Difference between revisions of "HFI design, qualification, and performance"

From Planck PLA Wiki
Jump to: navigation, search
(initial import form F. Pajot, email 12oct2012)
 
(182 intermediate revisions by 10 users not shown)
Line 1: Line 1:
The inversion of HFI data requires that one knows how the instrument selects photons, how these photons are transformed in data transmitted by telemetry and what spurious signals are added in this process.
+
This section is intended to provide an overview of the instrument and of its different sub-systems. Two papers that include and detail this information are available: {{PlanckPapers|lamarre2010}} and {{PlanckPapers|planck2011-1-5}}. Additional detailed information potentially useful for the use of the HFI data is included into this section or annexed to it.
[[Category:Instruments]]
 
  
==HFI high level description and Architecture==
+
[[Image:HFI_2_4_1_JML_TheElectronicsAndServiceModule.png|thumb|500px|center|HFI electronics in the satellite]]
  
<span style="color:red">(Lamarre/Pajot)</span>
+
The HFI instrument is designed around 52 bolometers. Twenty of the bolometers (spider-web bolometers or SWBs) are sensitive to total power, and the remaining 32 units are arranged in pairs of orthogonally-oriented polarisation-sensitive bolometers (PSBs). All bolometers are operated at a temperature of ~0.1 K by mean of a space qualified dilution cooler coupled with a high precision temperature control system. A 4He-JT provides an active cooling for 4 K stages using vibration controlled mechanical compressors to prevent excessive warming of the 100 mK stage and minimize microphonic effects in the bolometers. Bolometers and sensitive thermometers are read using AC-bias scheme through JFET amplifiers operated at ~130 K that provide high sensitivity and low frequency stability. The HFI covers six bands centered at 100, 143, 217, 353, 545 and 857 GHz, thanks to a thermo-optical design consisting of three corrugated horns and a set of compact reflective filters and lenses at cryogenic temperatures.
Should be short, understandable and point through links to the relevant sections and papers.
 
  
==Cryogenics==
+
[[Image:HFI_horns.jpg|thumb|500px|center|The HFI focal plane optics and 4K thermo-mechanical stage]]
<span style="color:red">(F .Pajot)</span>
 
===Dilution===
 
  
(including PIDs)
+
The whole satellite is organized to provide thermal transitions between its warm part exposed to the sun and earth radiation, and the focal plane instruments that include the cold receivers (Sections [[HFI_cold_optics|HFI cold optics]] and [[HFI_detection_chain|HFI cold optics]]). The various parts of the HFI are distributed among three different stages of the satellite in order to provide each sub-system an optimal operating temperature. The "warm" parts, including nearly all the electronics and the sources of fluids of the 4K and 0.1K coolers, are attached and thermally linked to the service module of the satellite. The first stage of the preamplifiers is attached to the back of the passively cooled telescope structure. The focal plane unit is attached to the 20K stage cooled by the sorption cooler. This is detailed in Section [[HFI_detection_chain|HFI detection chain]].
  
The HFI 3He-4He dilution cooler produces
 
temperatures of 0.1 K for the bolometers through
 
the dilution of 3He into 4He and 1.4 K through JT
 
expansion of the 3He and 4He mixture. The
 
dilution cooler is described in detail in [Planck
 
early results. II. The thermal performance of
 
Planck, 2.3.3. Dilution cooler].
 
  
The dilution was operated with flows set to the  
+
The telescope and horns select the geometrical origin of photons. They provide a high transmission efficiency to photons inside the main beam, while photons coming from the intermediate and far-side lobes have very low probability of being detected. This essential characteristics is known by a complex process mixing ground measurements of components (horns, reflectors), modeling the shape of the far side lobes, and measuring in-flight bright sources, especially planets.  
minimum available value, and provided a total
 
lifetime of 30.5 months, exceeding the nominal
 
lifetime of 16 months by 14.5 months. The
 
dilution stage was stabilized by a PID control
 
with a power comprised between 20 and 30 nW
 
providing a temperature near 101 mK. The
 
bolometer plate was stabilized at 102.8 mK with a
 
PID power around 5 nW [fig. 100mK_stability.png].
 
  
(here a few lines of 100 mK boloplate stability)
+
The filters and bolometers define the spectral responses and absolute optical efficiency, that are known mostly from ground based measurements performed at component, sub-system and system levels reported in this document. The relations between spectral response and geometrical response are also addressed.
  
