 0.6 || 640.81 ± 0.03 || 171.3 ± 0.6 || 555.2 ± 0.3 || 557.53 ± 0.03 || 0.3036 ± 0.0008 || 0.2612 ± 0.0008 || 552.22 ± 0.04 || 567.596 ± 0.016 || 576.778 ± 0.014
 
|-
 
|-
| 857 || 65 || 3 || 0.0378 ± 0.0005
+
| 545-detset1 || 466.44 ± 0.02 || 642.36 ± 0.04 || 175.91 ± 0.05 || 554.40 ± 0.02 || 557.86 ± 0.03 || 0.32548 ± 0.00013 || 0.28031 ± 0.00013 || 552.43 ± 0.05 || 568.118 ± 0.020 || 577.458 ± 0.018
 
|-
 
|-
| 857 || 74 || 4 || 0.0382 ± 0.0005
+
| 545-detset2 || 470.9 ± 0.3 || 638.52 ± 0.09 || 167.6 ± 0.3 || 554.73 ± 0.18 || 556.85 ± 0.05 || 0.2631 ± 0.0004 || 0.2143 ± 0.0004 || 551.76 ± 0.08 || 566.48 ± 0.03 || 575.32 ± 0.02
 
|-
 
|-
| 857 || 857 || avg || 0.0380 ± 0.0003
+
| 857-1 || 748.7 ± 0.9 || 992.5 ± 0.3 || 243.8 ± 1.0 || 870.6 ± 0.5 || 866.05 ± 0.10 || 0.2595 ± 0.0010 || 0.2283 ± 0.0010 || 858.1 ± 0.3 || 880.89 ± 0.03 || 894.38 ± 0.03
 
|-
 
|-
 
+
| 857-2 || 726.3 ± 0.4 || 989.09 ± 0.13 || 262.8 ± 0.4 || 857.7 ± 0.2 || 860.55 ± 0.08 || 0.2435 ± 0.0003 || 0.1973 ± 0.0003 || 852.28 ± 0.19 || 876.22 ± 0.03 || 890.59 ± 0.03
<br style="clear:both;">
 
 
 
This line should be after the SZ table in section 1.1
 
 
 
=== Colour Correction, Powerlaw spectra ===
 
 
 
The following table presents colour correction coefficients for HFI (and LFI) detectors and bands. Following the table, plots are also included demonstrating the variation in colour correction coefficients within a frequency band, over a range of spectral indices.
 
 
 
{| border = 1
 
|+ CC Table
 
 
|-
 
|-
| Band (GHz) || BC || Det. || F'_CC_', S.I.: -2 || -1 || 0 || 1 || 2
+
| 857-3 || 742.0 ± 0.5 || 991.7 ± 1.4 || 249.7 ± 1.5 || 866.8 ± 0.7 || 864.92 ± 0.09 || 0.2888 ± 0.0015 || 0.2573 ± 0.0015 || 857.0 ± 0.2 || 879.90 ± 0.03 || 893.53 ± 0.03
 
|-
 
|-
 
+
| 857-4 || 731.4 ± 0.4 || 979.9 ± 0.2 || 248.4 ± 0.4 || 855.7 ± 0.2 || 854.75 ± 0.09 || 0.1414 ± 0.0002 || 0.1189 ± 0.0002 || 847.2 ± 0.2 || 868.94 ± 0.03 || 881.94 ± 0.03
| 100 || 00 || 1a || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025
 
 
|-
 
|-
| 100 || 01 || 1b || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025
+
| 857-avg || 743.9 ± 0.5 || 989.78 ± 0.08 || 245.9 ± 0.5 || 866.8 ± 0.3 || 862.68 ± 0.05 || 0.2412 ± 0.0005 || 0.2165 ± 0.0005 || 854.69 ± 0.11 || 877.724 ± 0.017 || 891.462 ± 0.014
 
|-
 
|-
| 100 || 20 || 2a || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027
+
| 857-detset1 || 736.9 ± 0.3 || 990.38 ± 0.06 || 253.4 ± 0.3 || 863.65 ± 0.13 || 863.42 ± 0.07 || 0.2446 ± 0.0002 || 0.2121 ± 0.0002 || 855.33 ± 0.16 || 878.67 ± 0.02 || 892.59 ± 0.02
 
|-
 
|-
| 100 || 21 || 2b || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028
+
| 857-detset2 || 741.79 ± 0.14 || 987.01 ± 0.09 || 245.22 ± 0.18 || 864.40 ± 0.08 || 861.74 ± 0.08 || 0.23780 ± 0.00017 || 0.21419 ± 0.00017 || 853.89 ± 0.18 || 876.53 ± 0.03 || 890.03 ± 0.03
|-
+
|}
| 100 || 40 || 3a || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027
+
</center>
|-
 
| 100 || 41 || 3b || 0.9887 ± 0.0009 || 1 || 1.0026 ± 0.0009 || 0.9964 ± 0.0017 || 0.9814 ± 0.0026
 
|-
 
| 100 || 80 || 4a || 0.9980 ± 0.0010 || 1 || 0.9923 ± 0.0009 || 0.9751 ± 0.0019 || 0.9486 ± 0.0028
 
|-
 
| 100 || 81 || 4b || 0.9995 ± 0.0009 || 1 || 0.9908 ± 0.0009 || 0.9722 ± 0.0018 || 0.9447 ± 0.0028
 
|-
 
| 100 || 100 || avg || 0.9943 ± 0.0004 || 1 || 0.9964 ± 0.0004 || 0.9835 ± 0.0007 || 0.9617 ± 0.0011
 
|-
 
 
 
| 143 || 02 || 1a || 0.97263 ± 0.00024 || 1 || 1.01872 ± 0.00023 || 1.02801 ± 0.00045 || 1.02743 ± 0.00067
 
|-
 
| 143 || 03 || 1b || 0.97677 ± 0.00025 || 1 || 1.01443 ± 0.00024 || 1.01949 ± 0.00047 || 1.01492 ± 0.00069
 
|-
 
| 143 || 30 || 2a || 0.97272 ± 0.00026 || 1 || 1.01834 ± 0.00024 || 1.02703 ± 0.00047 || 1.02566 ± 0.00069
 
|-
 
| 143 || 31 || 2b || 0.97820 ± 0.00024 || 1 || 1.01294 ± 0.00022 || 1.01653 ± 0.00044 || 1.01056 ± 0.00065
 
|-
 
| 143 || 50 || 3a || 0.96420 ± 0.00026 || 1 || 1.02753 ± 0.00025 || 1.04577 ± 0.00048 || 1.05402 ± 0.00071
 
|-
 
| 143 || 51 || 3b || 0.97178 ± 0.00026 || 1 || 1.01941 ± 0.00024 || 1.02926 ± 0.00047 || 1.02918 ± 0.00069
 
|-
 
| 143 || 82 || 4a || 0.97836 ± 0.00025 || 1 || 1.01212 ± 0.00024 || 1.01421 ± 0.00047 || 1.00611 ± 0.00069
 
|-
 
| 143 || 83 || 4b || 0.97609 ± 0.00025 || 1 || 1.01513 ± 0.00023 || 1.02093 ± 0.00046 || 1.01721 ± 0.00068
 
|-
 
| 143 || 10 || 5 || 0.99048 ± 0.00023 || 1 || 1.00048 ± 0.00022 || 0.99189 ± 0.00043 || 0.97451 ± 0.00064
 
|-
 
| 143 || 42 || 6 || 0.98148 ± 0.00024 || 1 || 1.00943 ± 0.00023 || 1.00943 ± 0.00045 || 0.99996 ± 0.00067
 
|-
 
| 143 || 60 || 7 || 0.99192 ± 0.00024 || 1 || 0.99900 ± 0.00023 || 0.98892 ± 0.00045 || 0.97009 ± 0.00067
 
|-
 
| 143 || 70 || 8 || 0.98488 ± 0.00025 || 1 || 1.00574 ± 0.00024 || 1.00188 ± 0.00047 || 0.98858 ± 0.00069
 
|-
 
| 143 || 143 || avg || 0.97935 ± 0.0000772811 || 1 || 1.01158 ± 0.0000731485 || 1.01364 ± 0.00014 || 1.00607 ± 0.00021
 
|-
 
 
 
| 217 || 04 || 1 || 1.01104 ± 0.000054 || 1 || 0.98146 ± 0.000054 || 0.95584 ± 0.00011 || 0.92373 ± 0.00017
 
|-
 
| 217 || 22 || 2 || 1.01214 ± 0.000056 || 1 || 0.97999 ± 0.000057 || 0.95264 ± 0.00012 || 0.91866 ± 0.00018
 
|-
 
| 217 || 52 || 3 || 1.01277 ± 0.000054 || 1 || 0.97995 ± 0.000054 || 0.95309 ± 0.00011 || 0.92006 ± 0.00017
 
