LFI Annexes

From Planck PLA Wiki
Revision as of 11:10, 23 July 2014 by Lmendes (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Annexes: LFI(Planck) Low Frequency Instrument Instrument

Here we report a more detailed definition of each component of the LFI(Planck) Low Frequency Instrument instrument, briefly described in the main LFI instrument page.

Radiometer Array Assembly (RAALFI Radiometer Array Assembly) Components

Feed Horns (FHFeed Horn)

Dual profiled corrugated horns have been selected at all LFI(Planck) Low Frequency Instrument frequencies as the best design in terms of shape of the main lobe, level of the side lobes, control of the phase centre, and compactness. Dual profiled LFI(Planck) Low Frequency Instrument horns are composed by a Sine Squared profiled section, and an exponential profile near the aperture plane. In order to optimise the optical matching of the feeds phase centres to the telescope focal surface, while preventing obscuration between horns, LFI(Planck) Low Frequency Instrument has 6 different feed horn designs. For each frequency, the number of feeds and the number of different designs are reported in Table 1 below.

Table 1. Number of LFI(Planck) Low Frequency Instrument feed horns and number of different feed horn designs
Frequency (GHz) Number of Horns Number of designs
30 2 1
44 3 2
70 6 3


LFI(Planck) Low Frequency Instrument feed horn design specifications are reported in the table 2 below.


Table 2. LFI(Planck) Low Frequency Instrument feed horn design specifications. The edge taper is the taper used to optimize the optical response; the return loss and the cross polarization are the maximum design values over the whole bandwidth; The phase center location is defined as the distance between the horn flange and the focal surface of the telescope.
Fh1.jpg

The design process led to a corrugation profile composed by a mixture of a sine-squared section, starting from the throat, and an exponential section near the aperture plane. The length of this last has a direct impact on the location of the phase center. The analytical expression of the corrugation profile, [math]R(z)[/math], is the following

[math] \label{eq:fh1} R(z) = R_{th} +(R_s −R_{th}) ((1−A) \frac{z}{L_s} + A \, sin^\beta \, (\frac{\pi \, z}{2 \, L_s})) [/math]

[math] 0 ≤ z ≤ L_s [/math]

in the sine section, and

[math] \label{eq:fh2} R(z)= R_s+e^{\alpha(z−L_s)}−1; \; \alpha = \frac{1}{L_e} ln(R_{ap}−R_s) [/math]

[math] L_s ≤ z ≤ L_e + L_s [/math]

in the exponential region. Here, [math]R_{th}[/math] is the throat radius, [math]R_s[/math] is the sine squared region end radius (or exponential region initial radius), [math]R_{ap}[/math] is the aperture radius, [math]L_s[/math] is the sine squared region length and [math]L_e[/math] is the exponential region length. The parameter [math]A (0 ≤ A ≤ 1)[/math] modulates the first region profile between linear and pure sine squared type. The parameters [math]L_e/(L_e + L_s)[/math], [math]A[/math] and [math]R_s[/math] can be used to control, as far as possible, the position and frequency stability of the phase center and the compactness of the structure. The feed horn parameters are reported in table 3 below.


Table 3. LFI(Planck) Low Frequency Instrument feed horn parameters. [math]R_{th}[/math]: Throat radius; [math]N_s[/math]: Number of corrugation of the [math]sin^\beta [/math] section; [math]R_s[/math]: end radius of [math]sin^\beta[/math] section; [math]A[/math]: tapering coefficient; [math]N_e[/math]: number of corrugation of the exponential section; [math]R_{ap}[/math]: final aperture diameter.
Fh2.jpg

The qualification campaign, mainly focused on RF return loss and pattern (amplitude and phase) measurements, was successfully concluded. The agreement between the pattern measurements and the expected performances (simulated using nominal corrugation profile) is excellent both in amplitude and in phase. Moreover reflection measurements show a good impedance match for all the horns, the return loss being better than -30 dB over the whole 20% of operational bandwidth.

Details of the design, flight model and tests of Planck-LFI(Planck) Low Frequency Instrument feed horns can be found in[1].

OrthoMode Transducers (OMTLFI Ortho Module Transducer)

The Ortho–Mode Transducer (OMTs) separates the radiation collected by the feed horn in two orthogonal polarisation components. It consists of a circular to square waveguide transition (directly connected to the FHFeed Horn), a square waveguide section and two separate rectangular waveguide (the through and side arms, which separate and pick up the orthogonal polarisation, connected with the FEULFI cryogenic amplifying stage Front End Unit). On the side arms is always present a 90 degrees bend, while a twist is also necessary on the main (30 and 44 GHz) and side (70GHz) arm, in order to math the FEULFI cryogenic amplifying stage Front End Unit polarisation.

The required and measured performances for the LFI(Planck) Low Frequency Instrument OMTs at all frequencies are reported in the following tables 4 and 5:

Table 4. Performance Characteristics of the LFI(Planck) Low Frequency Instrument OMTs based on measurements. The values are the worst values over the entire 20% of bandwidth.
OMTLFI Ortho Module Transducer ID Bandwidth [GHz] X–Pol [dB] (Main) X–Pol [dB] (Side) Return–Loss [dB] (Main) Return–Loss [dB] (Side)
18 14 <29 <30 -15.0 -20.0
19 14 <26 <28 -15.0 -20.0
20 14 <32 <35 -15.0 -20.0
21 14 <32 <37 -15.0 -18.0
22 14 <26 <28 -15.0 -18.0
23 14 <26 <28 -15.0 -20.0
24 8.8 <38 <40 -13.0 -18.0
25 8.8 <31 <32 -13.0 -18.0
26 8.8 <27 <25 -13.0 -17.0
27 6 <38 <44 -16.0 -23.0
28 6 <36 <38 -16.0 -22.0

Table 5. Mean value of the IL over LFI(Planck) Low Frequency Instrument bandwidth estimated at 20K and measured at room temperature.

Omt.jpg

The details of the flight models and measurements of the Planck LFI(Planck) Low Frequency Instrument ortho-mode transducers can be found in[2].

Front End Modules (FEMLFI cryogenic amplifying stage Front End Module)

Front End Modules are located in the FPUFocal Plane Unit, just in cascade of the Feed Horn and the Ortho Mode Transducers. 70 GHz FEMs are mounted onto the inner wall of the mainframe (the wall facing HFI(Planck) High Frequency Instrument instrument) from the HFI(Planck) High Frequency Instrument side. 44 and 30 GHz FEMs are inserted into the mainframe from the WGLFI Waveguide side and fixed to the bottom plate. Screws to bottom plate are inserted from WGLFI Waveguide side. The LFI(Planck) Low Frequency Instrument FEMs are the first active stage of amplification of the radiometer chain. Each FEMLFI cryogenic amplifying stage Front End Module contains four amplification paths. Each path is composed by several cascaded LNAs followed by a phase switch. Two passive hybrids, at the input and output of the FEMLFI cryogenic amplifying stage Front End Module, are used to mix couples of signals of the same radiometer (see Fig. 2 in RAA section). This makes the instabilities of each chain to be applied to both the sky and load signals.

The passive hybrid coupler (magic-tee) combines the signals from the sky and cold load with a fixed phase offset of either 90 deg or 180 deg between them. It has a 20% bandwidth, low loss, and amplitude balance needed at the output to ensure adequate signal isolation.

The FEMLFI cryogenic amplifying stage Front End Module LNAs (InP MMIC) are biased providing 1 drain line per channel (that is 4 per FEMLFI cryogenic amplifying stage Front End Module) and 2 gate lines per channel (that is 8 per FEMLFI cryogenic amplifying stage Front End Module). The FEMLFI cryogenic amplifying stage Front End Module Phase switches are biased providing 2 lines per channel (that is 8 per FEMLFI cryogenic amplifying stage Front End Module) each capable of providing a direct bias current or a reverse bias voltage.

