Difference between revisions of "HFI time response model"
Line 1: | Line 1: | ||
== LFER4 model == | == LFER4 model == | ||
− | If we write the input signal (power) on a bolometer as <math>\label{bol_in} | + | If we write the input signal (power) on a bolometer as |
− | s_0(t)=e^{i\omega t} | + | <math>\label{bol_in} |
− | </math> the bolometer physical impedance can be written as | + | s_0(t)=e^{i\omega t}</math>, |
− | s(t)=e^{i\omega t}F(\omega) | + | the bolometer physical impedance can be written as |
− | </math> where <math>\omega</math> is the angular frequency of the signal and <math>F(\omega)</math> is the complex intrinsic bolometer transfer function. For HFI the bolometer transfer function is modelled as the sum of | + | <math>\label{bol_out} s(t)=e^{i\omega t}F(\omega)</math>, |
− | F(\omega) = \sum_{i=0,4} \frac{a_i}{1 + i\omega\tau_i} | + | where <math>\omega</math> is the angular frequency of the signal and <math>F(\omega)</math> is the complex intrinsic bolometer transfer function. For HFI the bolometer transfer function is modelled as the sum of four single pole low-pass filters: <math>\label{bol_tf} |
− | </math> The modulation of the signal is | + | F(\omega) = \sum_{i=0,4} \frac{a_i}{1 + i\omega\tau_i}</math>. |
+ | The modulation of the signal is performed with a square wave, written here as a composition of sine waves of decreasing amplitude: <math>\label{sigmod} | ||
s'(t)=e^{i\omega t}F(\omega)\sum_{k=0}^{\infty} \frac{e^{i\omega_r(2k+1)t}-e^{-i\omega_r(2k+1)t}}{2i(2k+1)} | s'(t)=e^{i\omega t}F(\omega)\sum_{k=0}^{\infty} \frac{e^{i\omega_r(2k+1)t}-e^{-i\omega_r(2k+1)t}}{2i(2k+1)} | ||
− | </math> where we have used the Euler relation <math>\sin x=(e^{ix}-e^{-ix})/2i</math> and <math>\omega_r</math> is the angular frequency of the square wave. The modulation frequency is <math>f_{mod} = \omega_r/2\pi</math> and was set to <math>f_{mod} = 90.18759 </math>Hz in flight. This signal is then filtered by the complex electronic transfer function <math>H(\omega)</math>. Setting | + | </math>, where we have used the Euler relation <math>\sin x=(e^{ix}-e^{-ix})/2i</math> and <math>\omega_r</math> is the angular frequency of the square wave. The modulation frequency is <math>f_{mod} = \omega_r/2\pi</math> and was set to <math>f_{mod} = 90.18759 </math>Hz in flight. This signal is then filtered by the complex electronic transfer function <math>H(\omega)</math>. Setting <math>\omega_k^+=\omega+(2k+1)\omega_r</math> <math>\omega_k^-=\omega-(2k+1)\omega_r</math> we have <math>\label{sigele} |
\Sigma(t)=\sum_{k=0}^\infty\frac{F(\omega)}{2i(2k+1)}\left[H(\omega_k^+)e^{i\omega_k^+t}-H(\omega_k^-)e^{i\omega_k^-t}\right] | \Sigma(t)=\sum_{k=0}^\infty\frac{F(\omega)}{2i(2k+1)}\left[H(\omega_k^+)e^{i\omega_k^+t}-H(\omega_k^-)e^{i\omega_k^-t}\right] | ||
− | </math> This signal is then sampled at high frequency (<math>2 f_{mod} | + | </math>. This signal is then sampled at high frequency, (<math>2 f_{mod} N_{\rm S}</math>). Here <math>N_{\rm S}</math> is one of the parameters of the HFI electronics and corresponds to the number of high frequency samples in each modulation semi-period. In order to obtain an output signal sampled every <math>\pi/\omega_r</math> seconds, we must integrate on a semiperiod, as done in the HFI readout. To also include a time shift <math>\Delta t</math>, the integral is calculated between <math>n\pi/\omega_r+\Delta t</math> and <math>(n+1)\pi/\omega_r+\Delta t</math> (with <math>T=2 \pi/\omega_r</math> period of the modulation). The time shift <math>\Delta t</math> is encoded in the HFI electronics by the parameter <math>S_{\rm phase}</math>, with the relation <math>\Delta t = S_{\rm phase}/NS/f_{\rm mod} </math>. |
− | After integration, the < | + | After integration, the <i>n</i>-sample of a bolometer can be written as <math>\label{eqn:output} |
Y(t_n) = (-1)^n F(\omega) H'(\omega) e^{i t_n \omega} | Y(t_n) = (-1)^n F(\omega) H'(\omega) e^{i t_n \omega} | ||
</math> where <math>\label{tfele} | </math> where <math>\label{tfele} | ||
Line 21: | Line 22: | ||
\left(1-e^{\frac{i\omega_k^+\pi}{\omega_r}}\right) | \left(1-e^{\frac{i\omega_k^+\pi}{\omega_r}}\right) | ||
\\ - \frac{H(\omega_k^-)e^{i\omega_k^- \Delta t}}{(2k+1)\omega_k^-} \left(1-e^{\frac{i\omega_k^-\pi}{\omega_r}}\right) | \\ - \frac{H(\omega_k^-)e^{i\omega_k^- \Delta t}}{(2k+1)\omega_k^-} \left(1-e^{\frac{i\omega_k^-\pi}{\omega_r}}\right) | ||