Detailed of the in-flight performance of the  
+
Photons absorbed by a bolometer include the thermal radiation emitted by the various optical devices: telescope, horns and filters. They are transformed in heat that propagates to the bolometer thermometer and influence its temperature which is itself measured by the readout electronics. Temperatures of all these items must be stable enough not to contaminate the scientific signal delivered by the bolometers. How this stability is reached is described in Section [[HFI_cryogenics|HFI cryogenics]].  
dilution cooler can be found in [Planck early
 
results. II. The thermal performance of Planck,
 
4.4. Dilution cooler]
 
  
=== 4K J-T cooler ===
+
The bolometer temperature depends also on the temperature of the bolometer plate, on the intensity of the biasing current and on any spurious inputs, such as cosmic rays and mechanical vibrations. Such systematics are included in a list discussed in Section [[HFI-Validation|HFI Validation]].
  
(including PIDs for details links to the early cryogenic paper (need to add data ?))
+
Since the bolometer thermometer is part of an active circuitry that also heats it, the response of this system is complex and has to be considered as a whole. In addition, due to the modulation of the bias current and to the sampling of the data, the response signal of the instrument when scanning a point source is still more complex. Item in Sub-Section [[HFI_detection_chain#Time_response|Time_response]] and Annex [[HFI_time_response_model|HFI time response model]] dedicated to the description of this time response.
  
The HFI 4K J-T cooler produces a temperature of
+
[[Image:HFI_2_4_1_JML_SignalFormation.png|thumb|500px|center|HFI signal formation]]
4K for the HFI 4K stage and optics and the
 
precooling of the dilution gases. Full
 
description of the 4K cooler can be found in
 
[Planck early results. II. The thermal
 
performance of Planck, 2.3.2. 4He-JT cooler].
 
  
The 4K cooler was operated without interruption
+
Logic of the formation of the signal in HFI. This is an idealized description of the physics that takes place in the instrument. The optical power that is absorbed by the bolometers comes from the observed sky and from the instrument itself. The bolometers and readout electronics, acting as a single and complex chain, transform this optical power in data that is compressed and transmitted for science data reduction.
during all the survey phase of the mission. It is  
 
still in operation as it also provides the
 
cooling of the optical reference loads of the  
 
LFI. The 4K PID stabilizing the temperature of
 
the HFI optics is regulated at 4.81 K using a  
 
power around 1.8 mW [fig. 4K -A VENIR-].
 
  
(here a few lines of 4K stability, including compressors operation)
+
<div style="clear: both"></div>
 
+
== References ==
Details on the in-flight performance of the
+
<references />
dilution cooler can be found in [Planck early
+
[[Category:HFI design, qualification and performance|000]]
results. II. The thermal performance of Planck,
 
4.3. 4He-JT cooler]
 
 
 
 
 
 
 
== Cold optics ==
 
<span style="color:red">(Lamarre)</span>
 
=== Horns,lenses===
 
links to Peter's paper
 
=== filters, band===
 
Includes Locke's very detailed document.
 
 
 
== Detection chain ==
 
<span style="color:red">(Francesco Piacentini)</span>
 
=== Bolometers===
 
=== JFETs===
 
=== Readout===
 
=== Data compression===
 
=== Time response.===
 
Links to Brendan's paper. Additional data if  needed. Written by Brendan.
 
 
 
== System (Ken) ==
 
===List of systematics===
 
 
 
==Summary==
 
<span style="color:red">(Lamarre)</span>
 
here remind worse sytematics and point to DPC
 
Summary of sucess and limitations. JML. Link to early HFI in flight perf.
 

Latest revision as of 15:28, 22 July 2014

This section is intended to provide an overview of the instrument and of its different sub-systems. Two papers that include and detail this information are available: Planck-PreLaunch-III[1] and Planck-Early-IV[2]. Additional detailed information potentially useful for the use of the HFI data is included into this section or annexed to it.

HFI electronics in the satellite

The HFI instrument is designed around 52 bolometers. Twenty of the bolometers (spider-web bolometers or SWBs) are sensitive to total power, and the remaining 32 units are arranged in pairs of orthogonally-oriented polarisation-sensitive bolometers (PSBs). All bolometers are operated at a temperature of ~0.1 K by mean of a space qualified dilution cooler coupled with a high precision temperature control system. A 4He-JT provides an active cooling for 4 K stages using vibration controlled mechanical compressors to prevent excessive warming of the 100 mK stage and minimize microphonic effects in the bolometers. Bolometers and sensitive thermometers are read using AC-bias scheme through JFET amplifiers operated at ~130 K that provide high sensitivity and low frequency stability. The HFI covers six bands centered at 100, 143, 217, 353, 545 and 857 GHz, thanks to a thermo-optical design consisting of three corrugated horns and a set of compact reflective filters and lenses at cryogenic temperatures.