The LFI(Planck) Low Frequency Instrument FEMLFI cryogenic amplifying stage Front End Module parameters necessary to meet the science objectives at 30 and 44 GHz were given as requirements and goals and are summarised in table 6 below where they are compared with the values actually achieved. The FEMLFI cryogenic amplifying stage Front End Module units meet the requirements, within the measurement errors, for most parameters and in particular the noise temperature. The units come close to the more stringent goals in several parameters. Of particular note are the noise temperatures achieved; these along with the wide bandwidths are critical for the high sensitivity required for the Planck mission. Some LNAs within the FEMs met the goals at 30 GHz and 44 GHz within the measurements errors and reached 3 and 5 times the theoretical quantum limit respectively at the band centres. Furthermore, a range of tests showed that LNAs and FEMs achieved the stability levels required to meet the observing strategy of Planck. In particular, the [math]1/f[/math] noise knee frequency ≤29 mHz, close to the goal, met the conditions imposed by the 60 second rotation period of the spacecraft. The linear polarization performance of the FEMs exceeded the requirements of the mission. The isolation between the E- and H- polarizations was measured to be between 51 and 58 dBs for the various FEMs. The LFI(Planck) Low Frequency Instrument radiometers have very well determined position angle precision, being determined by the accuracy of the waveguide engineering. The 30 and 44 GHz geometry is accurate to ∼ [math]0.1^\circ \, [/math] ; the corresponding precision is ∼ [math]1^\circ \, [/math] in the HFI(Planck) High Frequency Instrument polarimeters. The temperature stability requirement values are also given in the table 6 below.


Table 6. Summary of the FEMLFI cryogenic amplifying stage Front End Module goals, requirements and mean achieved performances.
Fem1.jpg

The details of the design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument can be found in[3].

For what regards the 70 GHz channels, for the LNA selection of the FEMs, nine different wafers from various processing runs were evaluated, only the LNAs with the best performance were assembled as the first stage amplifiers in the FEMLFI cryogenic amplifying stage Front End Module ACAs. For the phase switch selection, four different wafers were evaluated. When the signal is passed to an output, the gain is 35 dB or higher for almost the entire required range, and on average, the Planck requirement was fulfilled. In all FEMs, the average channel gains ranged from 34.0-40.0 dB (uncertainty ±0.1 dB). When the signal is isolated from an output, the gain is 20 dB lower or more at all frequencies. This difference in gain is used as the measure for isolation. In all the six FEMs, the channel isolation values ranged from 11.3-22.1 dB (uncertainty ±0.1 dB).

Table 7 below summarises the best, the worst and the average values of the key performance parameters. The shown uncertainties are based on worst case estimates.


Table 7. Summary of the 70 GHz Protoflight Model radiometer performance.
Fembem70.jpg

The details of the design, development and verification of the 70 GHz front-end modules for the Planck Low Frequency Instrument can be found in[4].

Waveguides

The LFI(Planck) Low Frequency Instrument Front End Unit (FEULFI cryogenic amplifying stage Front End Unit) is connected to the Back End Unit (BEULFI warm electronics Back End Unit) by 44 rectangular waveguides approximately 1.5-2.0 meter long. Each waveguide exhibits low VSWR (Voltage Standing Wave Ratio), low thermal conductivity, low insertion loss, and low mass. In addition, the waveguide path shall permit the LFI(Planck) Low Frequency Instrument/HFI(Planck) High Frequency Instrument integration and the electrical bonding between FPUFocal Plane Unit and BEULFI warm electronics Back End Unit. Because of the Focal Plane Unit arrangement, the waveguides are in general twisted and bended in different planes and with different angles, depending on the particular waveguide. From the thermal point of view the waveguides have to connect 2 systems (BEMLFI warm electronics Back End Module and FEMLFI cryogenic amplifying stage Front End Module) that are at very different temperatures. At BEMLFI warm electronics Back End Module level the waveguides are at a temperature of 300K while at FEMLFI cryogenic amplifying stage Front End Module level the temperature is 20K. The waveguides have to reduce the thermal flow from 300K to 20K. In Fig. 1 (left panel) of LFI overview section, a conceptual sketch of the LFI(Planck) Low Frequency Instrument configuration is shown.

All the required characteristics cannot be realized with single material waveguide configuration; a composite waveguide configuration is needed. The WGs can be considered divided in three sections: 1. 400 mm of Stainless Steel (gold plated) straight waveguide section, attached to the BEULFI warm electronics Back End Unit, ending after the 3rd V–groove; 2. 300 mm of non–plated Stainless Steel (SS). The SS-sections are identical for all the channels except for internal dimensions, depending on frequency. These guides are connected to all the V-grooves in order to dissipate the heat produced at BEULFI warm electronics Back End Unit level. 3. bended and twisted 400 microns thin electroformed copper waveguide starting at the end of the SS–section and attached to the FEULFI cryogenic amplifying stage Front End Unit, whose length varying from around 800 mm to 1300 mm, with 2 to 4 Cu-joints. The copper waveguides section is connected to a mechanical support structure in five points in order to increase the stiffness of the waveguide.

The performance for the LFI(Planck) Low Frequency Instrument waveguides at all frequencies are reported in the following table 8:

Table 8. Number of LFI(Planck) Low Frequency Instrument waveguides and performances. The Insertion Loss (IL), Return Loss (RL) and Electrical Resistance (R) values are the requirements. In between parenthesis the goal is reported also. Note that the RL value includes possible degradation due to presence of flanges.
Frequency [math] \nu [/math] band [GHz] Number IL [dB] @20 K RL [dB] Isolation [dB] R [mΩ] @20 K R [mΩ] @300 K
30 27-33 8 <2.5 (1.0) <-25 <-30 11.8 27.3
44 39.6-48.4 12 <3.0 (1.5) <-25 <-30 14.7 34.1
70 63-77 24 <5.0 (3.5) <-25 <-30 26.2 60.5

From the thermal point of view the waveguides have to connect 2 systems (BEMLFI warm electronics Back End Module and FEMLFI cryogenic amplifying stage Front End Module) that are at different temperatures. At BEMLFI warm electronics Back End Module level the waveguides are at a temperature of 300K while at FEMLFI cryogenic amplifying stage Front End Module level the temperature is 20K. Along the Stainless Steel section the waveguides have to reduce the thermal flow from 300K to 20K. The Stainless Steel waveguide is connected to all the V-grooves in order to dissipate the heat produced at BEULFI warm electronics Back End Unit level.

Details of the Planck-LFI(Planck) Low Frequency Instrument flight model of the composite waveguides can be found in[5].

Back End Modules (BEMLFI warm electronics Back End Module)

The BEMs are composed by four identical channels each made of Low Noise Amplifiers (LNA), RF Band Pass Filter, RF to DC diode detector and DC amplifiers. The FEMLFI cryogenic amplifying stage Front End Module output signals are connected by waveguide from the Focal Plane Unit (FPUFocal Plane Unit) assembly to the Back End Modules (BEMLFI warm electronics Back End Module’s) housed adjacent to the Data Acquisition Electronics (DAELFI Data Acquisition Electronics) assembly. To maintain compatibility with the FEMLFI cryogenic amplifying stage Front End Module’s, each BEMLFI warm electronics Back End Module accommodates four receiver channels from the four waveguide outputs of each FEMLFI cryogenic amplifying stage Front End Module. The BEMLFI warm electronics Back End Module internal signal routes are not cross coupled and can be regarded as four identical parallel circuits. Each BEMLFI warm electronics Back End Module is constructed as two mirror halves. The two amplifier/detector assemblies each contain two amplifier/detector circuits. Each is supplied from one of a pair of printed circuit boards which also house two DC output amplifiers.

In the 30 GHz BEMLFI warm electronics Back End Module, each LNA consists of two cascaded MMIC amplifiers. The Band Pass Filter is based on microstrip coupled line structure. Its design is a three order Chebyshev response band pass filter. The detector is composed by a hybrid reactive/passive matching network, and a Schottky diode. A commercial Agilent beam-lead and zero-bias diode was selected. The detector diode is followed by a low noise operational amplifier that provides most of the DC amplification. A second stage is implemented using an operational amplifier to provide a balanced bipolar output.

In the 44 GHz BEMLFI warm electronics Back End Module, each LNA consists of self designed MMIC amplifiers manufactured with the process ED02AH from OMMIC which employs a 0.2 μm gate length Pseudomorphic-High Mobility Transistor (P-HEMTHigh Electron Mobility Transistor) on GaAs. The topology chosen for the band-pass filter is a third order Chebyshef band pass filter made on a PTFE substrate, based on microstrip coupled line structure. The detector is composed by a hybrid reactive/passive matching network and a Schottky diode. A commercial Agilent beam-lead and zero-bias diode was selected. The detector diode is followed by a low noise operational amplifier that provides most of the DC amplification. A second stage is implemented using an operational amplifier to provide a balanced bipolar output.

Table 9 below shows the values of the equivalent noise temperature for each flight model BEMLFI warm electronics Back End Module at three different temperatures in the range of possible operating temperature. The large variability of the equivalent noise temperature of 44 GHz BEMLFI warm electronics Back End Module units was due to their large dependence on the input matching network result, which was observed to be a very critical parameter, not easy to control during the assembly process of MMIC.


