|
|
(16 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | $
| |
− | \newcommand{\Re}{\mathrm{Re}\,}
| |
− | \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
| |
− | $
| |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
Line 12: |
Line 8: |
| </math> | | </math> |
| | | |
− | blablabl
| + | |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | W_3(k) &= \mathrm{Re}\,\, {}_{3}\mathrm{F}_{2}\left( \genfrac{}{}{0pt}{\frac{1}{2},-\frac{k}{2},-\frac{k}{2}}{\Pi} \right)
| + | |
| + | \newcommand{\Re}{\mathrm{Re}\,} |
| + | \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} |
| + | |
| + | W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4} |
| \end{align} | | \end{align} |
| </math> | | </math> |
− |
| |
− | \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
| |
− | W_3(k) &= \mathrm{Re} \, {}_{3}\mathrm{F}_{2}\left(\genfrac{}{}{0pt}{\frac{1}{2},-\frac{k}{2},-\frac{k}{2}}{\Pi}\right
| |
Latest revision as of 13:23, 21 September 2012
[math]
\begin{align}
W_n (s)
&:=
\int_{[0, 1]^n}
\left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
[/math]
[math]
\begin{align}
\newcommand{\Re}{\mathrm{Re}\,}
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}
\end{align}
[/math]