|-
 
| 217 || 84 || 4 || 1.01091 ± 0.000053 || 1 || 0.98175 ± 0.000054 || 0.95655 ± 0.00011 || 0.92496 ± 0.00017
 
|-
 
| 217 || 11 || 5a || 0.99803 ± 0.000060 || 1 || 0.99318 ± 0.000059 || 0.97777 ± 0.00012 || 0.95421 ± 0.00018
 
|-
 
| 217 || 12 || 5b || 0.99929 ± 0.000059 || 1 || 0.99202 ± 0.000058 || 0.97559 ± 0.00012 || 0.95120 ± 0.00018
 
|-
 
| 217 || 43 || 6a || 0.99908 ± 0.000059 || 1 || 0.99220 ± 0.000058 || 0.97593 ± 0.00012 || 0.95167 ± 0.00018
 
|-
 
| 217 || 44 || 6b || 0.99907 ± 0.000059 || 1 || 0.99219 ± 0.000058 || 0.97592 ± 0.00012 || 0.95169 ± 0.00018
 
|-
 
| 217 || 61 || 7a || 1.00045 ± 0.000056 || 1 || 0.99121 ± 0.000055 || 0.97430 ± 0.00011 || 0.94973 ± 0.00017
 
|-
 
| 217 || 62 || 7b || 0.99824 ± 0.000059 || 1 || 0.99328 ± 0.000058 || 0.97826 ± 0.00012 || 0.95537 ± 0.00018
 
|-
 
| 217 || 71 || 8a || 0.99810 ± 0.000060 || 1 || 0.99293 ± 0.000059 || 0.97713 ± 0.00012 || 0.95308 ± 0.00018
 
|-
 
| 217 || 72 || 8b || 0.99984 ± 0.000057 || 1 || 0.99161 ± 0.000056 || 0.97493 ± 0.00011 || 0.95048 ± 0.00017
 
|-
 
| 217 || 217 || avg || 1.00607 ± 0.000018 || 1 || 0.98586 ± 0.000018 || 0.96403 ± 0.000036 || 0.93508 ± 0.000055
 
|-
 
 
 
| 353 || 05 || 1 || 1.00515 ± 0.000041 || 1 || 0.98729 ± 0.000041 || 0.96731 ± 0.000083 || 0.94058 ± 0.00013
 
|-
 
| 353 || 13 || 2 || 1.00617 ± 0.000042 || 1 || 0.98602 ± 0.000043 || 0.96453 ± 0.000087 || 0.93604 ± 0.00013
 
|-
 
| 353 || 23 || 3a || 1.00498 ± 0.000052 || 1 || 0.98835 ± 0.000051 || 0.97024 ± 0.000100 || 0.94602 ± 0.00015
 
|-
 
| 353 || 24 || 3b || 1.00404 ± 0.000042 || 1 || 0.98875 ± 0.000043 || 0.97046 ± 0.000088 || 0.94549 ± 0.00014
 
|-
 
| 353 || 32 || 4a || 1.01332 ± 0.000040 || 1 || 0.98071 ± 0.000042 || 0.95573 ± 0.000085 || 0.92551 ± 0.00013
 
|-
 
| 353 || 33 || 4b || 1.01220 ± 0.000041 || 1 || 0.98127 ± 0.000043 || 0.95631 ± 0.000088 || 0.92561 ± 0.00014
 
|-
 
| 353 || 53 || 5a || 1.00016 ± 0.000043 || 1 || 0.99191 ± 0.000043 || 0.97608 ± 0.000088 || 0.95292 ± 0.00013
 
|-
 
| 353 || 54 || 5b || 0.99946 ± 0.000044 || 1 || 0.99213 ± 0.000044 || 0.97600 ± 0.000090 || 0.95198 ± 0.00014
 
|-
 
| 353 || 63 || 6a || 1.00364 ± 0.000052 || 1 || 0.98856 ± 0.000052 || 0.96957 ± 0.00011 || 0.94351 ± 0.00016
 
|-
 
| 353 || 64 || 6b || 0.99521 ± 0.000048 || 1 || 0.99812 ± 0.000049 || 0.98954 ± 0.000098 || 0.97439 ± 0.00015
 
|-
 
| 353 || 45 || 7 || 1.01512 ± 0.000058 || 1 || 0.97828 ± 0.000056 || 0.95040 ± 0.00011 || 0.91695 ± 0.00017
 
|-
 
| 353 || 85 || 8 || 1.01821 ± 0.000045 || 1 || 0.97446 ± 0.000047 || 0.94216 ± 0.000098 || 0.90384 ± 0.00016
 
|-
 
| 353 || 353 || avg || 1.00811 ± 0.000016 || 1 || 0.98449 ± 0.000017 || 0.96190 ± 0.000034 || 0.93276 ± 0.000052
 
|-
 
 
 
| 545 || 14 || 1 || 1.00706 ± 0.00018 || 1 || 0.98297 ± 0.00011 || 0.95694 ± 0.00017 || 0.92302 ± 0.00023
 
|-
 
| 545 || 34 || 2 || 0.99997 ± 0.00016 || 1 || 0.98982 ± 0.000097 || 0.97015 ± 0.00016 || 0.94196 ± 0.00021
 
|-
 
| 545 || 55 || 3 || 1.00355 ± 0.00031 || 1 || 0.98686 ± 0.00018 || 0.96491 ± 0.00029 || 0.93512 ± 0.00037
 
|-
 
| 545 || 73 || 4 || 1.00276 ± 0.00019 || 1 || 0.98774 ± 0.00011 || 0.96673 ± 0.00018 || 0.93790 ± 0.00023
 
|-
 
| 545 || 545 || avg || 1.00316 ± 0.000100 || 1 || 0.98693 ± 0.000060 || 0.96474 ± 0.000100 || 0.93445 ± 0.00013
 
|-
 
 
 
| 857 || 25 || 1 || 0.9864 ± 0.0009 || 1 || 1.0055 ± 0.0009 || 1.0027 ± 0.0017 || 0.9918 ± 0.0025
 
|-
 
| 857 || 35 || 2 || 0.9925 ± 0.0009 || 1 || 0.9994 ± 0.0008 || 0.9908 ± 0.0017 || 0.9743 ± 0.0025
 
|-
 
| 857 || 65 || 3 || 0.9943 ± 0.0009 || 1 || 0.9963 ± 0.0009 || 0.9831 ± 0.0018 || 0.9606 ± 0.0027
 
|-
 
| 857 || 74 || 4 || 0.9929 ± 0.0010 || 1 || 0.9977 ± 0.0009 || 0.9860 ± 0.0019 || 0.9651 ± 0.0028
 
|-
 
| 857 || 857 || avg || 0.9972 ± 0.0009 || 1 || 0.9933 ± 0.0009 || 0.9772 ± 0.0018 || 0.9523 ± 0.0027
 
|-
 
 
 
=== Colour Correction, Modified Blackbody ===
 
 
 
This section will present colour correction coefficients relevant for a variety of dust spectra...
 
 
 
=== CO unit conversion ===
 
 
 
This section presents the CO unit conversion coefficcients.
 
 
 
{| border = 1
 
|+ Title
 
|-
 
| Band (GHz) || BC || Det. || CO line || F'_12CO_' [uK'_CMB_'/K'_RJ_'km/s] || F'_13CO_' [uK'_CMB_'/K'_RJ_'km/s]
 
|-
 
 
 
| 100 || 00 || 1a || J1-0 || 10.87 ± 0.29 || 16.96 ± 0.75
 
|-
 
| 100 || 01 || 1b || J1-0 || 12.61 ± 0.27 || 16.40 ± 0.71
 
|-
 
| 100 || 20 || 2a || J1-0 || 14.69 ± 0.50 || 14.08 ± 0.61
 
|-
 
| 100 || 21 || 2b || J1-0 || 12.01 ± 0.39 || 17.50 ± 0.63
 
|-
 
| 100 || 40 || 3a || J1-0 || 16.36 ± 0.57 || 14.52 ± 0.64
 
|-
 
| 100 || 41 || 3b || J1-0 || 11.78 ± 0.48 || 13.78 ± 0.51
 
|-
 
| 100 || 80 || 4a || J1-0 || 19.09 ± 0.63 || 18.64 ± 0.79
 
|-
 
| 100 || 81 || 4b || J1-0 || 16.11 ± 0.57 || 17.57 ± 0.80
 
|-
 
| 100 || 100 || avg || J1-0 || 14.78 ± 0.21 || 15.55 ± 0.26
 
|-
 
 
 