Table 9. Equivalent noise temperature of the BEMLFI warm electronics Back End Module Flight models in Kelvin. (One unit of each band is a Flight Spare). Estimated error: ± 20 K.
Bem1.jpg

The raw measurements of the output spectrum are used for the determination of the [math]1/f[/math] knee frequency. The results for the four channels of a 30 GHz BEMLFI warm electronics Back End Module unit are given in the table below.


Table 10. [math]1/f[/math] knee frequency (Hz) of 30 GHz BEMLFI warm electronics Back End Module unit.
Bem2.jpg

The details of the design, development and verification of the 30 and 44 GHz back-end modules for the Planck Low Frequency Instrument can be found in[6].

The 70 GHz BEMLFI warm electronics Back End Module is constructed of machined aluminium with separate filter, amplifier/detector assemblies and an overall housing for other circuits and components. The BEMLFI warm electronics Back End Module filter characteristics hold very accurately for every channel in the six BEMs. The -3 dB pass band, 62-81 GHz, was the same in every filter within 0.5 GHz. The BEMLFI warm electronics Back End Module frequency response was measured as a function of input microwave power. Also, the pass bands roll at almost exactly 63 GHz and 77 GHz. The linearity of the channel is very good as well, especially from -57 dBm upwards. The dynamic range was at least 15 dB from -57 dBm to -42 dBm. In three cases, the BEMs fulfilled the power consumption requirement, while the limit was exceeded for the other three. For the total six BEMs, the limit, 3.6 W, was exceeded by approximately 140 mW. Table 7 above summarises the best, the worst and the average values of the key performance parameters. The shown uncertainties are based on worst case estimates.

The details of the design, development and verification of the 70 GHz back-end modules for the Planck Low Frequency Instrument can be found in[4].

4K Load

The purpose of the 4 K reference load is to provide the radiometer with a stable reference signal. Reducing the input offset (the radiometric temperature difference between the sky and the reference load) reduces the minimum achievable radiometer [math]1/f[/math] noise knee frequency for a given amplifier fluctuation spectrum. A reference load temperature that matches the sky temperature (approximately 2.7 K) would be ideal. In the 4KRL design, the reference temperature is provided by the HFI(Planck) High Frequency Instrument outer radiation shield, at a temperature around 4K. The 4KRL performance are reported in Table 11 below.


Table 11. RF measured performance for the 4KRL: RH (+WaveGuide) Insertion Loss, RH (+WGLFI Waveguide) RL, RH (+WGLFI Waveguide) + RT Return Loss. 70 GHz performance have been measured using a representative Reference Horn and waveguide, since RHs are internal to FEMs: this value is reported in the table. RCAs 24-26 are the LFI(Planck) Low Frequency Instrument 44 GHz channels, 27 and 28 the 30 GHz ones. M and S refer to Main and Side OMTLFI Ortho Module Transducer arm, respectively. [math]∗[/math] Measured on the FM RTs and a representative Reference Horn.
4krl.jpg

The 4K reference load unit is formed by single targets, one for each radiometer (two for each FEMLFI cryogenic amplifying stage Front End Module). The horns used to couple to the 4 K reference load targets need to be relatively small because the targets themselves are small. An optimisation process produced a different horn design for each LFI(Planck) Low Frequency Instrument band: their dimensions increase with reducing frequency. Due to the LFI(Planck) Low Frequency Instrument Focal Plane design, where higher frequency radiometers (70 GHz) are placed around the HFI(Planck) High Frequency Instrument cryostat and the lower frequency radiometers (30 and 44 GHz) in a second row, the target mounting structure is separated in two parts, see Fig. 1 below. The upper one is located around the conical part of the HFI(Planck) High Frequency Instrument outer shield. Reference targets are mounted on a supporting structure, thermally and mechanically connected to the HFI(Planck) High Frequency Instrument outer shield. Each target faces a reference horn, two for each FEMLFI cryogenic amplifying stage Front End Module. This ensemble is fixed to a support structure on the HFI(Planck) High Frequency Instrument 4K shield. Thermal link between the mounting structure and the HFI(Planck) High Frequency Instrument is obtained via fixation point only. Thermal washers are interposed to damp temperature fluctuations on targets induced by the HFI(Planck) High Frequency Instrument outer shield temperature oscillations. The lower part is fixed in the cylindrical part. It is made with the same target geometry of the upper part, and it is fixed on the HFI(Planck) High Frequency Instrument shield. The reference horns face the loads and are connected to the FEMs through WGs. Reference WGs and RH (Reference Horns) are either included in the FEMLFI cryogenic amplifying stage Front End Module (70 GHz) or external to FEMLFI cryogenic amplifying stage Front End Module (30 and 44 GHz).


Figure 1. 4K reference load targets mounted on the HFI(Planck) High Frequency Instrument 4K shield.

Targets are formed of a back section, made of ECCOSORB CR117, which shows higher RF absorption but also high reflectivity. To reduce the target global reflectivity, a front section, assembled with an ECCOSORB specific cement to the back one, faces the radiometer Reference Horn. This last is casted from ECCOSORB CR110, whose RF reflectivity is lower than that of CR117. Target design is optimised to further reduce both reflectivity and leakage. Each target is metal backed and it is mounted in a metal enclosure.

Thermal tests were performed in the IASF-Bo 4K cryo facility, equipped with a GM cooler, with an heat lift up to 1.5 W at 4K. The setup simulated the real environment in the payload, where targets are mounted on the HFI(Planck) High Frequency Instrument 4K shield in front of the quasi-cylindrical LFI(Planck) Low Frequency Instrument main frame at about 20 K. It was also used to test the susceptibility to fluctuations of the LFI(Planck) Low Frequency Instrument.

The thermo-mechanical damping was evaluated from the transient test, inducing sinusoidal temperature fluctuation with periods of 60, 600, 667 (typical Sorption Cooler period) and 1000 seconds at the level of the attachment point of the loads on the support structures. The fluctuation at the level of the targets is then acquired and the transfer function (amplitude and phase) are estimated by the ratio of the amplitudes. The final results are summarized in the table 12.


Table 12. Thermal fluctuation damping measured for the reference loads at different frequencies.
4krl t.jpg

Details of the design and performance of the LFI(Planck) Low Frequency Instrument 4K reference load units are given in[7].

REBALFI Radiometer Electronics Box Assembly

The Radiometer Electronics Box Assembly (REBALFI Radiometer Electronics Box Assembly) is the electronic box in charge of processing the digitized scientific data and to manage the overall instrument. It is also in charge of the communication with the spacecraft. There are two REBALFI Radiometer Electronics Box Assembly boxes, one nominal and one redundant. The redundancy concept is cold, which means that both boxes are never ON at the same time; the operation of each unit shall be managed by the spacecraft switching-on the corresponding unit. The REBALFI Radiometer Electronics Box Assembly ASW (Application SoftWare) is the same in each REBALFI Radiometer Electronics Box Assembly box.

Each REBALFI Radiometer Electronics Box Assembly consists of the following subunits:

  • The Power Supply Unit (PSU) which feeds the REBALFI Radiometer Electronics Box Assembly unit. It consists of a DC/DC converter that converts the primary power received from the spacecraft PDU to the secondary regulated voltages required only by the REBALFI Radiometer Electronics Box Assembly and provides galvanic isolation towards the spacecraft side of the interface. The PSU DC/DC converter also receives the On-Board Clock (OBC) from the CDMSCommand and Data Management System that is used to increment the internal On Board Time register. There is no software interface with the REBALFI Radiometer Electronics Box Assembly ASW.
  • The Data Acquisition Unit (DAU) performs the analogue to digital conversion of the analogue housekeeping data of the REBALFI Radiometer Electronics Box Assembly itself (temperatures and voltages). The REBALFI Radiometer Electronics Box Assembly ASW collects from the DAU the HKHouse Keeping data.
  • The Signal Processing Unit (SPUSignal Processing Unit) is a computing subunit in charge of the reduction and compression of the science data and implements part of the REBALFI Radiometer Electronics Box Assembly ASW, the SPUSignal Processing Unit ASW (stored in the EEPROM located in the DPUData Processing Unit board and transferred to the SPUSignal Processing Unit by the DPUData Processing Unit ASW). It receives the science data from the DAELFI Data Acquisition Electronics through a IEEE 1355 link implemented in a SMCS chip. A second IEEE 1355 link is used to control by link the remote DAELFI Data Acquisition Electronics SMCS chip. The third IEEE 1355 link communicates with the DPUData Processing Unit. A “Data Ready” electrical signal is connected between DAELFI Data Acquisition Electronics and the SPUSignal Processing Unit, this signal produces an interruption in the SPUSignal Processing Unit when the DAELFI Data Acquisition Electronics is ready to transfer data.
  • The Digital Processing Unit (DPUData Processing Unit) is a computing subunit and implements part of the REBALFI Radiometer Electronics Box Assembly ASW, the DPUData Processing Unit ASW. The DPUData Processing Unit is in charge of the control and monitoring of the instrument as well as the communication with the spacecraft (CDMSCommand and Data Management System). It contains another SMCS chip with 3 IEEE 1355 links that communicate with the SPUSignal Processing Unit, and the DAELFI Data Acquisition Electronics. A MIL-STD 1553B link is used to communicate with the CDMSCommand and Data Management System. One IEEE 1355 link is used by the DPUData Processing Unit ASW to communicate with the DAELFI Data Acquisition Electronics to control by link the SMCS chip of DAELFI Data Acquisition Electronics, the second one is used to communicate with the DAELFI Data Acquisition Electronics to transfer commands and HKHouse Keeping and the third one is used by DPUData Processing Unit ASW to communicate with the SPUSignal Processing Unit (commands and TM). Two Reset electrical lines are provided by the DPUData Processing Unit to reset each of the two SMCS chips of DAELFI Data Acquisition Electronics. The DPUData Processing Unit ASW is stored in the EEPROM.

