Difference between revisions of "Catalogues"

From Planck Legacy Archive Wiki
Jump to: navigation, search
(Selection function)
 
(78 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{DISPLAYTITLE:2015 Catalogues}}
+
{{DISPLAYTITLE:Catalogues}}
 +
The 2015 compact source catalogues will not be regenerated using data from the 2018 release and remain the most up-to-date products.
  
== Planck Catalogue of Compact Sources ==
+
<div class="toccolours" style="background-color: #FFDAB9" >
The Planck Catalogue of Compact Sources is a set of single frequency lists of sources, both Galactic and extragalactic, extracted from the Planck maps.
 
  
The first public version of the PCCS was derived from the nominal mission data acquired by Planck between August 13 2009 and November 26 2010, as described in {{PlanckPapers|planck2013-p05}}. It consisted of nine lists of sources, one per channel between 30 and 857 GHz. The second public version of the catalogue (PCCS2) has been produced using the full mission data obtained between August 13 2009 and August 3 2013, as described in {{PlanckPapers|planck2014-a35||Planck-2015-A35}}, it consists of fifteen lists of sources, one list per channel at 30, 44 and 70 GHz, and two lists per channel at 100, 143, 217, 353, 545 and 857 GHz.
+
=== (2015) Second Catalogue of Compact Sources  (PCCS2 and PCCS2E)===
  
The maps used to produce these catalogues are the 2015 full mission frequency maps (LFI_SkyMap_0??_1024_R2.01_full.fits and HFI_SkyMap_???_2048_R2.00_full.fits).
+
The second Planck Catalogue of Compact Sources (PCCS2) is a set of single-frequency source catalogues extracted from the Planck full-mission maps in intensity and polarization (LFI_SkyMap_0??_1024_R2.01_full.fits and HFI_SkyMap_???_2048_R2.00_full.fits). The catalogues have been constructed as described in  [[Compact_Source_catalogues#Planck_Catalogue_of_Compact_Sources|PCCS]] and in section 2 of {{PlanckPapers|planck2014-a35}}. The validation of the catalogues is described in section 3 of {{PlanckPapers|planck2014-a35}}.
  
The are three main differences between the PCCS and the PCCS2:
+
The catalogue at 100 GHz and above has been divided into two sub-catalogues: the PCCS2, in which the sources have been detected in regions of the sky where it is possible to estimate the reliability of the detections, either statistically or by using external catalogues; and PCCS2E, in which the detected sources are located in regions of the sky where it is not possible to make an estimate of their reliability.
  
<ol>
+
By definition, the reliability of the whole  PCCS2 is &ge; 80%, and a flag is available that allows the user to select a subsample of sources with a higher level of reliability (e.g., 90% or 95%).
  <li>The amount of data used to build the PCCS (Nominal Mission with 15.5 months) and PCCS2 (Full Mission with 48 months of LFI data and 29 months of HFI data).</li>
 
  <li>The inclusion of polarization information between 30 and 353 GHz, the seven Planck channels with polarization capabilities.</li>
 
  <li>The division of the catalogues into two sub-catalogues between 100-857 GHz, the PCCS2 and the PCCS2E, based on the location of the sources in the sky and on our ability to validate them.</li>
 
</ol>
 
  
Both the 2013 PCCS and the 2015 PCCS2 can be downloaded from the [http://pla.esac.esa.int/pla/ Planck Legacy Archive].
+
The nine Planck full-mission frequency channel maps are used as input to the source detection pipelines. They contain 48 months of data for LFI channels and 29 months of data for HFI channels. Therefore the flux densities of sources obtained from the full-mission maps are the average of at least eight observations for LFI channels or at least four observations for HFI channels. The relevant properties of the frequency maps and main parameters used to generate the catalogues are summarized in Tables 1 and 2.
  