− | \Bigg] | + | \Bigg]. |
</math> | </math> | ||
− | The output signal in equation eqn:output can be demodulated (thus removing the | + | The output signal in equation eqn:output can be demodulated (thus removing the (-1)^<sup>n</sup>) and compared to the input signal in equation bol_in. The overall transfer function is composed of the bolometer transfer function and the effective electronics transfer function, <math>H'(\omega)</math>: <math>TF(\omega) = F(\omega) H'(\omega) |
</math> | </math> | ||
− | The shape of <math>H(\omega)</math> is obtained combining low and high-pass filters with Sallen Key topologies (with their respective time constants) and accounting also for the stray capacitance low pass filter given by the bolometer impedance combined with the stray capacitance of the cables. The sequence of filters that define the electronic band-pass function <math>H(\omega) = h_0*h_1*h_2*h_3*h_4*h_{5}</math> are listed in the following table. | + | The shape of <math>H(\omega)</math> is obtained combining low- and high-pass filters with Sallen Key topologies (with their respective time constants) and accounting also for the stray capacitance low pass filter given by the bolometer impedance combined with the stray capacitance of the cables. The sequence of filters that define the electronic band-pass function <math>H(\omega) = h_0*h_1*h_2*h_3*h_4*h_{5}</math> are listed in the following table. |
<center> | <center> |
Revision as of 08:28, 10 December 2014
LFER4 model[edit]
If we write the input signal (power) on a bolometer as HFI the bolometer transfer function is modelled as the sum of four single pole low-pass filters: . The modulation of the signal is performed with a square wave, written here as a composition of sine waves of decreasing amplitude: , where we have used the Euler relation and is the angular frequency of the square wave. The modulation frequency is and was set to Hz in flight. This signal is then filtered by the complex electronic transfer function . Setting we have . This signal is then sampled at high frequency, ( ). Here is one of the parameters of the HFI electronics and corresponds to the number of high frequency samples in each modulation semi-period. In order to obtain an output signal sampled every seconds, we must integrate on a semiperiod, as done in the HFI readout. To also include a time shift , the integral is calculated between and (with period of the modulation). The time shift is encoded in the HFI electronics by the parameter , with the relation .
, the bolometer physical impedance can be written as , where is the angular frequency of the signal and is the complex intrinsic bolometer transfer function. ForAfter integration, the n-sample of a bolometer can be written as
whereThe output signal in equation eqn:output can be demodulated (thus removing the (-1)^n) and compared to the input signal in equation bol_in. The overall transfer function is composed of the bolometer transfer function and the effective electronics transfer function,
:The shape of
is obtained combining low- and high-pass filters with Sallen Key topologies (with their respective time constants) and accounting also for the stray capacitance low pass filter given by the bolometer impedance combined with the stray capacitance of the cables. The sequence of filters that define the electronic band-pass function are listed in the following table.Filter | Parameters | Function |
---|---|---|
0. Stray capacitance low pass filter | ||
1. Low pass filter | nF |
k |
2. Sallen Key high pass filter | 3 | |
3. Sign reverse with gain | ||
4. Single pole low pass filter with gain | nF |
k|
5. Single pole high pass filter coupled to a Sallen Key low pass filter | k nF k F |
k
Parameters of LFER4 model[edit]
The LFER4 model has are a total of 10 parameters(
, , , , , , , , , ) 9 of which are independent, for each bolometer. The free parameters of the LFER4 model are determined using in-flight data in the following ways:- REU setting. is fixed at the value of the
- CPV. is measured during the QEC test during
- , , , are fit forcing the compactness of the scanning beam.
- , , are fit by forcing agreement of survey 2 and survey 1 maps.
- The overall normalization of the LFER4 model is forced to be 1.0 at the signal frequency of the dipole.
The details of determining the model parameters are given in (reference P03c paper) and the best-fit parameters listed below.