A detailed description of the Planck LFI(Planck) Low Frequency Instrument REBALFI Radiometer Electronics Box Assembly can be found in[8].

Instrument On-board Software

The REBALFI Radiometer Electronics Box Assembly software is the on board software of LFI(Planck) Low Frequency Instrument. It is installed in the two computing subunits of REBALFI Radiometer Electronics Box Assembly: the DPUData Processing Unit, responsible of the control and monitoring of the instrument and the interface with the spacecraft and; the SPUSignal Processing Unit, responsible of the data reduction and compression. The REBALFI Radiometer Electronics Box Assembly software can be classified (see Fig. 2) into:

1. the REBALFI Radiometer Electronics Box Assembly Start-up Software (SUSW), installed in the PROM memories, which is the bootstrap code to switch on both the subunits;
2. the Application Software (ASW), which performs the nominal operations of the REBALFI Radiometer Electronics Box Assembly;
3. the REBALFI Radiometer Electronics Box Assembly Low Level Software Drivers (LLSWDRV) which are functions provided to the ASW to access the hardware capabilities.


Figure 2. REBALFI Radiometer Electronics Box Assembly Software, high level product tree.

The SPUSignal Processing Unit SUSW and DPUData Processing Unit SUSW, located in the PROM memories of SPUSignal Processing Unit and DPUData Processing Unit, respectively, are in charge of the booting of the subunits.

The REBALFI Radiometer Electronics Box Assembly ASW performs the following main functions:

  • SPUSignal Processing Unit ASW reduction and compression of the scientific data;
  • DPUData Processing Unit ASW: control and monitoring of the instrument, interface with the spacecraft to transfer data and receive commands to/from ground, communication with the SPUSignal Processing Unit SUSW during the start-up procedure to load the SPUSignal Processing Unit ASW.

The REBALFI Radiometer Electronics Box Assembly ASW checks periodically the following parameters:

− Science TM rate produced on board in order to control the filling of the spacecraft mass memory;
− CPU load of the SPUSignal Processing Unit;
− Focal Plane temperature sensors;
− The communication links between REBALFI Radiometer Electronics Box Assembly and DAELFI Data Acquisition Electronics.

In case of deviations from nominal values, the REBALFI Radiometer Electronics Box Assembly ASW activates autonomy functions that put the instrument in a safe state or recover from non-nominal situations. Autonomy functions allows to:

- Re-enable, in some cases, previously disabled science processing;
- Switch-off the Front End Unit by sending Disable RCALFI Radiometer Chain Assembly DC/DC commands to the DAELFI Data Acquisition Electronics;
- Try to resume the communication between REBALFI Radiometer Electronics Box Assembly and DAELFI Data Acquisition Electronics or ask the CDMSCommand and Data Management System to switch off the RAALFI Radiometer Array Assembly.

The DPUData Processing Unit ASW reports the activation of any autonomous function by sending to the CDMSCommand and Data Management System an event report. The REBALFI Radiometer Electronics Box Assembly monitors some LFI(Planck) Low Frequency Instrument HKHouse Keeping parameters in order to manage to some extent the safety of the instrument.

Reduction and Compression of Science Data

To asses stability against [math]1/f[/math] noise, the Low Frequency Instrument (LFI(Planck) Low Frequency Instrument) on-board the Planck mission will acquire data at a rate much higher than the data rate allowed by the science telemetry bandwidth of 35.5 kbps. The data are processed by an on-board pipeline, followed on-ground by a decoding and reconstruction step, to reduce the volume of data to a level compatible with the bandwidth while minimizing the loss of information. The on-board processing of the scientific data used by Planck/LFI(Planck) Low Frequency Instrument to fit the allowed data-rate is an intrinsically lossy process which distorts the signal in a manner which depends on a set of five free parameters ([math] N_{aver}, r_1, r_2, q, O \,[/math]) for each of the 44 LFI(Planck) Low Frequency Instrument detectors. Here we briefly describe the characteristics of this algorithm and the level of distortion introduced by the on-board processing as a function of these parameters. A full description of the Planck LFI(Planck) Low Frequency Instrument on-board data handling system and the tuning and optimization method of the on-board processing chain can be found in[9].

The strategy adopted to fit into the bandwidth relies on three on-board processing steps: downsampling, pre-processing the data to ensure loss-less compression, and loss-less compression itself. To demonstrate these steps, a model of the input signal shall be used. It has to be noted that while the compression is loss-less, the pre-processing is not, due to the need to rescale the data and convert them in integers, (a process named data re-quantization). However, the whole strategy is designed to asses a strict control of the way in which lossy operations are done, of the amount of information loss in order to asses optimal compression rate with minimal information loss.

A schematic representation of the sequence in which these steps are applied on-board and whenever possible reversed on-ground is given in Fig. 3 below.

Figure 3. Schematic representation of the scientific onboard and ground processing for the Planck/LFI(Planck) Low Frequency Instrument. Cyan boxes represent REBALFI Radiometer Electronics Box Assembly operations, yellow boxes ground operations. Green pads specify the parameters needed by each operation. TOI could be produced both in undifferentiated form ([math] T_{sky}, \, T_{load} \, [/math] stored separately) or in differentiated form.

The figure refers to a single radiometer chain and is ideally splitted into two parts: the upper part depicts the on-board processing with cyan boxes denoting the main steps. The corresponding on-ground processing is depicted in the lower part with the main steps colored in yellow. Green pads represents the processing parameters. The first four of them are referred to as REBALFI Radiometer Electronics Box Assembly parameters, and they are applied both on-board and on-ground. The parameters are: the number of ADCanalog to digital converter raw samples to be coadded to form an instrumental sample, [math]N_{aver}[/math], the two mixing parameters [math]r_1, r_2 [/math], the offset [math] O[/math] to be added to data after mixing and prior to re-quantization, and the re-quantization step [math]q[/math]. It is important to note that the on-board parameters are set by telecommands and are stamped in each scientific packet. The gain modulation factor, [math]r[/math] (see Eq. (2) in RCA section above), is a parameter of the ground processing and is computed from the total power data received on ground. The final products in the form of Time Ordered Data (TOI) either in total power or differentiated are stored in an archive represented by the light-blue cylinder.

All the needed optimization steps are performed by an automated software tool, the Onboard Computing Analysis (OCA), which simulates the on-board processing, explores the space of possible combinations of parameters, and produces a set of statistical indicators, among them: the compression rate [math]C_r[/math] and the processing noise [math]\epsilon_Q[/math]. For Planck/LFI(Planck) Low Frequency Instrument it is required that [math]C_r = 2.4[/math] while, as for other systematics, [math]\epsilon_Q \,[/math] would have to be less than 10% of rms of the instrumental white noise. An analytical model is developed that is able to extract most of the relevant information on the processing errors and the compression rate as a function of the signal statistics and the processing parameters to be tuned. This model is of interest for the instrument data analysis to asses the level of signal distortion introduced in the data by the on-board processing.

Once the instrument is completed tuned and stable, a tuning process is applied in order to optimize the REBALFI Radiometer Electronics Box Assembly parameters. The procedure foresees to acquire chunks of about 15 minutes of averaged data to be analyzed by OCA. After setting the (optimized) REBALFI Radiometer Electronics Box Assembly parameters, another session of 15 minutes of acquisition is applied, this time with the nominal processing.