| 143 || 02 || 1a || J1-0 || 0.0613 ± 0.0031 || 0.0022 ± 5.0163e-05
 
|-
 
| 143 || 03 || 1b || J1-0 || 0.0437 ± 0.0022 || 0.0017 ± 5.5805e-05
 
|-
 
| 143 || 30 || 2a || J1-0 || 0.0523 ± 0.0027 || 0.0020 ± 0.0001
 
|-
 
| 143 || 31 || 2b || J1-0 || 0.0557 ± 0.0028 || 0.0022 ± 0.0001
 
|-
 
| 143 || 50 || 3a || J1-0 || 0.0881 ± 0.0045 || 0.0030 ± 2.3871e-05
 
|-
 
| 143 || 51 || 3b || J1-0 || 0.0737 ± 0.0036 || 0.0023 ± 0.0001
 
|-
 
| 143 || 82 || 4a || J1-0 || 0.0489 ± 0.0024 || 0.0018 ± 8.9210e-05
 
|-
 
| 143 || 83 || 4b || J1-0 || 0.0493 ± 0.0024 || 0.0019 ± 9.4426e-05
 
|-
 
| 143 || 10 || 5 || J1-0 || 0.0210 ± 0.0012 || 0.0012 ± 0.0001
 
|-
 
| 143 || 42 || 6 || J1-0 || 0.0579 ± 0.0029 || 0.0020 ± 0.0003
 
|-
 
| 143 || 60 || 7 || J1-0 || 0.0099 ± 0.0005 || 0.0005 ± 2.4544e-05
 
|-
 
| 143 || 70 || 8 || J1-0 || 0.0404 ± 0.0023 || 0.0018 ± 8.5655e-05
 
|-
 
| 143 || 143 || avg || J1-0 || 0.0470 ± 0.0008 || 0.0018 ± 4.4951e-05
 
|-
 
 
 
| 143 || 02 || 1a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 03 || 1b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 30 || 2a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 31 || 2b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 50 || 3a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 51 || 3b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 82 || 4a || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 83 || 4b || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 10 || 5 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 42 || 6 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 60 || 7 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 70 || 8 || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
| 143 || 143 || avg || J2-1 || 0.0 ± 0.0 || 0.0 ± 0.0
 
|-
 
 
 
| 217 || 04 || 1 || J2-1 || 50.22 ± 0.36 || 34.42 ± 0.21
 
|-
 
| 217 || 22 || 2 || J2-1 || 42.47 ± 0.30 || 32.73 ± 0.21
 
|-
 
| 217 || 52 || 3 || J2-1 || 51.23 ± 0.35 || 37.37 ± 0.23
 
|-
 
| 217 || 84 || 4 || J2-1 || 47.75 ± 0.35 || 30.87 ± 0.19
 
|-
 
| 217 || 11 || 5a || J2-1 || 43.97 ± 0.29 || 35.85 ± 0.22
 
|-
 
| 217 || 12 || 5b || J2-1 || 43.68 ± 0.34 || 38.54 ± 0.22
 
|-
 
| 217 || 43 || 6a || J2-1 || 38.92 ± 0.30 || 41.21 ± 0.25
 
|-
 
| 217 || 44 || 6b || J2-1 || 40.75 ± 0.36 || 33.33 ± 0.21
 
|-
 
| 217 || 61 || 7a || J2-1 || 45.50 ± 0.31 || 41.57 ± 0.26
 
|-
 
| 217 || 62 || 7b || J2-1 || 43.58 ± 0.29 || 33.19 ± 0.20
 
|-
 
| 217 || 71 || 8a || J2-1 || 45.30 ± 0.31 || 41.48 ± 0.25
 
|-
 
| 217 || 72 || 8b || J2-1 || 41.78 ± 0.31 || 34.16 ± 0.21
 
|-
 
| 217 || 217 || avg || J2-1 || 45.85 ± 0.11 || 35.37 ± 0.07
 
|-
 
 
 
| 353 || 05 || 1 || J3-2 || 170.3 ± 1.3 || 82.5 ± 0.4
 
|-
 
| 353 || 13 || 2 || J3-2 || 174.0 ± 1.3 || 130.8 ± 0.7
 
|-
 
| 353 || 23 || 3a || J3-2 || 185.4 ± 1.6 || 133.3 ± 0.8
 
|-
 
| 353 || 24 || 3b || J3-2 || 200.7 ± 1.5 || 166.6 ± 0.9
 
|-
 
| 353 || 32 || 4a || J3-2 || 172.9 ± 1.4 || 121.0 ± 0.7
 
|-
 
| 353 || 33 || 4b || J3-2 || 140.9 ± 1.3 || 125.2 ± 0.7
 
|-
 
| 353 || 53 || 5a || J3-2 || 150.3 ± 1.2 || 138.1 ± 0.7
 
|-
 
| 353 || 54 || 5b || J3-2 || 159.8 ± 1.1 || 143.9 ± 0.8
 
|-
 
| 353 || 63 || 6a || J3-2 || 148.9 ± 1.2 || 143.0 ± 0.9
 
|-
 
| 353 || 64 || 6b || J3-2 || 166.4 ± 1.5 || 167.1 ± 1.0
 
|-
 
| 353 || 45 || 7 || J3-2 || 196.9 ± 1.4 || 110.9 ± 0.6
 
|-
 
| 353 || 85 || 8 || J3-2 || 185.3 ± 1.4 || 99.9 ± 0.6
 
|-
 
| 353 || 353 || avg || J3-2 || 175.1 ± 0.5 || 117.1 ± 0.2
 
|-
 
 
 
| 545 || 14 || 1 || J4-3 || 256.5 ± 2.5 || 47.8 ± 0.9
 
|-
 
| 545 || 34 || 2 || J4-3 || 268.3 ± 2.4 || 83.9 ± 1.0
 
|-
 
| 545 || 55 || 3 || J4-3 || 258.3 ± 3.2 || 59.7 ± 1.7
 
|-
 
| 545 || 73 || 4 || J4-3 || 230.7 ± 2.4 || 35.5 ± 1.1
 
|-
 
| 545 || 545 || avg || J4-3 || 252.5 ± 1.4 || 56.9 ± 0.6
 
|-
 
 
 
| 545 || 14 || 1 || J5-4 || 2216.1 ± 11.8 || 1144.5 ± 6.3
 
|-
 
| 545 || 34 || 2 || J5-4 || 2281.8 ± 12.3 || 1422.4 ± 7.6
 
|-
 
| 545 || 55 || 3 || J5-4 || 2349.2 ± 13.4 || 1845.6 ± 10.4
 
|-
 
| 545 || 73 || 4 || J5-4 || 2473.6 ± 13.7 || 1492.2 ± 8.1
 
|-
 
| 545 || 545 || avg || J5-4 || 2322.2 ± 7.3 || 1356.1 ± 4.3
 
|-
 
 
 
| 857 || 25 || 1 || J6-5 || 7794.4 ± 160.0 || 3264.7 ± 81.0
 
|-
 
| 857 || 35 || 2 || J6-5 || 6702.0 ± 111.9 || 1700.5 ± 43.7
 
|-
 
| 857 || 65 || 3 || J6-5 || 6978.7 ± 144.5 || 1417.9 ± 60.8
 
|-
 
| 857 || 74 || 4 || J6-5 || 7565.4 ± 145.4 || 1439.8 ± 57.3
 
|-
 
| 857 || 857 || avg || J6-5 || 7217.3 ± 71.4 || 2016.6 ± 30.4
 
|-
 
 
 
| 857 || 25 || 1 || J7-6 || 72291.9 ± 1440.7 || 61488.8 ± 1186.4
 
|-
 
| 857 || 35 || 2 || J7-6 || 62775.8 ± 995.9 || 64156.9 ± 969.1
 
|-
 
| 857 || 65 || 3 || J7-6 || 82316.7 ± 1523.9 || 57721.9 ± 1029.5
 
|-
 
| 857 || 74 || 4 || J7-6 || 87556.9 ± 1619.8 || 63467.8 ± 1119.9
 
|-
 
| 857 || 857 || avg || J7-6 || 74876.2 ± 694.6 || 61406.7 ± 545.5
 
|-
 
 
 
| 857 || 25 || 1 || J8-7 || 168443.0 ± 3337.6 || 136686.1 ± 2671.9
 
|-
 
| 857 || 35 || 2 || J8-7 || 145623.5 ± 2313.6 || 117751.3 ± 1825.7
 
|-
 
| 857 || 65 || 3 || J8-7 || 154861.1 ± 2861.8 || 126685.2 ± 2320.6
 
|-
 
| 857 || 74 || 4 || J8-7 || 125207.4 ± 2288.6 || 123683.8 ± 2230.9
 
|-
 
| 857 || 857 || avg || J8-7 || 151726.7 ± 1398.9 || 126570.5 ± 1151.8
 
|-
 
 
 
| 857 || 25 || 1 || J9-8 || 4941.8 ± 242.8 || 102261.9 ± 2036.6
 
|-
 
| 857 || 35 || 2 || J9-8 || 5619.9 ± 238.2 || 80172.8 ± 1263.2
 
|-
 
| 857 || 65 || 3 || J9-8 || 6897.2 ± 301.2 || 100933.8 ± 1853.0
 
|-
 
| 857 || 74 || 4 || J9-8 || 144.7 ± 232.1 || 51734.0 ± 988.8
 
|-
 
| 857 || 857 || avg || J9-8 || 4998.3 ± 131.9 || 88290.3 ± 821.8
 
|-
 
 
 
=== Planet Colour Correction ===
 
 
 
As the planets within our solar system are used as calibration verification, and their spectra may deviate from the nominal Rayleigh-Jeans spectral profile, colour correction coefficients have been determined for each of the planets observed by Planck.  This involves a model spectrum for each planet over the Planck Bands (cite rel. models here), and an understanding of the model uncertainties, and spectral uncertainties in order to determine the planet colour correction coefficient uncertainties.  The table below summarizes the results for the planet colour correction coefficients.
 