Bolometer | (s) | (s) | (s) | (s) | (s) | (s) | ||||
---|---|---|---|---|---|---|---|---|---|---|
100-1a | 0.392 | 0.01 | 0.534 | 0.0209 | 0.0656 | 0.0513 | 0.00833 | 0.572 | 0.00159 | 0.00139 |
100-1b | 0.484 | 0.0103 | 0.463 | 0.0192 | 0.0451 | 0.0714 | 0.00808 | 0.594 | 0.00149 | 0.00139 |
100-2a | 0.474 | 0.00684 | 0.421 | 0.0136 | 0.0942 | 0.0376 | 0.0106 | 0.346 | 0.00132 | 0.00125 |
100-2b | 0.126 | 0.00584 | 0.717 | 0.0151 | 0.142 | 0.0351 | 0.0145 | 0.293 | 0.00138 | 0.00125 |
100-3a | 0.744 | 0.00539 | 0.223 | 0.0147 | 0.0262 | 0.0586 | 0.00636 | 0.907 | 0.00142 | 0.00125 |
100-3b | 0.608 | 0.00548 | 0.352 | 0.0155 | 0.0321 | 0.0636 | 0.00821 | 0.504 | 0.00166 | 0.00125 |
100-4a | 0.411 | 0.0082 | 0.514 | 0.0178 | 0.0581 | 0.0579 | 0.0168 | 0.37 | 0.00125 | 0.00125 |
100-4b | 0.687 | 0.0113 | 0.282 | 0.0243 | 0.0218 | 0.062 | 0.00875 | 0.431 | 0.00138 | 0.00139 |
143-1a | 0.817 | 0.00447 | 0.144 | 0.0121 | 0.0293 | 0.0387 | 0.0101 | 0.472 | 0.00142 | 0.00125 |
143-1b | 0.49 | 0.00472 | 0.333 | 0.0156 | 0.134 | 0.0481 | 0.0435 | 0.27 | 0.00149 | 0.00125 |
143-2a | 0.909 | 0.0047 | 0.0763 | 0.017 | 0.00634 | 0.1 | 0.00871 | 0.363 | 0.00148 | 0.00125 |
143-2b | 0.912 | 0.00524 | 0.0509 | 0.0167 | 0.0244 | 0.0265 | 0.0123 | 0.295 | 0.00146 | 0.00125 |
143-3a | 0.681 | 0.00419 | 0.273 | 0.00956 | 0.0345 | 0.0348 | 0.0115 | 0.317 | 0.00145 | 0.00125 |
143-3b | 0.82 | 0.00448 | 0.131 | 0.0132 | 0.0354 | 0.0351 | 0.0133 | 0.283 | 0.00161 | 0.000832 |
143-4a | 0.914 | 0.00569 | 0.072 | 0.0189 | 0.00602 | 0.0482 | 0.00756 | 0.225 | 0.00159 | 0.00125 |
143-4b | 0.428 | 0.00606 | 0.508 | 0.00606 | 0.0554 | 0.0227 | 0.00882 | 0.084 | 0.00182 | 0.00125 |
143-5 | 0.491 | 0.00664 | 0.397 | 0.00664 | 0.0962 | 0.0264 | 0.0156 | 0.336 | 0.00202 | 0.00139 |
143-6 | 0.518 | 0.00551 | 0.409 | 0.00551 | 0.0614 | 0.0266 | 0.0116 | 0.314 | 0.00153 | 0.00111 |
143-7 | 0.414 | 0.00543 | 0.562 | 0.00543 | 0.0185 | 0.0449 | 0.00545 | 0.314 | 0.00186 | 0.00139 |
217-5a | 0.905 | 0.00669 | 0.0797 | 0.0216 | 0.00585 | 0.0658 | 0.00986 | 0.342 | 0.00157 | 0.00111 |
217-5b | 0.925 | 0.00576 | 0.061 | 0.018 | 0.00513 | 0.0656 | 0.0094 | 0.287 | 0.00187 | 0.00125 |
217-6a | 0.844 | 0.00645 | 0.0675 | 0.0197 | 0.0737 | 0.0316 | 0.0147 | 0.297 | 0.00154 | 0.00125 |
217-6b | 0.284 | 0.00623 | 0.666 | 0.00623 | 0.0384 | 0.024 | 0.0117 | 0.15 | 0.00146 | 0.00111 |
217-7a | 0.343 | 0.00548 | 0.574 | 0.00548 | 0.0717 | 0.023 | 0.0107 | 0.32 | 0.00152 | 0.00139 |
217-7b | 0.846 | 0.00507 | 0.127 | 0.0144 | 0.0131 | 0.0479 | 0.0133 | 0.311 | 0.00151 | 0.00139 |