The values for the optimal REBALFI Radiometer Electronics Box Assembly parameters are mainly determined by the frequency of the radiometric channel with some dispersion from detector to detector. Table 13 below gives representative median values for [math]r_1, \, r_2, \, q \, [/math] from on ground System Level tests (CSLCentre Spatial de Liège) as well as for the quantities in Fig. 4 below and the resulting data rate. [math] O[/math] is omitted since it is the most variable parameter and it has no significant impact on [math]\epsilon_q[/math] and [math]C_r[/math]. Table 13 below reports also the number of detectors for each frequency channel, the [math]N_{aver}[/math] values which are kept constant, the compressed data rate per detector, per frequency channel and for the instrument as a whole. Quantities are reported in the form [math]x ± \delta x[/math] where [math]\delta x[/math] represents the standard deviation taken as a measure of the internal dispersion of [math]x[/math] within the given subset of detectors, this number must not be interpreted as an error and it must not be propagated.

The performance has been verified against the requirements with the result that the required data rate of 35.5 kbps has been achieved while keeping the processing error at a level of 3.8% of the instrumental white noise and well below the target 10% level.

Figure 4. Results for a typical session of REBALFI Radiometer Electronics Box Assembly parameters tuning during the CSLCentre Spatial de Liège test campaign. From top to bottom the figure reports for each detector the mean [math]C_r, \, \epsilon_{q,sky}/\sigma_{sky}, \, \epsilon_{q,load}/\sigma_{load}, \, \epsilon_{q,diff}/\sigma_{diff} \, [/math] where [math]\sigma_{diff}[/math] is the r.m.s. of the differentiated data. The red line in background of the top frame denotes the target [math] C_r^{Tgt} = 2.4[/math]. Values are represented by bars. Light-bars are the results from the calibration phase, where raw data from the instrument are processed by OCA. Dark-bars are results from the verification phase, where processing is performed on-board. The second frame from Top gives an example for detector 00 of Feed-Horn #19. Feed-horns are numbered according to the internal Planck/LFI(Planck) Low Frequency Instrument convention assigning at Planck/LFI(Planck) Low Frequency Instrument the Feed-Horns numbers from #18 to #28. Detectors belonging to the same Feed-Horn are grouped together as shown in the third frame from top.


Table 13. Representative REBALFI Radiometer Electronics Box Assembly Parameters, the measured [math]C_r[/math] and relative processing errors from the CSLCentre Spatial de Liège tests for Planck/LFI(Planck) Low Frequency Instrument. Detectors are grouped by frequency channel, for each quantity x the table reports its group median and group standard deviation [math]\delta x[/math] as a measure of the group internal dispersion, [math]\delta x[/math] must be not considered as an error.
Compr2.jpg

In flight the procedure is to acquire continuously data by using the nominal processing. Short chunks of unprocessed data is daily acquired in turn from each detector. The comparison of unprocessed with processed data allows to monitor of the processing error. In addition the REBALFI Radiometer Electronics Box Assembly tuning might be repeated daily on the chunk of unprocessed data in order to test whether some REBALFI Radiometer Electronics Box Assembly parameters on-board the satellite should be changed or not.

Instrument Operations

LFI(Planck) Low Frequency Instrument Operational Modes

The operations of the LFI(Planck) Low Frequency Instrument are designed to be automatic and require little if any intervention from the ground. A small amount of commands is required for operating the instrument and eventually for diagnostic and reconfiguration purposes. Each sky survey is conducted by the LFI(Planck) Low Frequency Instrument with the instrument in the Normal Operations Mode mode. No deployable elements, or mechanically moving parts are included in the instrument. The scanning of the sky is achieved by progressive repointing of the satellite spin axis, with the Sun direction always within a cone 10 degrees from the spin axis. Within the Normal Science Mode the instrument can be configured in order to fit with different science or diagnostic needs without changing the power consumption and thus the temperature in the FPUFocal Plane Unit. Changes in power consumption in the FPUFocal Plane Unit are minimised and should occur only in the case that failures in the radiometers that could create interference problems require an RCALFI Radiometer Chain Assembly to be switched off. Power adjustments on the first stage of the HEMTHigh Electron Mobility Transistor amplifiers which are contemplated, require extremely small power level variations.

Figure 5. LFI(Planck) Low Frequency Instrument Operating Modes and their nominal transitions.

A scheme of the nominal transitions between the LFI(Planck) Low Frequency Instrument Operation Modes are shown in Fig. 5, a brief summary is given below.

1. OFF MODE: During this operating mode the instrument is completely off for example during the launch.
2. STAND-BY: During this mode only the REBALFI Radiometer Electronics Box Assembly can be operated. It is the first interface to the instrument whenever the LFI(Planck) Low Frequency Instrument is switched on. When the instrument is in this mode the RAALFI Radiometer Array Assembly must be OFF because no data can be received and no control is possible on the radiometer chains.
3. DAELFI Data Acquisition Electronics SET-UP: During this mode the REBALFI Radiometer Electronics Box Assembly and the DAELFI Data Acquisition Electronics are ON, but no radiometer chains are active. Nevertheless science data can be generated and contain only the background noise of the instrument.
4. NORMAL SCIENCE: During this mode the RAALFI Radiometer Array Assembly is seen by the REBALFI Radiometer Electronics Box Assembly as a set of 44 independent instruments. This means that each instrument can be operated, by the same SW, in different modes without affecting the LFI(Planck) Low Frequency Instrument modes. Science data from the DAELFI Data Acquisition Electronics are continuously acquired by the REBALFI Radiometer Electronics Box Assembly that decides, on the basis of the activation table, which packets (either science or diagnostic) have to be produced. The whole set of HKHouse Keeping is continuously acquired and sent to ground. This mode is the nominal for the LFI(Planck) Low Frequency Instrument observation operations.
5. EXTENDED SCIENCE: This mode is similar to the previous except that for the total amount of telemetry sent to the ground. In fact this mode shall be used when, in particular cases, (e.g. calibration[LFI meaning]: absolute calibration refers to the 0th order calibration for each channel, 1 single number, while the relative calibration refers to the component of the calibration that varies pointing period by pointing period.…) a larger telemetry rate is needed and made available by an agreement with HFI(Planck) High Frequency Instrument and the CDMSCommand and Data Management System.

During launch, for contingency situations and/or to allow diagnostics of other spacecraft subsystems (e.g. HFI(Planck) High Frequency Instrument or others) LFI(Planck) Low Frequency Instrument is in the OFF mode. When, upon a command from ground the REBALFI Radiometer Electronics Box Assembly is powered on, the instrument is in its STAND-BY mode. A step-by-step bootstrap procedure commanded from ground documented by HKHouse Keeping is initialized to turn the DAELFI Data Acquisition Electronics on. This sets-up the internal communications, and allows the LFI(Planck) Low Frequency Instrument subsystems to collect and deliver a full set of HKHouse Keeping. The instrument is in DAELFI Data Acquisition Electronics SET-UP mode. The following step is to upload from ground the DAELFI Data Acquisition Electronics settings and processing parameters; then, to switch on the RCALFI Radiometer Chain Assembly on ground command. At this stage, on ground command, the acquisition of science data can start. A further step is needed to move to NORMAL SCIENCE, namely start processing and compressing the science raw data. When this is accomplished, science packets can be sent to ground.

Instrument Technical Performance

Spectral Response

The in-band receiver response has been thoroughly modelled and measured for all the LFI(Planck) Low Frequency Instrument detectors during ground tests. The complete set of bandpass curves has been published in[10] where all the details of the LFI(Planck) Low Frequency Instrument radiometer's spectral response are given. From each curve we have derived the effective centre frequency according to:

[math] \label{eq:spectr} \nu_0 = \frac{ \int_{\nu_{min}}^{\nu_{max}} \nu g(\nu) \; d \nu} {\int_{\nu_{min}}^{\nu_{max}} g(\nu)\; d\nu } [/math]

where [math] \Delta \nu = \nu_{max} − \nu_{min} \;[/math] is the receiver bandwidth and [math]g(\nu)\;[/math] is the bandpass response. Table 14 below gives the centre frequencies of the 22 LFI(Planck) Low Frequency Instrument radiometers. For each radiometer, [math] g(\nu)\;[/math] is calculated by weight-averaging the bandpass response of the two individual diodes with the same weights used to average detector timestreams. For simplicity and for historical reasons, we will continue to refer to the three channels as the 30, 44, and 70 GHz channels.