  
FIXME: get into proper table format...
+
== File containing table of detector coefficients and band-average coefficients ==
Band, BC, det., CC_SI=-2, CCE_SI=-2, CC_Mars1, CCE_Mars1, CC_Mars2, CE_Mars2, CC_Mars3, CCE_Mars3, CC_Jup, CCE_Jup, CC_Sat, CCE_Sat, CC_Ur, CCE_Ur, CC_Nep, CCE_Nep
+
[[:File:HFI_UcCC_v307_withMaskData.gz]]
100 00 1a      0.99179524    0.0024569372      0.99136628    0.0028896212      0.99177756    0.0027920234      0.99136832    0.0028653367      0.99192571    0.0058583181      0.99226270    0.0051635052      0.99629477    0.0023507110        1.0000696    0.0023383064
 
100 01 1b      0.97434212    0.0023504173      0.97375068    0.0027664805      0.97430734    0.0026726654      0.97375361    0.0027429981      0.97441599    0.0056352787      0.97488177    0.0049649349      0.98002947    0.0022491406      0.98428882    0.0022335515
 
100 20 2a      0.96064335    0.0024812887      0.95985742    0.0028602119      0.96059429    0.0027710572      0.95986171    0.0028382682      0.96071444    0.0056396086      0.96134048    0.0049820244      0.96809857    0.0023651134      0.97276578    0.0023474124
 
100 21 2b      0.96513920    0.0026154215      0.96440156    0.0029987856      0.96509400    0.0029095399      0.96440543    0.0029770927      0.96521685    0.0057557103      0.96580167    0.0050993873      0.97217979    0.0024991748      0.97658077    0.0024855546
 
100 40 3a      0.95227079    0.0024217183      0.95141328    0.0028267431      0.95221319    0.0027357225      0.95141775    0.0028039782      0.95231097    0.0056369281      0.95298905    0.0049778541      0.96021386    0.0023229208      0.96555618    0.0023034938
 
100 41 3b      0.98139440    0.0024512185      0.98083549    0.0028571474      0.98136600    0.0027636093      0.98083842    0.0028339286      0.98151075    0.0057414268      0.98195360    0.0050633475      0.98700251    0.0023420047      0.99141841    0.0023273952
 
100 80 4a      0.94863992    0.0025572022      0.94773453    0.0029459918      0.94857907    0.0028574219      0.94773941    0.0029242937      0.94868107    0.0056758085      0.94939951    0.0050287996      0.95702542    0.0024475671      0.96255867    0.0024264874
 
100 81 4b      0.94472176    0.0024347784      0.94378680    0.0028136068      0.94465704    0.0027263078      0.94379172    0.0027919631      0.94474695    0.0055351329      0.94548546    0.0048926320      0.95329271    0.0023286029      0.95886516    0.0023080312
 
100 100 avg      0.96201584    0.0010140989      0.96125413    0.0017473936      0.96196792    0.0016180539      0.96125815    0.0017102511      0.96208289    0.0052173339      0.96268641    0.0044916060      0.96922184    0.0010542270      0.97410782    0.0010439924
 
143 02 1a        1.0274279    0.00069310170        1.0273780    0.0010929967        1.0274933    0.00097577618        1.0273952    0.0010617994        1.0277801    0.0040870736        1.0280921    0.0032092061        1.0303270    0.00062520368        1.0310322    0.00063324809
 
143 03 1b        1.0149215    0.00070866545        1.0147696    0.0010951536        1.0149853    0.00098107888        1.0147886    0.0010647845        1.0153107    0.0040423422        1.0157214    0.0031761456        1.0191177    0.00064083408        1.0196698    0.00064901275
 
143 30 2a        1.0256655    0.00071856612        1.0255947    0.0011051012        1.0257319    0.00098966074        1.0256126    0.0010743671        1.0260326    0.0040969243        1.0263760    0.0032170282        1.0288763    0.00064839386        1.0296126    0.00065702576
 
143 31 2b        1.0105600    0.00066156375        1.0103726    0.0010564197        1.0106237    0.00094037912        1.0103925    0.0010254397        1.0109642    0.0040132254        1.0114212    0.0031483366        1.0152188    0.00059867200        1.0157617    0.00060634902
 
143 50 3a        1.0540337    0.00079658097        1.0542126    0.0011819005        1.0540996    0.0010655460        1.0542247    0.0011511021        1.0542895    0.0042420340        1.0543570    0.0033359408        1.0539499    0.00071486962        1.0550431    0.00072497723
 
143 51 3b        1.0291866    0.00073197786        1.0291488    0.0011223489        1.0292516    0.0010059919        1.0291656    0.0010913951        1.0295330    0.0041396701        1.0298255    0.0032517812        1.0319238    0.00066040360        1.0326979    0.00066937901
 
143 82 4a        1.0061120    0.00070379842        1.0058677    0.0010944281        1.0061800    0.00097869910        1.0058899    0.0010635565        1.0065635    0.0040824417        1.0070911    0.0032056372        1.0116784    0.00063675289        1.0122041    0.00064498270
 
143 83 4b        1.0172157    0.00070622867        1.0170853    0.0010920808        1.0172783    0.00097799480        1.0171036    0.0010617064        1.0175901    0.0040386342        1.0179738    0.0031726240        1.0210933    0.00063851040        1.0217136    0.00064697273
 
143 10 5      0.97451281    0.00060130694      0.97403771    0.0010077414      0.97457462    0.00089211065      0.97406349    0.00097678507      0.97503467    0.0038957642      0.97578047    0.0030560406      0.98294909    0.00054954842      0.98306051    0.00055596656
 
143 42 6      0.99996107    0.00066668980      0.99968416    0.0010573354        1.0000246    0.00094266271      0.99970596    0.0010267065        1.0004048    0.0039909943        1.0009555    0.0031324957        1.0058087    0.00060469278        1.0062450    0.00061218052
 
143 60 7      0.97009182    0.00063299289      0.96958024    0.0010194157      0.97015385    0.00090626054      0.96960689    0.00098909047      0.97063066    0.0039043560      0.97140874    0.0030625003      0.97902883    0.00057634869      0.97905402    0.00058285699
 
143 70 8      0.98857904    0.00067452972      0.98820410    0.0010585037      0.98864304    0.00094536517      0.98822818    0.0010282681      0.98906878    0.0039713907      0.98971077    0.0031178738      0.99575904    0.00061283887      0.99604248    0.00062011604
 
143 143 avg        1.0070824    0.00021374022        1.0068614    0.00086409244        1.0071466    0.00071705691        1.0068821    0.00082483224        1.0075044    0.0040076546        1.0079914    0.0031228747        1.0122118    0.00021344720        1.0127057    0.00021557979
 
217 04 1      0.92372890    0.00014543105      0.92335527    0.00024240533      0.92408488    0.00019744716      0.92346228    0.00023023603      0.92564528    0.0015701413      0.94180278    0.0010131918      0.93820450    0.00012696036      0.95279110    0.00012462523
 
217 22 2      0.91865604    0.00014914031      0.91825965    0.00024397324      0.91902960    0.00019988489      0.91837207    0.00023202445      0.92064935    0.0015605936      0.93711772    0.0010080980      0.93393990    0.00013062592      0.94633963    0.00012956498
 
217 52 3      0.92005792    0.00014369930      0.91966886    0.00024222673      0.92041646    0.00019655457      0.91977696    0.00022986870      0.92194761    0.0015838572      0.93736052    0.0010206916      0.93487937    0.00012579592      0.94856537    0.00012450449
 
217 84 4      0.92495519    0.00014512127      0.92458715    0.00024358886      0.92530546    0.00019787179      0.92469247    0.00023121651      0.92680837    0.0015890382      0.94232617    0.0010241088      0.93919854    0.00012648258      0.95255081    0.00012451968
 