217-8a | 0.496 | 0.00722 | 0.439 | 0.00722 | 0.0521 | 0.0325 | 0.0128 | 0.382 | 0.00179 | 0.00111 |
217-8b | 0.512 | 0.00703 | 0.41 | 0.00703 | 0.0639 | 0.0272 | 0.0139 | 0.232 | 0.00173 | 0.00125 |
217-1 | 0.0136 | 0.00346 | 0.956 | 0.00346 | 0.0271 | 0.0233 | 0.00359 | 1.98 | 0.00159 | 0.00111 |
217-2 | 0.978 | 0.00352 | 0.014 | 0.0261 | 0.00614 | 0.042 | 0.00194 | 0.686 | 0.0016 | 0.00125 |
217-3 | 0.932 | 0.00355 | 0.0336 | 0.00355 | 0.0292 | 0.0324 | 0.00491 | 0.279 | 0.00174 | 0.00125 |
217-4 | 0.658 | 0.00135 | 0.32 | 0.00555 | 0.0174 | 0.0268 | 0.00424 | 0.473 | 0.00171 | 0.00111 |
353-3a | 0.554 | 0.00704 | 0.36 | 0.00704 | 0.0699 | 0.0305 | 0.0163 | 0.344 | 0.0017 | 0.00125 |
353-3b | 0.219 | 0.00268 | 0.671 | 0.00695 | 0.0977 | 0.0238 | 0.0119 | 0.289 | 0.00157 | 0.00111 |
353-4a | 0.768 | 0.00473 | 0.198 | 0.00993 | 0.0283 | 0.0505 | 0.00628 | 0.536 | 0.00181 | 0.00125 |
353-4b | 0.684 | 0.00454 | 0.224 | 0.0108 | 0.0774 | 0.08 | 0.0149 | 0.267 | 0.00166 | 0.00111 |
353-5a | 0.767 | 0.00596 | 0.159 | 0.0124 | 0.0628 | 0.0303 | 0.0109 | 0.357 | 0.00156 | 0.00111 |
353-5b | 0.832 | 0.00619 | 0.126 | 0.0111 | 0.0324 | 0.035 | 0.0096 | 0.397 | 0.00166 | 0.00111 |
353-6a | 0.0487 | 0.00176 | 0.855 | 0.006 | 0.0856 | 0.0216 | 0.0105 | 0.222 | 0.00199 | 0.00125 |
353-6b | 0.829 | 0.00561 | 0.127 | 0.00561 | 0.0373 | 0.0252 | 0.00696 | 0.36 | 0.00228 | 0.00111 |
353-1 | 0.41 | 0.000743 | 0.502 | 0.00422 | 0.0811 | 0.0177 | 0.0063 | 0.329 | 0.00132 | 0.00097 |
353-2 | 0.747 | 0.00309 | 0.225 | 0.00726 | 0.0252 | 0.0447 | 0.00267 | 0.513 | 0.00154 | 0.00097 |
353-7 | 0.448 | 0.0009 | 0.537 | 0.0041 | 0.0122 | 0.0273 | 0.00346 | 0.433 | 0.00178 | 0.00125 |
353-8 | 0.718 | 0.00223 | 0.261 | 0.00608 | 0.0165 | 0.038 | 0.00408 | 0.268 | 0.00177 | 0.00111 |
545-1 | 0.991 | 0.00293 | 0.00743 | 0.026 | 0.00139 | 2.6 | 0 | 0 | 0.00216 | 0.00111 |
545-2 | 0.985 | 0.00277 | 0.0128 | 0.024 | 0.00246 | 2.8 | 0 | 0 | 0.00187 | 0.00097 |
545-4 | 0.972 | 0.003 | 0.0277 | 0.025 | 0.000777 | 2.5 | 0 | 0 | 0.00222 | 0.00111 |
857-1 | 0.974 | 0.00338 | 0.0229 | 0.025 | 0.00349 | 2.2 | 0 | 0 | 0.00176 | 0.00111 |
857-2 | 0.84 | 0.00148 | 0.158 | 0.00656 | 0.00249 | 3.2 | 0 | 0 | 0.0022 | 0.00125 |
857-3 | 0.36 | 4.22e-05 | 0.627 | 0.0024 | 0.0111 | 0.017 | 0.002 | 1.9 | 0.00152 | 0.00126 |
857-4 | 0.278 | 0.0004 | 0.719 | 0.00392 | 0.00162 | 0.09 | 0.00152 | 0.8 | 0.00149 | 0.000558 |
(Planck) High Frequency Instrument
Readout Electronic Unit
Calibration and Performance Verification