Table 14. LFI(Planck) Low Frequency Instrument centre frequencies.
LFIfreq.jpg

Colour corrections, [math]C(\alpha)[/math] , needed to derive the brightness temperature of a source with a power-law spectral index [math]\alpha[/math], are given in the table 15 below. The values are averaged for the 11 RCAs and for the three frequency channels. Details about the definition of colour corrections are provided in Planck-Early-V[11].


Table 15. Colour corrections for the 11 LFI(Planck) Low Frequency Instrument RCAs individually and averaged by frequency.
Colorcorr.jpg
Bandpass Estimation

As detailed in[10], our most accurate method to measure the LFI(Planck) Low Frequency Instrument bandpasses is based on measurements of individual components integrated into the LFI(Planck) Low Frequency Instrument Advanced RF Model (LARFM) to yield a synthesised radiometer bandpass. The LARFM is a software tool based on the open-source Quasi Universal Circuit Simulator (QUCS). The measured frequency responses of the various subsystems (feed-OMTLFI Ortho Module Transducer, FEMLFI cryogenic amplifying stage Front End Module, BEMLFI warm electronics Back End Module) are considered as lumped S-parameter components. Measurements of single components are obtained with standard methods and provide highly reliable results, with precision of order 0.1-0.2 dB over the entire band. Waveguides are simulated with an analytical model, in order to reproduce the effect of their temperature gradient and the effect of standing waves caused by impedance mismatch at the interfaces between the FEMLFI cryogenic amplifying stage Front End Module and BEMLFI warm electronics Back End Module. This is because the 1.8-meter long waveguides were not measured at unit level in cryogenic conditions. The model provides accurate agreement with the measured waveguide response in the conditions of the test measurements (300 K). The composite bandpasses are estimated to have a precision of about 1.5 to 2 dB.

We also attempted an end-to-end measurement of the RCALFI Radiometer Chain Assembly spectral response in the cryo-facility as an independent check. Unfortunately, these measurements suffered some subtle systematic effects in the test setup (standing waves at 70 GHz; polarisation mismatch and narrow frequency coverage at 30 and 44 GHz), preventing an accurate cross-check. However, the comparison shows a general agreement within limits of the test reliability and repeatability.

Figg. 6 and 7 below show all the LFI(Planck) Low Frequency Instrument bandpasses obtained by the frequency response data of each radiometer unit assembled by the LARFM. The 70 GHz channels show a low bandpass ripple, of about 10 dB, which is within scientific requirements. The spike between 60 and 61 GHz, below the low frequency cut-off, is due to a systematic effect present in all the BEMLFI warm electronics Back End Module gain measurements and caused by the test setup. We removed this range from the bandpasses made available at the Data Processing Center in order to avoid possible spurious effects and therefore the frequency coverage is 61-80 GHz. The high frequency cut-off is not well defined in most of the channels. The 30 and 44 GHz bandpasses show a more complex shape, driven by the BEMLFI warm electronics Back End Module spectral response, but still within [math]\pm 10[/math] dB. The low frequency cut-off is always well defined, while the high frequency cut-off is not well defined in RCALFI Radiometer Chain Assembly 24 and 26. However, comparing with the high frequency cut-off of RCALFI Radiometer Chain Assembly 25, it is expected that the additional bandwidth is very low. Frequency coverage is 25-50 GHz for the 44 GHz channels and 21.3-40 GHz for the 30 GHz channels.

Figure 6. LFI(Planck) Low Frequency Instrument 70 GHz channels’ bandpasses. Each row shows the 4 bandpasses of a RCALFI Radiometer Chain Assembly ordered as M-00, M-01, S-10 and S-11. Units are [dB] [math]10 \log(\frac{V_{out}}{V_{in}})[/math] plotted against frequency [GHz].
Figure 7. LFI30 and 44 GHz channels’ bandpasses. Each row shows the 4 bandpasses of a RCALFI Radiometer Chain Assembly ordered as M-00, M-01, S-10 and S-11. Units are [dB] [math]10 \log(\frac{V_{out}}{V_{in}})[/math] plotted against frequency [GHz].
Stability

Thanks to its differential scheme, the LFI(Planck) Low Frequency Instrument is insensitive to many effects caused by [math]1/f[/math] noise, thermal fluctuations, or electrical instabilities. As detailed in Planck-Early-III[12], one effect detected during the first survey was the daily temperature fluctuation in the back-end unit induced by the downlink transponder, which was powered on each day for downlinks during the first 258 days of the mission. As expected, the effect is highly correlated between the sky and reference load signals. In the difference, the variation is reduced by a factor [math]∼(1 − r)[/math], where [math]r[/math] is the gain modulation factor defined in Eq. (2) in the RCA section.

A particular class of signal fluctuations occasionally observed during operations is due to electrical instabilities that appear as abrupt increases in the measured drain current of the front-end amplifiers, with a relaxation time variable from few seconds to some hundreds of seconds. Typically, these events cause a simultaneous change in the sky and reference load signals. Because they are essentially common-mode, their residual on the differenced data is negligible (Fig. 8), and the data are suitable for science production. In a few cases the residual fluctuation in the differential output was large enough (a few millikelvin in calibrated antenna temperature units) to be flagged, and the data were not used. The total amount of discarded data for all LFI(Planck) Low Frequency Instrument channels until Operational Day 389 was about 2000 s per detector, or 0.008%.

A further peculiar effect appeared in the 44 GHz detectors, where single isolated samples, either on the sky or the reference voltage output, were far from the rest. Over a reference period of four months, 15 occurrences of single-sample spikes (out of 24 total anomaly events) were discarded, an insignificant loss of data.

Figure 8. Short spikes in the drain current (left) affect total power signals (right). The jumps are strongly correlated in sky and reference signals, so that in the difference data the effect essentially disappears.
Thermal Susceptibility

As already mentioned in In-flight Calibration section and detailed in[13], during the CPVCalibration and Performance Verification campaign, susceptibility tests were performed in order to characterise the LFI(Planck) Low Frequency Instrument instrument susceptibility to thermal and electrical variations.

The effect of temperature fluctuations on the LFI(Planck) Low Frequency Instrument radiometers is originated in the Planck cold end interface of the hydrogen sorption cooler to the instrument focal plane. The temperature is actively controlled through a dedicated stage, the Thermal Stabilization Assembly (TSAhermal Stabilization Assembly), providing a first reduction of the effect. The thermal mass of the focal plane strongly contribute to reduce residual fluctuations. The physical temperature fluctuations propagated at the front end modules cause a correlated fluctuation in the radiometer signal degrading the quality of scientific data. The accurate characterization of this effect is crucial for possibly removing it from raw data by exploiting the housekeeping information of thermal sensors.

The propagation of the temperature oscillations through the focal plane and the instrument response to thermal changes were characterized through two main tests:

  • the thermal dynamic response aimed at measuring the dynamic thermal behaviour of the LFI(Planck) Low Frequency Instrument Focal Plane;
  • the radiometers thermal susceptibility.
Thermal Dynamic Response

In order to amplify the effect and to get a more accurate measurement, the active control from the TSAhermal Stabilization Assembly was switched off. The resulting increased fluctuations, propagating at the cooler frequencies, were used to evaluate transfer functions between the TSAhermal Stabilization Assembly stage and the FPUFocal Plane Unit sensors (see Fig. 9 below). The analysis produced damping factors of 2–5 at about 1 mHz. The source of fluctuations was characterized by two typical periods of the sorption cooler during the final CPVCalibration and Performance Verification phase: (i) the single bed cycle time, 940 s, (ii) the complete cooler period, six times larger, 5640 s.

Figure 9. Schema of the focal plane thermal sensor locations.

Results are shown in Table 16. Sorting the sensors by the transfer function amplitudes in descending order (second column of the table), the route of the propagation of temperature fluctuations through the focal plane sensors (shown in Fig. 9) was reproduced as expected: the largest amplitudes are in the sensor closest to the right bottom corner interface with the working cooler and they decrease in the direction left upwards. The measured values in flight showing a good agreement with what measured during the CSLCentre Spatial de Liège ground test.


Table 16. Transmission amplitudes and phases of fluctuations at the two main cooler frequencies during the transient test. Typical fit parameters uncertainties are at 1% level.
Din t1.jpg
Radiometer Thermal Susceptibility

Fluctuations of the focal plane temperature would cause variations of important parameters (mainly the low noise amplifier gains and noise temperatures), impacting the radiometer output signal. The response of the LFI(Planck) Low Frequency Instrument radiometers to thermal fluctuations was estimated by inducing discrete temperature steps on the focal plane through TSAhermal Stabilization Assembly set-point changes. The set-point was changed over four values (Fig. 47, left) and after a stabilization of at least two hours, the measured receivers output was characterized as a function of each temperature variation of about 0.3 K.