217 11 5a      0.95420528    0.00016517233      0.95395616    0.00026105946      0.95451165    0.00021582053      0.95404671    0.00024877594      0.95583734    0.0016393437      0.97066825    0.0010566672      0.96523516    0.00014388767      0.97794116    0.00014047459
 
217 12 5b      0.95119915    0.00015741187      0.95093690    0.00025282959      0.95150918    0.00020776743      0.95102877    0.00024059837      0.95285521    0.0016138199      0.96830417    0.0010403248      0.96255440    0.00013733322      0.97546140    0.00013434738
 
217 43 6a      0.95166719    0.00016000513      0.95140712    0.00025615709      0.95197683    0.00021074547      0.95149881    0.00024382949      0.95328677    0.0016297876      0.96784827    0.0010497778      0.96297893    0.00013941718      0.97494109    0.00013675603
 
217 44 6b      0.95169507    0.00015570745      0.95143404    0.00025362596      0.95200265    0.00020740357      0.95152524    0.00024108688      0.95330789    0.0016386924      0.96815314    0.0010553470      0.96297302    0.00013603545      0.97583895    0.00013324272
 
217 61 7a      0.94972963    0.00015239450      0.94946246    0.00025207770      0.95003715    0.00020563156      0.94955374    0.00023950395      0.95132855    0.0016287555      0.96583873    0.0010486024      0.96112182    0.00013270037      0.97286646    0.00013022047
 
217 62 7b      0.95537121    0.00016113948      0.95512752    0.00026061348      0.95566714    0.00021411649      0.95521510    0.00024801275      0.95688048    0.0016560033      0.97050533    0.0010660058      0.96606477    0.00014036063      0.97712304    0.00013754722
 
217 71 8a      0.95308368    0.00016110231      0.95282877    0.00025768691      0.95339507    0.00021184558      0.95292085    0.00024523592      0.95473572    0.0016464027      0.96936560    0.0010603617      0.96433301    0.00014032034      0.97700981    0.00013781597
 
217 72 8b      0.95048294    0.00015373978      0.95021787    0.00025301486      0.95079048    0.00020692295      0.95030911    0.00024053889      0.95210122    0.0016220164      0.96627247    0.0010445368      0.96184275    0.00013405319      0.97499412    0.00013086004
 
217 217 avg      0.93586113    4.7378428e-05      0.93553554    0.00020323701      0.93619662    0.00014455406      0.93563585    0.00018794390      0.93763539    0.0016001360      0.95291335    0.0010263908      0.94897105    4.1318756e-05      0.96194977    4.0574860e-05
 
353 05 1      0.94058043    0.00011332546      0.94098217    0.00011441096      0.94141295    0.00011288488      0.94116837    0.00011387941      0.94555005    0.00037131159      0.94844667    0.00017398739      0.95501386    9.6672425e-05      0.94252929    0.00010244836
 
353 13 2      0.93604223    0.00011766864      0.93646791    0.00011892386      0.93692586    0.00011730590      0.93666550    0.00011836793      0.94132594    0.00037197986      0.94433250    0.00017722200      0.95137461    0.00010038591      0.93875196    0.00010586665
 
353 23 3a      0.94601822    0.00013419995      0.94638004    0.00013494525      0.94677116    0.00013354759      0.94654860    0.00013446058      0.95047817    0.00037504681      0.95303302    0.00018638046      0.95908115    0.00011497526      0.94912779    0.00012047238
 
353 24 3b      0.94549039    0.00012107755      0.94587698    0.00012181912      0.94628057    0.00012041895      0.94605316    0.00012132239      0.95024077    0.00037357867      0.95295610    0.00017785405      0.95904147    0.00010291203      0.94782372    0.00010895011
 
353 32 4a      0.92550628    0.00011168432      0.92590043    0.00011280360      0.92638226    0.00011127256      0.92609866    0.00011226930      0.93061868    0.00036489332      0.93335202    0.00017140080      0.94131248    9.5161783e-05      0.93060586    0.00010232233
 
353 33 4b      0.92560740    0.00011535949      0.92601983    0.00011647515      0.92650963    0.00011494353      0.92622343    0.00011594320      0.93090737    0.00036576470      0.93376284    0.00017381066      0.94174044    9.8456132e-05      0.92965716    0.00010437055
 
353 53 5a      0.95292376    0.00012188150      0.95331003    0.00012272894      0.95368671    0.00012128687      0.95347921    0.00012222428      0.95752576    0.00037744312      0.96032758    0.00018013350      0.96572763    0.00010391665      0.95318252    0.00010850519
 
353 54 5b      0.95198172    0.00012562110      0.95239373    0.00012634361      0.95278451    0.00012493622      0.95257109    0.00012584674      0.95690100    0.00037545442      0.95986476    0.00018092809      0.96530501    0.00010679503      0.95260819    0.00011099594
 
353 63 6a      0.94350543    0.00014632473      0.94391092    0.00014710047      0.94433192    0.00014560840      0.94409518    0.00014658422      0.94846347    0.00038237367      0.95136826    0.00019551997      0.95766012    0.00012481655      0.94499853    0.00012943610
 
353 64 6b      0.97439004    0.00014454517      0.97469099    0.00014551843      0.97494197    0.00014385611      0.97481163    0.00014494673      0.97777798    0.00039581401      0.97992890    0.00019859126      0.98317463    0.00012209450      0.97339239    0.00012809685
 
353 45 7      0.91695423    0.00012676198      0.91738734    0.00012748245      0.91791853    0.00012616718      0.91760559    0.00012702172      0.92260648    0.00036124111      0.92566524    0.00017782391      0.93439356    0.00010927645      0.92339661    0.00011439164
 
353 85 8      0.90384202    0.00012261582      0.90433854    0.00012348863      0.90494364    0.00012202853      0.90458747    0.00012296857      0.91038829    0.00036092882      0.91389086    0.00017417894      0.92373414    0.00010434520      0.91163173    0.00011010402
 
353 353 avg      0.93323585    4.4062606e-05      0.93365358    4.7070290e-05      0.93411831    4.4557970e-05      0.93385153    4.6199076e-05      0.93848877    0.00035164656      0.94145185    0.00014110258      0.94870194    3.7658049e-05      0.93676117    3.9614753e-05
 
545 14 1      0.92302463    0.00016861905      0.92461756    0.00016804803      0.92501464    0.00016771153      0.92493336    0.00016787094      0.91708546    0.00015851497      0.80636759    0.00014498146      0.94179218    0.00015444168      0.95363288    0.00015667609
 
545 34 2      0.94195694    0.00016871427      0.94336773    0.00016811001      0.94370224    0.00016774858      0.94364108    0.00016791952      0.93574149    0.00015708569      0.82275030    0.00014416656      0.95787017    0.00015381168      0.97068422    0.00015578950
 
545 55 3      0.93512338    0.00027655893      0.93656096    0.00027600560      0.93691226    0.00027552445      0.93684341    0.00027578629      0.93104992    0.00025985046      0.81875193    0.00023124526      0.95176550    0.00025712338      0.96419783    0.00025990306
 
545 73 4      0.93789657    0.00018106184      0.93929799    0.00018048351      0.93963862    0.00018012702      0.93957268    0.00018030030      0.93488316    0.00016869839      0.82191908    0.00015426500      0.95404589    0.00016606602      0.96719779    0.00016790120
 
545 545 avg      0.93456594    9.9769955e-05      0.93603315    9.9429455e-05      0.93639001    9.9225109e-05      0.93632077    9.9322420e-05      0.92946031    9.3581163e-05      0.81720996    8.5125376e-05      0.95148319    9.1245529e-05      0.96409014    9.2283397e-05
 
857 25 1      0.96944437    0.00027856680      0.97151258    0.00027804692      0.97174365    0.00027784061      0.97174163    0.00027791474      0.98864826    0.00027967852      0.98899431    0.00027826822      0.98269193    0.00026752947      0.98870019    0.00026951231
 
857 35 2      0.98810255    0.00024194320      0.98982374    0.00024124537      0.99000266    0.00024103289      0.99000374    0.00024109823        1.0063799    0.00024222636        1.0057014    0.00024149148      0.99824571    0.00023048839        1.0042322    0.00023213953
 
857 65 3      0.97322233    0.00026529861      0.97521786    0.00026471472      0.97543817    0.00026450752      0.97543677    0.00026457792      0.99181933    0.00026601798      0.99151029    0.00026515330      0.98582708    0.00025417843      0.99174350    0.00025613279
 
857 74 4        1.0083172    0.00030474985        1.0094396    0.00030389953        1.0095398    0.00030362975        1.0095443    0.00030371607        1.0238004    0.00030485468        1.0254106    0.00030369029        1.0138754    0.00029033788        1.0204622    0.00029266176
 
857 857 avg      0.98090289    0.00013617145      0.98273089    0.00013584940      0.98292739    0.00013573943      0.98292724    0.00013577595      0.99918265    0.00013645470      0.99923102    0.00013587987      0.99210006    0.00013026850      0.99815419    0.00013122817
 
  
 +
== References ==
 +
<References />
 +
  
=== Conclusions ===
 
  
Summary remarks here...
+
[[Category:HFI data processing|005]]

Latest revision as of 12:57, 7 July 2015

HFI Spectral Response[edit]

This section outlines the unit-conversion and colour-correction protocol for Planck/HFI, based on the measurements of the HFI detector chain spectral response (see Planck-2013-IX[1] and here for the description of the spectral response pre-launch measurements).