The HFI focal plane optics and 4K thermo-mechanical stage

The whole satellite is organized to provide thermal transitions between its warm part exposed to the sun and earth radiation, and the focal plane instruments that include the cold receivers (Sections HFI cold optics and HFI cold optics). The various parts of the HFI are distributed among three different stages of the satellite in order to provide each sub-system an optimal operating temperature. The "warm" parts, including nearly all the electronics and the sources of fluids of the 4K and 0.1K coolers, are attached and thermally linked to the service module of the satellite. The first stage of the preamplifiers is attached to the back of the passively cooled telescope structure. The focal plane unit is attached to the 20K stage cooled by the sorption cooler. This is detailed in Section HFI detection chain.


The telescope and horns select the geometrical origin of photons. They provide a high transmission efficiency to photons inside the main beam, while photons coming from the intermediate and far-side lobes have very low probability of being detected. This essential characteristics is known by a complex process mixing ground measurements of components (horns, reflectors), modeling the shape of the far side lobes, and measuring in-flight bright sources, especially planets.

The filters and bolometers define the spectral responses and absolute optical efficiency, that are known mostly from ground based measurements performed at component, sub-system and system levels reported in this document. The relations between spectral response and geometrical response are also addressed.

Photons absorbed by a bolometer include the thermal radiation emitted by the various optical devices: telescope, horns and filters. They are transformed in heat that propagates to the bolometer thermometer and influence its temperature which is itself measured by the readout electronics. Temperatures of all these items must be stable enough not to contaminate the scientific signal delivered by the bolometers. How this stability is reached is described in Section HFI cryogenics.

The bolometer temperature depends also on the temperature of the bolometer plate, on the intensity of the biasing current and on any spurious inputs, such as cosmic rays and mechanical vibrations. Such systematics are included in a list discussed in Section HFI Validation.

Since the bolometer thermometer is part of an active circuitry that also heats it, the response of this system is complex and has to be considered as a whole. In addition, due to the modulation of the bias current and to the sampling of the data, the response signal of the instrument when scanning a point source is still more complex. Item in Sub-Section Time_response and Annex HFI time response model dedicated to the description of this time response.

HFI signal formation

Logic of the formation of the signal in HFI. This is an idealized description of the physics that takes place in the instrument. The optical power that is absorbed by the bolometers comes from the observed sky and from the instrument itself. The bolometers and readout electronics, acting as a single and complex chain, transform this optical power in data that is compressed and transmitted for science data reduction.

References[edit]

  1. Planck pre-launch status: The HFI instrument, from specification to actual performance, J.-M. Lamarre, J.-L. Puget, P. A. R. Ade, F. Bouchet, G. Guyot, A. E. Lange, F. Pajot, A. Arondel, K. Benabed, J.-L. Beney, A. Benoît, J.-P. Bernard, R. Bhatia, Y. Blanc, J. J. Bock, E. Bréelle, T. W. Bradshaw, P. Camus, A. Catalano, J. Charra, M. Charra, S. E. Church, F. Couchot, A. Coulais, B. P. Crill, M. R. Crook, K. Dassas, P. de Bernardis, J. Delabrouille, P. de Marcillac, J.-M. Delouis, F.-X. Désert, C. Dumesnil, X. Dupac, G. Efstathiou, P. Eng, C. Evesque, J.-J. Fourmond, K. Ganga, M. Giard, R. Gispert, L. Guglielmi, J. Haissinski, S. Henrot-Versillé, E. Hivon, W. A. Holmes, W. C. Jones, T. C. Koch, H. Lagardère, P. Lami, J. Landé, B. Leriche, C. Leroy, Y. Longval, J. F. Macías-Pérez, T. Maciaszek, B. Maffei, B. Mansoux, C. Marty, S. Masi, C. Mercier, M.-A. Miville-Deschênes, A. Moneti, L. Montier, J. A. Murphy, J. Narbonne, M. Nexon, C. G. Paine, J. Pahn, O. Perdereau, F. Piacentini, M. Piat, S. Plaszczynski, E. Pointecouteau, R. Pons, N. Ponthieu, S. Prunet, D. Rambaud, G. Recouvreur, C. Renault, I. Ristorcelli, C. Rosset, D. Santos, G. Savini, G. Serra, P. Stassi, R. V. Sudiwala, J.-F. Sygnet, J. A. Tauber, J.-P. Torre, M. Tristram, L. Vibert, A. Woodcraft, V. Yurchenko, D. Yvon, A&A, 520, A9+, (2010).
  2. Planck early results, IV. First assessment of the High Frequency Instrument in-flight performance, Planck HFI Core Team, A&A, 536, A4, (2011).

(Planck) High Frequency Instrument

Junction Field Elect Transistor