The slope of the resulting [math]\rm{T_{ant} }[/math] vs [math]\rm{T_{phys}} [/math] plot is the measured response of the receivers to a change in the temperature. Results, reported in the Table 17, confirmed that physical temperature fluctuations in the main frame are furtherly reduced when convolved with the radiometer thermal susceptibility coefficients: the derived output fluctuations, measured in antenna temperature, were actually reduced by an extra factor of 10 to 200 (according to the channel considered), of the same order of ground test results. This corresponds to reduce the mean peak-to-peak amplitudes of fluctuations measured by high resolution sensors, of the order of 4 mK in steady condition, of at least one order of magnitude in the output timestream.


Table 17. Results of thermal susceptibility test. Units are [math]\rm{K_{ant}/K_{phys}}[/math]. Together with the radiometers, the closest sensor used as reference for the physical temperature is indicated. Results for the detector LFI24S-11 are missing because it suffered a period of signal saturation during the test.
Susc t.jpg
Instrument Budgets
Power Budget
Table 18. LFI(Planck) Low Frequency Instrument sub-system power budget.
Subsystem Unit Assembly Sub-Assembly Budget [W]
RAALFI Radiometer Array Assembly 45.599
FEULFI cryogenic amplifying stage Front End Unit 0.329
FE structure N/A
Feed Horns N/A
OMTs N/A
FEMs 0.329
30 GHz 0.056
44 GHz 0.121
70 GHz 0.152
BEULFI warm electronics Back End Unit 45.270
DAELFI Data Acquisition Electronics 31.986
BEMs 13.284
30 GHz 4.914
44 GHz 4.633
70 GHz 3.737
Waveguides N/A
RAALFI Radiometer Array Assembly harness N/A
4K Load N/A
REBALFI Radiometer Electronics Box Assembly 22.700
System Harness N/A
Total 68.299
Mass Budget

The maximum allocated mass for the Planck Instruments is 445 kg, 89 kg are allocated for the LFI(Planck) Low Frequency Instrument instrument. The distribution of the instrument and cooler mass to the different interfaces in the system is as given in table 19 below.

Table 19. LFI(Planck) Low Frequency Instrument sub-system mass budget.
Subsystem Unit Assembly Sub-Assembly Budget [kg]
RAALFI Radiometer Array Assembly 77.900
FEULFI cryogenic amplifying stage Front End Unit 22.935
FE structure 17.680
Feed Horns+OMTs 2.825
30 GHz 0.680
44 GHz 0.732
70 GHz 1.413
FEMs 2.430
30 GHz 0.810
44 GHz 1.110
70 GHz 0.510
BEULFI warm electronics Back End Unit 25.542
DAELFI Data Acquisition Electronics 23.130
BEMs 2.412
30 GHz 0.624
44 GHz 0.864
70 GHz 0.924
Waveguides 23.005
WGLFI Waveguide structure 15.940
WGs 7.065
RAALFI Radiometer Array Assembly harness 5.491
BEULFI warm electronics Back End Unit internal harness 4.489
DAELFI Data Acquisition Electronics-FEULFI cryogenic amplifying stage Front End Unit cryo-harness 1.002
4K Load 0.927
REBALFI Radiometer Electronics Box Assembly (2 units) 8.480
System Harness 3.495
Total 89.875
Telemetry Budget

All the science data flow coming from the foreseen on-board data processing can be summarised in the following table 20.

Table 20. Data processing and compression results.
30 GHz 44 GHz 70 GHz Total
Total samples 65 94 154
Compression factor 2.4 2.4 2.4
Compressed samples 27 39 64
Science data available (word) 490 490 490
Time per packet (s) 18.035 12.570 7.651
Corresponding sky arc ([math]^\circ[/math]) 108 75 46
Packet frequency (Hz) 0.444 0.955 3.317
Net Data Volume (word/s) 217.352 467.778 1536.986 2222.116
Net Data Volume (kbps) 3.478 7.484 24.592 35.554

This result refers to the net science telemetry rate that LFI(Planck) Low Frequency Instrument sends to ground. If we add the overhead due to the packet header (protocol) and the tertiary header we obtain a gross science telemetry rate of 37.150 kbps. This number should be added to the data coming from the calibration channel (uncompressed data used to verify the correct functionalities of the on-board compression algorithm, see Reduction and Compression of Science Data section) sent to ground in parallel. This channel has a worst case gross data production of 5.140 kbps for a total science data of 42.290 kbps.

The gross housekeeping telemetry budget is 2.425 kbps for a total budget of 44.715 kbps. The total data budget allocated to the LFI(Planck) Low Frequency Instrument is 53.5 kbps well above the LFI(Planck) Low Frequency Instrument total telemetry budget.