The band-averaged HFI spectral response data are shown in the figure below, and provided in the the instrument model. Similar data are available for individual detectors as well as sub-band averaged data sets (i.e., detset1, detset2, PSBs, SWBs). A table summarizing some of the spectral properties of the individual detectors, and band-averaged spectra, is shown at the bottom of this page.

Band-averaged HFI transmission spectra. Vertical bars illustrate the CO rotational transition frequencies.

The band-averaged spectrum for a given frequency band is derived using a hit-map-normalized inverse-square noise-weighted detector spectrum average. Thus, the effective band-averaged spectrum in question changes depending on Planck's coverage of the region of sky in question. This may change between different subsets of the Planck data, e.g., surveys, detector sets, etc. The histograms below demonstrate the variation across the sky of the detector weight coefficients used to determine the band-averaged spectra. Thus, the validity of using a single band-averaged spectrum for an entire sky map, may require evaluation depending on the task at hand. Some analyses may require incorporating the variation of the relative detector weights across the sky in order to understand the differential spectral transmission between complementary maps (e.g., detset-1 versus detset-2 maps). There are four groupings to consider with respect to the relative weighting of the individual detector contribution to the Planck data, and hence the relative contribution of a given detector spectrum to a band-averaged spectrum or sub-band-average spectrum: ring; detset; survey; and mask. There are three possible combinations for the ring grouping, accounting for whether the full ring is used in the map, just the first half, or the last half; the notation used here is F+L for the full ring, F for the first half, and L for the last half. The detset grouping has between three and five combinations per frequency band, accounting for the detectors to include in the average, including all detectors, detset1, detset2, only the PSB detectors (PSBs), or only the SWB detectors (SWBs). There are 11 possible survey options, including the full mission, nominal mission, Survey 1, Survey 2, Survey 3, Survey 4, Survey 5, Year 1, Year 2, Half-mission 1, and Half-mission 2. There are also six nominal masking options for the maps including 100%, 99%, 97%, 90%, 80%, and 60% of the sky (various degrees of masking the Galactic plane). Thus, for a given frequency band there could be up to almost 1000 (sub-)band-averaged spectra. While the images below only show the variation of detector contribution to the average for the full and nominal missions, a similar evaluation was conducted across the entire parameter space to determine the relevant average spectrum. This parameter space is also considered in determining the effective unit-conversion and colour-correction coefficients (see below).

Variation of individual detector contributions to band-averaged frequency maps across the sky, for various HFI surveys.


As described in Planck-2013-IX[1], several unit-conversion and colour-correction coefficients may be useful in the analysis of Planck data. These include conversion from CMB temperature units to MJy sr-1, and colour-correction coefficients for conversion to a variety of spectral profiles. Software routines to determine these coefficients are provided here, and some example tables are provided here. A text file containing unit-conversion and colour-correction coefficients for all of the individual HFI detectors, as well as the band-averaged and sub-band-averaged spectra, is included at the bottom of this page. This file contains all of the iterations for the sub-band-averaged spectra, including ring, detset, survey, and mask variations.

The integration ranges used in determining the unit-conversion and colour-correction coefficients provided were verified through an iterative approach starting at one extreme and reducing to the band-centre for both the low and high frequency edges. The figure below demonstrates the stability in the integral once a sufficient data range has been employed. The range used in the official coefficients is thus sufficient to ensure that it falls within the flat region of the demonstration figure below.

Colour-correction (α = -1 to +2) stability with integration cut-off variation. The horizontal bars illustrate the nominal colour-correction values. Similar results are found for the integration cut-on.


The following table presents basic characteristics of the HFI detector spectral response, including optical efficiency, effective frequency, etc. Further details on the definition of these parameters are available in Planck-2013-IX[1].

Properties of HFI detector spectra
Band [GHz] νcut-on [GHz] νcut-off [GHz] BW [GHz] νcen. [GHz] νeff. [GHz] ε εInt. ν-1 [GHz] ν+2 [GHz] ν+4 [GHz]
100-1a 84.8 ± 0.5 113.96 ± 0.16 29.1 ± 0.6 99.4 ± 0.3 100.28 ± 0.11 0.419 ± 0.008 0.310 ± 0.008 99.45 ± 0.12 101.93 ± 0.11 103.59 ± 0.10
100-1b 86.5 ± 1.0 115.32 ± 0.08 28.8 ± 1.0 100.9 ± 0.5 100.87 ± 0.11 0.563 ± 0.011 0.324 ± 0.011 100.06 ± 0.11 102.51 ± 0.10 104.18 ± 0.09
100-2a 86.0 ± 0.6 116.4 ± 0.4 30.4 ± 0.9 101.2 ± 0.3 101.34 ± 0.12 0.550 ± 0.012 0.372 ± 0.012 100.38 ± 0.12 103.34 ± 0.11 105.47 ± 0.10
100-2b 84.3 ± 0.5 115.5 ± 0.4 31.3 ± 0.7 99.9 ± 0.3 101.19 ± 0.11 0.634 ± 0.009 0.334 ± 0.009 100.23 ± 0.11 103.14 ± 0.10 105.16 ± 0.09
100-3a 84.21 ± 0.17 117.36 ± 0.06 33.14 ± 0.18 100.78 ± 0.09 101.64 ± 0.12 0.493 ± 0.005 0.331 ± 0.005 100.68 ± 0.12 103.60 ± 0.10 105.60 ± 0.09
100-3b 84.19 ± 0.19 116.81 ± 0.16 32.6 ± 0.2 100.50 ± 0.13 100.63 ± 0.12 0.426 ± 0.004 0.281 ± 0.004 99.74 ± 0.12 102.45 ± 0.11 104.35 ± 0.10
100-4a 84.74 ± 0.07 118.09 ± 0.09 33.34 ± 0.12 101.42 ± 0.05 101.77 ± 0.12 0.461 ± 0.003 0.255 ± 0.003 100.77 ± 0.13 103.82 ± 0.11 105.96 ± 0.10
100-4b 84.9 ± 0.3 118.30 ± 0.05 33.4 ± 0.3 101.58 ± 0.14 101.91 ± 0.13 0.396 ± 0.003 0.258 ± 0.003 100.92 ± 0.13 103.92 ± 0.12 105.98 ± 0.10
100-avg 84.4 ± 0.3 117.36 ± 0.05 32.9 ± 0.3 100.89 ± 0.13 101.31 ± 0.05 0.479 ± 0.003 0.304 ± 0.003 100.36 ± 0.05 103.24 ± 0.05 105.25 ± 0.04
100-detset1 84.77 ± 0.05 117.81 ± 0.06 33.03 ± 0.08 101.29 ± 0.04 101.43 ± 0.07 0.4199 ± 0.0020 0.2645 ± 0.0020 100.49 ± 0.07 103.35 ± 0.06 105.34 ± 0.06
100-detset2 84.3 ± 0.3 117.14 ± 0.05 32.8 ± 0.3 100.72 ± 0.13 101.25 ± 0.06 0.505 ± 0.003 0.321 ± 0.003 100.31 ± 0.06 103.19 ± 0.06 105.21 ± 0.05
143-1a 121.2 ± 0.4 162 ± 2 41 ± 2 141.5 ± 1.1 141.71 ± 0.04 0.66 ± 0.02 0.43 ± 0.02 140.37 ± 0.04 144.48 ± 0.04 147.35 ± 0.03
143-1b 119.99 ± 0.03 162.8 ± 0.7 42.8 ± 0.8 141.4 ± 0.4 142.29 ± 0.04 0.608 ± 0.007 0.347 ± 0.007 140.97 ± 0.04 145.02 ± 0.04 147.79 ± 0.04
143-2a 119.7 ± 0.2 162.76 ± 0.05 43.1 ± 0.2 141.21 ± 0.11 141.79 ± 0.04 0.626 ± 0.003 0.449 ± 0.003 140.42 ± 0.04 144.61 ± 0.04 147.51 ± 0.04
143-2b 119.2 ± 0.4 163.3 ± 0.5 44.1 ± 0.6 141.3 ± 0.3 142.50 ± 0.04 0.619 ± 0.007 0.443 ± 0.007 141.17 ± 0.05 145.21 ± 0.04 148.00 ± 0.04
143-3a 120.2 ± 0.3 158.8 ± 0.4 38.6 ± 0.5 139.5 ± 0.2 140.51 ± 0.05 0.970 ± 0.008 0.539 ± 0.008 139.17 ± 0.05 143.28 ± 0.05 146.09 ± 0.05
143-3b 119.88 ± 0.04 161.3 ± 1.0 41.4 ± 1.0 140.6 ± 0.5 141.63 ± 0.05 0.718 ± 0.012 0.457 ± 0.012 140.28 ± 0.05 144.41 ± 0.04 147.22 ± 0.04
143-4a 118.7 ± 0.2 168.21 ± 0.03 49.5 ± 0.2 143.47 ± 0.12 142.71 ± 0.04 0.532 ± 0.002 0.324 ± 0.002 141.29 ± 0.05 145.61 ± 0.04 148.56 ± 0.04
143-4b 119.0 ± 0.3 161.58 ± 0.04 42.6 ± 0.3 140.27 ± 0.14 142.19 ± 0.05 0.538 ± 0.003 0.339 ± 0.003 140.87 ± 0.05 144.87 ± 0.04 147.59 ± 0.04
143-5 119.9 ± 0.3 166.608 ± 0.016 46.7 ± 0.3 143.28 ± 0.16 144.24 ± 0.04 0.386 ± 0.002 0.305 ± 0.002 142.93 ± 0.04 146.86 ± 0.04 149.48 ± 0.03
143-6 119.97 ± 0.20 166.14 ± 0.04 46.2 ± 0.2 143.06 ± 0.10 143.00 ± 0.04 0.4531 ± 0.0016 0.3128 ± 0.0016 141.66 ± 0.05 145.72 ± 0.04 148.49 ± 0.04
143-7 120.39 ± 0.07 167.5 ± 0.3 47.1 ± 0.3 143.95 ± 0.15 144.46 ± 0.04 0.427 ± 0.002 0.308 ± 0.002 143.14 ± 0.05 147.09 ± 0.04 149.69 ± 0.04
143-8 120.7 ± 0.4 165.59 ± 0.06 44.8 ± 0.4 143.16 ± 0.18 143.55 ± 0.04 0.393 ± 0.002 0.277 ± 0.002 142.18 ± 0.05 146.30 ± 0.04 149.02 ± 0.04
143-avg 119.994 ± 0.018 165.76 ± 0.04 45.76 ± 0.05 142.876 ± 0.018 142.710 ± 0.012 0.5069 ± 0.0007 0.3669 ± 0.0007 141.363 ± 0.012 145.458 ± 0.011 148.235 ± 0.011
143-detset1 120.05 ± 0.03 160.18 ± 0.09 40.13 ± 0.10 140.12 ± 0.05 141.45 ± 0.02 0.7049 ± 0.0017 0.4614 ± 0.0017 140.11 ± 0.02 144.22 ± 0.02 147.05 ± 0.02
143-detset2 118.95 ± 0.08 164.9 ± 0.8 45.9 ± 0.8 141.9 ± 0.4 142.27 ± 0.02 0.507 ± 0.007 0.379 ± 0.007 140.91 ± 0.02 145.05 ± 0.02 147.902 ± 0.019
143-SWBs 120.17 ± 0.03 166.308 ± 0.018 46.14 ± 0.04 143.238 ± 0.017 143.96 ± 0.02 0.3967 ± 0.0006 0.3123 ± 0.0006 142.64 ± 0.02 146.63 ± 0.02 149.282 ± 0.020
217-1 189.0 ± 0.4 251.24 ± 0.05 62.2 ± 0.4 220.14 ± 0.20 222.817 ± 0.016 0.414 ± 0.002 0.322 ± 0.002 221.099 ± 0.016 226.274 ± 0.017 229.76 ± 0.02
217-2 188.66 ± 0.02 253.68 ± 0.02 65.03 ± 0.04 221.169 ± 0.017 223.231 ± 0.018 0.4575 ± 0.0004 0.3624 ± 0.0004 221.430 ± 0.018 226.814 ± 0.018 230.35 ± 0.02
217-3 190.49 ± 0.05 253.174 ± 0.018 62.68 ± 0.06 221.83 ± 0.03 223.116 ± 0.016 0.4125 ± 0.0004 0.3257 ± 0.0004 221.440 ± 0.017 226.458 ± 0.016 229.774 ± 0.019
217-4 190.8 ± 0.4 253.219 ± 0.017 62.4 ± 0.4 222.03 ± 0.18 222.717 ± 0.018 0.4043 ± 0.0018 0.3132 ± 0.0018 221.033 ± 0.018 226.116 ± 0.017 229.55 ± 0.02
217-5a 182.69 ± 0.07 253.2 ± 0.6 70.5 ± 0.6 217.9 ± 0.3 220.421 ± 0.017 0.548 ± 0.003 0.387 ± 0.003 218.489 ± 0.018 224.293 ± 0.017 228.15 ± 0.02
217-5b 182.75 ± 0.06 250.1 ± 0.4 67.3 ± 0.4 216.41 ± 0.19 220.655 ± 0.018 0.621 ± 0.002 0.377 ± 0.002 218.746 ± 0.018 224.465 ± 0.018 228.234 ± 0.020
217-6a 182.284 ± 0.020 253.70 ± 0.02 71.41 ± 0.03 217.991 ± 0.014 220.619 ± 0.018 0.4497 ± 0.0003 0.3019 ± 0.0003 218.705 ± 0.018 224.441 ± 0.018 228.24 ± 0.02
217-6b 182.85 ± 0.04 253.373 ± 0.015 70.52 ± 0.04 218.113 ± 0.019 220.619 ± 0.017 0.5274 ± 0.0004 0.3349 ± 0.0004 218.707 ± 0.017 224.408 ± 0.016 228.109 ± 0.017
217-7a 188.217 ± 0.019 253.88 ± 0.02 65.66 ± 0.03 221.049 ± 0.012 220.766 ± 0.016 0.4299 ± 0.0003 0.3065 ± 0.0003 218.925 ± 0.016 224.458 ± 0.016 228.122 ± 0.018
217-7b 189.22 ± 0.03 250.88 ± 0.02 61.66 ± 0.04 220.054 ± 0.018 220.332 ± 0.018 0.4371 ± 0.0003 0.2776 ± 0.0003 218.468 ± 0.018 224.055 ± 0.018 227.718 ± 0.019
217-8a 181.98 ± 0.02 253.722 ± 0.018 71.74 ± 0.03 217.852 ± 0.013 220.510 ± 0.018 0.5282 ± 0.0003 0.3768 ± 0.0003 218.544 ± 0.019 224.432 ± 0.018 228.32 ± 0.02