References

  1. Planck-LFI flight model feed horns, F. Villa, O. D'Arcangelo, M. Pecora, L. Figini, R. Nesti, A. Simonetto, C. Sozzi, M. Sandri, P. Battaglia, P. Guzzi, M. Bersanelli, R. C. Butler, N. Mandolesi, Journal of Instrumentation, 4, 2004-+, (2009).
  2. The Planck-LFI flight model ortho-mode transducers, O. D'Arcangelo, A. Simonetto, L. Figini, E. Pagana, F. Villa, M. Pecora, P. Battaglia, M. Bersanelli, R. C. Butler, S. Garavaglia, P. Guzzi, N. Mandolesi, C. Sozzi, Journal of Instrumentation, 4, 2005-+, (2009).
  3. Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument, R. J. Davis, A. Wilkinson, R. D. Davies, W. F. Winder, N. Roddis, E. J. Blackhurst, D. Lawson, S. R. Lowe, C. Baines, M. Butlin, A. Galtress, D. Shepherd, B. Aja, E. Artal, M. Bersanelli, R. C. Butler, C. Castelli, F. Cuttaia, O. D'Arcangelo, T. Gaier, R. Hoyland, D. Kettle, R. Leonardi, N. Mandolesi, A. Mennella, P. Meinhold, M. Pospieszalski, L. Stringhetti, M. Tomasi, L. Valenziano, A. Zonca, Journal of Instrumentation, 4, 2002-+, (2009).
  4. 4.0 4.1 Design, development, and verification of the Planck Low Frequency Instrument 70 GHz Front-End and Back-End Modules, J. Varis, N. J. Hughes, M. Laaninen, V.-H. Kilpiä, P. Jukkala, J. Tuovinen, S. Ovaska, P. Sjöman, P. Kangaslahti, T. Gaier, R. Hoyland, P. Meinhold, A. Mennella, M. Bersanelli, R. C. Butler, F. Cuttaia, E. Franceschi, R. Leonardi, P. Leutenegger, M. Malaspina, N. Mandolesi, M. Miccolis, T. Poutanen, H. Kurki-Suonio, M. Sandri, L. Stringhetti, L. Terenzi, M. Tomasi, L. Valenziano, Journal of Instrumentation, 4, 2001-+, (2009).
  5. The Planck-LFI flight model composite waveguides, O. D'Arcangelo, L. Figini, A. Simonetto, F. Villa, M. Pecora, P. Battaglia, M. Bersanelli, R. C. Butler, F. Cuttaia, S. Garavaglia, P. Guzzi, N. Mandolesi, A. Mennella, G. Morgante, L. Pagan, L. Valenziano, Journal of Instrumentation, 4, 2007-+, (2009).
  6. LFI 30 and 44 GHz receivers Back-End Modules, E. Artal, B. Aja, M. L. de la Fuente, J. P. Pascual, A. Mediavilla, E. Martinez-Gonzalez, L. Pradell, P. de Paco, M. Bara, E. Blanco, E. García, R. Davis, D. Kettle, N. Roddis, A. Wilkinson, M. Bersanelli, A. Mennella, M. Tomasi, R. C. Butler, F. Cuttaia, N. Mandolesi, L. Stringhetti, Journal of Instrumentation, 4, 2003-+, (2009).
  7. Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit, L. Valenziano, F. Cuttaia, A. De Rosa, L. Terenzi, A. Brighenti, G. P. Cazzola, A. Garbesi, S. Mariotti, G. Orsi, L. Pagan, F. Cavaliere, M. Biggi, R. Lapini, E. Panagin, P. Battaglia, R. C. Butler, M. Bersanelli, O. D'Arcangelo, S. Levin, N. Mandolesi, A. Mennella, G. Morgante, G. Morigi, M. Sandri, A. Simonetto, M. Tomasi, F. Villa, M. Frailis, S. Galeotta, A. Gregorio, R. Leonardi, S. R. Lowe, M. Maris, P. Meinhold, L. Mendes, L. Stringhetti, A. Zonca, A. Zacchei, Journal of Instrumentation, 4, 2006-+, (2009).
  8. The Planck-LFI Radiometer Electronics Box Assembly, J. M. Herreros, M. F. Gómez, R. Rebolo, H. Chulani, J. A. Rubiño-Martin, S. R. Hildebrandt, M. Bersanelli, R. C. Butler, M. Miccolis, A. Peña, M. Pereira, F. Torrero, C. Franceschet, M. López, C. Alcalá, Journal of Instrumentation, 4, 2008-+, (2009).
  9. Optimization of Planck-LFI on-board data handling, M. Maris, M. Tomasi, S. Galeotta, M. Miccolis, S. Hildebrandt, M. Frailis, R. Rohlfs, N. Morisset, A. Zacchei, M. Bersanelli, P. Binko, C. Burigana, R. C. Butler, F. Cuttaia, H. Chulani, O. D'Arcangelo, S. Fogliani, E. Franceschi, F. Gasparo, F. Gomez, A. Gregorio, J. M. Herreros, R. Leonardi, P. Leutenegger, G. Maggio, D. Maino, M. Malaspina, N. Mandolesi, P. Manzato, M. Meharga, P. Meinhold, A. Mennella, F. Pasian, F. Perrotta, R. Rebolo, M. Türler, A. Zonca, Journal of Instrumentation, 4, 2018-+, (2009).
  10. 10.0 10.1 Planck-LFI radiometers' spectral response, A. Zonca, C. Franceschet, P. Battaglia, F. Villa, A. Mennella, O. D'Arcangelo, R. Silvestri, M. Bersanelli, E. Artal, R. C. Butler, F. Cuttaia, R. J. Davis, S. Galeotta, N. Hughes, P. Jukkala, V.-H. Kilpiä, M. Laaninen, N. Mandolesi, M. Maris, L. Mendes, M. Sandri, L. Terenzi, J. Tuovinen, J. Varis, A. Wilkinson, Journal of Instrumentation, 4, 2010-+, (2009).
  11. Planck early results. V. The Low Frequency Instrument data processing, A. Zacchei, D. Maino, C. Baccigalupi, M. Bersanelli, A. Bonaldi, L. Bonavera, C. Burigana, R. C. Butler, F. Cuttaia, G. de Zotti, J. Dick, M. Frailis, S. Galeotta, J. González-Nuevo, K. M. Górski, A. Gregorio, E. Keihänen, R. Keskitalo, J. Knoche, H. Kurki-Suonio, C. R. Lawrence, S. Leach, J. P. Leahy, M. López-Caniego, N. Mandolesi, M. Maris, F. Matthai, P. R. Meinhold, A. Mennella, G. Morgante, N. Morisset, P. Natoli, F. Pasian, F. Perrotta, G. Polenta, T. Poutanen, M. Reinecke, S. Ricciardi, R. Rohlfs, M. Sandri, A.-S. Suur-Uski, J. A. Tauber, D. Tavagnacco, L. Terenzi, M. Tomasi, J. Valiviita, F. Villa, A. Zonca, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, L. Bedini, K. Bennett, P. Binko, J. Borrill, F. R. Bouchet, M. Bremer, P. Cabella, B. Cappellini, X. Chen, L. Colombo, M. Cruz, A. Curto, L. Danese, R. D. Davies, R. J. Davis, G. de Gasperis, A. de Rosa, G. de Troia, C. Dickinson, J. M. Diego, S. Donzelli, U. Dörl, G. Efstathiou, T. A. Enßlin, H. K. Eriksen, M. C. Falvella, F. Finelli, E. Franceschi, T. C. Gaier, F. Gasparo, R. T. Génova-Santos, G. Giardino, F. Gómez, A. Gruppuso, F. K. Hansen, R. Hell, D. Herranz, W. Hovest, M. Huynh, J. Jewell, M. Juvela, T. S. Kisner, L. Knox, A. Lähteenmäki, J.-M. Lamarre, R. Leonardi, J. León-Tavares, P. B. Lilje, P. M. Lubin, G. Maggio, D. Marinucci, E. Martínez-González, M. Massardi, S. Matarrese, M. T. Meharga, A. Melchiorri, M. Migliaccio, S. Mitra, A. Moss, H. U. Nørgaard-Nielsen, L. Pagano, R. Paladini, D. Paoletti, B. Partridge, D. Pearson, V. Pettorino, D. Pietrobon, G. Prézeau, P. Procopio, J.-L. Puget, C. Quercellini, J. P. Rachen, R. Rebolo, G. Robbers, G. Rocha, J. A. Rubiño-Martín, E. Salerno, M. Savelainen, D. Scott, M. D. Seiffert, J. I. Silk, G. F. Smoot, J. Sternberg, F. Stivoli, R. Stompor, G. Tofani, L. Toffolatti, J. Tuovinen, M. Türler, G. Umana, P. Vielva, N. Vittorio, C. Vuerli, L. A. Wade, R. Watson, S. D. M. White, A. Wilkinson, A&A, 536, A5, (2011).
  12. Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance, A. Mennella, R. C. Butler, A. Curto, F. Cuttaia, R. J. Davis, J. Dick, M. Frailis, S. Galeotta, A. Gregorio, H. Kurki-Suonio, C. R. Lawrence, S. Leach, J. P. Leahy, S. Lowe, D. Maino, N. Mandolesi, M. Maris, E. Martínez-González, P. R. Meinhold, G. Morgante, D. Pearson, F. Perrotta, G. Polenta, T. Poutanen, M. Sandri, M. D. Seiffert, A.-S. Suur-Uski, D. Tavagnacco, L. Terenzi, M. Tomasi, J. Valiviita, F. Villa, R. Watson, A. Wilkinson, A. Zacchei, A. Zonca, B. Aja, E. Artal, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, P. Battaglia, K. Bennett, A. Bonaldi, L. Bonavera, J. Borrill, F. R. Bouchet, C. Burigana, P. Cabella, B. Cappellini, X. Chen, L. Colombo, M. Cruz, L. Danese, O. D'Arcangelo, R. D. Davies, G. de Gasperis, A. de Rosa, G. de Zotti, C. Dickinson, J. M. Diego, S. Donzelli, G. Efstathiou, T. A. Enßlin, H. K. Eriksen, M. C. Falvella, F. Finelli, S. Foley, C. Franceschet, E. Franceschi, T. C. Gaier, R. T. Génova-Santos, D. George, F. Gómez, J. González-Nuevo, K. M. Górski, A. Gruppuso, F. K. Hansen, D. Herranz, J. M. Herreros, R. J. Hoyland, N. Hughes, J. Jewell, P. Jukkala, M. Juvela, P. Kangaslahti, E. Keihänen, R. Keskitalo, V.-H. Kilpia, T. S. Kisner, J. Knoche, L. Knox, M. Laaninen, A. Lähteenmäki, J.-M. Lamarre, R. Leonardi, J. León-Tavares, P. Leutenegger, P. B. Lilje, M. López-Caniego, P. M. Lubin, M. Malaspina, D. Marinucci, M. Massardi, S. Matarrese, F. Matthai, A. Melchiorri, L. Mendes, M. Miccolis, M. Migliaccio, S. Mitra, A. Moss, P. Natoli, R. Nesti, H. U. Nørgaard-Nielsen, L. Pagano, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, V. Pettorino, D. Pietrobon, M. Pospieszalski, G. Prézeau, M. Prina, P. Procopio, J.-L. Puget, C. Quercellini, J. P. Rachen, R. Rebolo, M. Reinecke, S. Ricciardi, G. Robbers, G. Rocha, N. Roddis, J. A. Rubiño-Martín, M. Savelainen, D. Scott, R. Silvestri, A. Simonetto, P. Sjoman, G. F. Smoot, C. Sozzi, L. Stringhetti, J. A. Tauber, G. Tofani, L. Toffolatti, J. Tuovinen, M. Türler, G. Umana, L. Valenziano, J. Varis, P. Vielva, N. Vittorio, L. A. Wade, C. Watson, S. D. M. White, F. Winder, A&A, 536, A3, (2011).
  13. In-flight calibration and verification of the Planck-LFI instrument, A. Gregorio, F. Cuttaia, A. Mennella, M. Bersanelli, S. Maris, P. Meinhold, Submitted to Journal of Instrumentation, (2013).