217-8b 181.875 ± 0.013 252.99 ± 0.04 71.12 ± 0.04 217.433 ± 0.018 220.712 ± 0.017 0.6265 ± 0.0004 0.3872 ± 0.0004 218.837 ± 0.018 224.440 ± 0.017 228.127 ± 0.020
217-avg 188.892 ± 0.012 253.419 ± 0.007 64.527 ± 0.014 221.156 ± 0.006 221.915 ± 0.005 0.39900 ± 0.00013 0.33846 ± 0.00013 220.113 ± 0.005 225.517 ± 0.005 229.097 ± 0.006
217-detset1 183.32 ± 0.15 253.61 ± 0.02 70.29 ± 0.15 218.46 ± 0.07 220.548 ± 0.009 0.4577 ± 0.0007 0.3053 ± 0.0007 218.666 ± 0.010 224.312 ± 0.009 228.038 ± 0.010
217-detset2 182.159 ± 0.012 253.592 ± 0.008 71.433 ± 0.015 217.875 ± 0.007 220.614 ± 0.009 0.47458 ± 0.00016 0.34838 ± 0.00016 218.697 ± 0.009 224.429 ± 0.009 228.200 ± 0.010
217-SWBs 189.02 ± 0.06 253.247 ± 0.014 64.22 ± 0.06 221.14 ± 0.03 222.957 ± 0.008 0.4072 ± 0.0003 0.3226 ± 0.0003 221.241 ± 0.008 226.395 ± 0.008 229.834 ± 0.010
353-1 306.3 ± 0.5 406.8 ± 0.4 100.5 ± 0.7 356.5 ± 0.3 360.289 ± 0.018 0.540 ± 0.003 0.390 ± 0.003 357.546 ± 0.018 365.762 ± 0.019 371.15 ± 0.02
353-2 305.82 ± 0.16 409.697 ± 0.020 103.88 ± 0.16 357.76 ± 0.08 360.866 ± 0.019 0.5947 ± 0.0008 0.4515 ± 0.0008 358.005 ± 0.019 366.615 ± 0.020 372.29 ± 0.02
353-3a 308.5 ± 0.3 404.77 ± 0.03 96.3 ± 0.3 356.63 ± 0.13 359.59 ± 0.02 0.4106 ± 0.0008 0.2862 ± 0.0008 357.16 ± 0.02 364.49 ± 0.02 369.37 ± 0.02
353-3b 308.3 ± 0.4 406.230 ± 0.015 98.0 ± 0.4 357.24 ± 0.19 359.65 ± 0.02 0.4689 ± 0.0014 0.3546 ± 0.0014 357.02 ± 0.02 365.01 ± 0.02 370.41 ± 0.02
353-4a 321.275 ± 0.018 407.94 ± 0.11 86.66 ± 0.11 364.61 ± 0.06 362.224 ± 0.018 0.4334 ± 0.0004 0.3119 ± 0.0004 359.944 ± 0.017 366.853 ± 0.019 371.52 ± 0.02
353-4b 311.71 ± 0.05 407.71 ± 0.03 96.00 ± 0.06 359.71 ± 0.02 362.212 ± 0.019 0.4152 ± 0.0003 0.3123 ± 0.0003 359.739 ± 0.019 367.22 ± 0.02 372.23 ± 0.02
353-5a 302.25 ± 0.04 406.41 ± 0.15 104.17 ± 0.16 354.33 ± 0.08 358.73 ± 0.02 0.3991 ± 0.0005 0.2965 ± 0.0005 355.88 ± 0.02 364.42 ± 0.02 370.01 ± 0.02
353-5b 301.37 ± 0.05 416.77 ± 0.05 115.40 ± 0.07 359.07 ± 0.03 358.84 ± 0.02 0.3626 ± 0.0002 0.2542 ± 0.0002 355.80 ± 0.02 364.98 ± 0.02 371.11 ± 0.03
353-6a 302.4 ± 0.4 407.99 ± 0.03 105.6 ± 0.4 355.19 ± 0.19 359.91 ± 0.03 0.3036 ± 0.0007 0.1946 ± 0.0007 357.09 ± 0.03 365.58 ± 0.03 371.18 ± 0.03
353-6b 314.08 ± 0.03 398.19 ± 0.04 84.11 ± 0.05 356.13 ± 0.02 356.06 ± 0.02 0.2990 ± 0.0002 0.2193 ± 0.0002 353.67 ± 0.02 360.93 ± 0.02 365.83 ± 0.03
353-7 323.2 ± 1.6 406.0 ± 0.9 83 ± 2 364.6 ± 0.7 363.35 ± 0.03 0.313 ± 0.006 0.272 ± 0.006 360.84 ± 0.03 368.40 ± 0.02 373.41 ± 0.03
353-8 309 ± 3 408.20 ± 0.08 99 ± 3 358.5 ± 1.7 365.10 ± 0.02 0.374 ± 0.011 0.294 ± 0.011 362.25 ± 0.02 370.82 ± 0.02 376.53 ± 0.04
353-avg 306.8 ± 0.6 408.22 ± 0.02 101.4 ± 0.6 357.5 ± 0.3 361.290 ± 0.008 0.4057 ± 0.0019 0.3353 ± 0.0019 358.564 ± 0.008 366.764 ± 0.009 372.193 ± 0.010
353-detset1 303.582 ± 0.016 406.333 ± 0.018 102.75 ± 0.03 354.957 ± 0.011 359.156 ± 0.011 0.39123 ± 0.00015 0.29902 ± 0.00015 356.386 ± 0.011 364.744 ± 0.011 370.302 ± 0.012
353-detset2 318.885 ± 0.015 407.86 ± 0.02 88.97 ± 0.03 363.372 ± 0.013 360.870 ± 0.013 0.35915 ± 0.00014 0.28730 ± 0.00014 358.409 ± 0.013 365.850 ± 0.013 370.837 ± 0.013
353-SWBs 306.3 ± 0.4 408.81 ± 0.03 102.5 ± 0.4 357.56 ± 0.18 361.921 ± 0.013 0.4381 ± 0.0013 0.3575 ± 0.0013 359.158 ± 0.013 367.455 ± 0.013 372.930 ± 0.015
545-1 466.41 ± 0.03 642.58 ± 0.05 176.17 ± 0.06 554.50 ± 0.03 559.83 ± 0.05 0.37600 ± 0.00018 0.29576 ± 0.00018 554.44 ± 0.07 570.00 ± 0.03 579.24 ± 0.02
545-2 466.78 ± 0.03 641.44 ± 0.07 174.66 ± 0.08 554.11 ± 0.04 556.05 ± 0.05 0.31937 ± 0.00019 0.26874 ± 0.00019 550.61 ± 0.07 566.37 ± 0.03 575.78 ± 0.03
545-3 470.6 ± 0.9 637.44 ± 0.05 166.9 ± 0.9 554.0 ± 0.4 557.40 ± 0.08 0.2536 ± 0.0011 0.2127 ± 0.0011 552.26 ± 0.13 567.14 ± 0.04 576.05 ± 0.03
545-4 470.9 ± 0.3 638.52 ± 0.10 167.6 ± 0.3 554.73 ± 0.16 556.85 ± 0.05 0.2630 ± 0.0004 0.2143 ± 0.0004 551.76 ± 0.08 566.48 ± 0.03 575.32 ± 0.02
545-avg 469.5 ± 0.6 640.81 ± 0.03 171.3 ± 0.6 555.2 ± 0.3 557.53 ± 0.03 0.3036 ± 0.0008 0.2612 ± 0.0008 552.22 ± 0.04 567.596 ± 0.016 576.778 ± 0.014
545-detset1 466.44 ± 0.02 642.36 ± 0.04 175.91 ± 0.05 554.40 ± 0.02 557.86 ± 0.03 0.32548 ± 0.00013 0.28031 ± 0.00013 552.43 ± 0.05 568.118 ± 0.020 577.458 ± 0.018
545-detset2 470.9 ± 0.3 638.52 ± 0.09 167.6 ± 0.3 554.73 ± 0.18 556.85 ± 0.05 0.2631 ± 0.0004 0.2143 ± 0.0004 551.76 ± 0.08 566.48 ± 0.03 575.32 ± 0.02
857-1 748.7 ± 0.9 992.5 ± 0.3 243.8 ± 1.0 870.6 ± 0.5 866.05 ± 0.10 0.2595 ± 0.0010 0.2283 ± 0.0010 858.1 ± 0.3 880.89 ± 0.03 894.38 ± 0.03
857-2 726.3 ± 0.4 989.09 ± 0.13 262.8 ± 0.4 857.7 ± 0.2 860.55 ± 0.08 0.2435 ± 0.0003 0.1973 ± 0.0003 852.28 ± 0.19 876.22 ± 0.03 890.59 ± 0.03
857-3 742.0 ± 0.5 991.7 ± 1.4 249.7 ± 1.5 866.8 ± 0.7 864.92 ± 0.09 0.2888 ± 0.0015 0.2573 ± 0.0015 857.0 ± 0.2 879.90 ± 0.03 893.53 ± 0.03
857-4 731.4 ± 0.4 979.9 ± 0.2 248.4 ± 0.4 855.7 ± 0.2 854.75 ± 0.09 0.1414 ± 0.0002 0.1189 ± 0.0002 847.2 ± 0.2 868.94 ± 0.03 881.94 ± 0.03
857-avg 743.9 ± 0.5 989.78 ± 0.08 245.9 ± 0.5 866.8 ± 0.3 862.68 ± 0.05 0.2412 ± 0.0005 0.2165 ± 0.0005 854.69 ± 0.11 877.724 ± 0.017 891.462 ± 0.014
857-detset1 736.9 ± 0.3 990.38 ± 0.06 253.4 ± 0.3 863.65 ± 0.13 863.42 ± 0.07 0.2446 ± 0.0002 0.2121 ± 0.0002 855.33 ± 0.16 878.67 ± 0.02 892.59 ± 0.02
857-detset2 741.79 ± 0.14 987.01 ± 0.09 245.22 ± 0.18 864.40 ± 0.08 861.74 ± 0.08 0.23780 ± 0.00017 0.21419 ± 0.00017 853.89 ± 0.18 876.53 ± 0.03 890.03 ± 0.03

File containing table of detector coefficients and band-average coefficients[edit]

File:HFI_UcCC_v307_withMaskData.gz

References[edit]

  1. 1.01.11.2 Planck 2013 results. IX. HFI spectral response, Planck Collaboration, 2014, A&A, 571, A9

(Planck) High Frequency Instrument

Cosmic Microwave background