=== Detection procedure ===
+
Four different photometry methods have been used. For one of the methods (the native photometry from the Mexican-hat wavelet detection algorithm), the analysis is performed on patches containing tangent-plane projections of the map. For the other methods (aperture photometry, point spread function fitting, and Gaussian fitting), the analysis is performed directly on the full-sky maps.
The Mexican Hat Wavelet 2{{BibCite|nuevo2006}} {{BibCite|lopezcaniego2006}} is the base algorithm used to produce the single channel catalogues of the PCCS and the PCCS2. Although each DPC has is own implementation of this algorithm (IFCAMEX and HFI-MHW), the results are compatible at least at the statistical uncertainty level. Additional algorithms are also implemented, like the multi-frequency Matrix Multi-filters{{BibCite|herranz2009}} (MTXF) and the Bayesian PowellSnakes {{BibCite|carvalho2009}}. Both of them have been used both in PCCS and PCCS2 for the validation of the results obtained by the MHW2 in total intensity.
 
  
In addition, two maximum likelihood methods have been used to do the analysis in polarization. Both of them can be used to blindly dectect sources in polarization maps. However, the  PCCS2 analysis has been performed in a non-blind fashion, looking at the positions of the sources already detected in total intensity and providing an estimation of the polarized flux density. As for total intensity, each DPC has its own implementation of this code (IFCAPOL and PwSPOL). The IFCAPOL algorithm is based on the Filter Fusion technique {{BibCite|argueso2009}} and has been applied to WMAP maps {{BibCite|lopezcaniego2009}}. The PwSPOL algortihm is a modified version of PwS, the code used in the Early Release Compact Source catalogue {{PlanckPapers|planck2011-1-10}}. In practice, both of them are filtering methods based on matched filters, that filter the Q and U maps before attempting to estimate the flux density from each.
+
<center><small>'''PCCS2 in intensity.'''</small></center>
  
The detection of the compact sources is done locally on small flat patches to improve the efficiency of the process. The reason for this being that the filters can be optimized taking into accont the statistical properties of the background in the vicinity of the sources. In order to perform this local analysis, the full-sky maps are divided into a sufficient number of overlapping flat patches in such a way that 100% of the sky is covered. Each patch is then filtered by the MHW2 with a scale that is optimized to provide the maximum signal-to-noise ratio in the filtered maps. A sub-catalogue of objects is produced for each patch and then, at the end of the process, all the sub-catalogues are merged together, removing repetitions. Similarly, in polarization a flat patch centered at the position of the source detected in total intensity is obtained from the all-sky Q and U maps. Then a matched filter is computed taking into account the beam profile at each frequency and the power spectrum of each of the projected flat patches. In both cases, the filters are normalized in such a way that they preserve the amplitude of the sources after filtering, while removing the large scale diffuse emission and the small scale noise fluctuation.
+
[[File:COMB_30_143_857_PCCS2a.png|800px|thumb|center|Sky distribution of the PCCS2 intensity sources for three different channels: 30 GHz (red circles); 143 GHz (blue circles); and 857 GHz (green circles). The size of the circles is related to the brightness of the sources and the beam size of each channel.]]
  
The primary goal of the ERCSC was reliability greater than 90%. In order to increase completeness and explore possibly interesting new sources at fainter flux density levels, however, the initial overall reliability goal of the PCCS was reduced to 80%. The S/N thresholds applied to each frequency channel were determined, as far as possible, to meet this goal. The reliability of the PCCS catalogues has been assessed using the internal and external validation described below.
+
<center><small>'''PCCS2E in intensity.'''</small></center>
  
At 30, 44, and 70 GHz, the reliability goal alone would permit S/N thresholds below 4. A secondary goal of minimizing the upward bias on flux densities led to the imposition of an S/N threshold of 4.
+
[[File:COMB_30_143_857_PCCS2Ea.png|800px|thumb|center|Sky distribution of the PCCS2E intensity sources for two different channels: 143 GHz (blue circles); and 857 GHz (green circles).]]
  
At higher frequencies, where the confusion caused by the Galactic emission starts to become an issue, the sky was divided into two zones, one Galactic (52% of the sky) and one extragalactic (48% of the sky). At 100, 143, and 217 GHz, the S/N threshold needed to achieve the target reliability is determined in the extragalactic zone, but applied uniformly on sky. At 353, 545, and 857 GHz, the need to control confusion from Galactic cirrus emission led to the adoption of different S/N thresholds in the two zones. The extragalactic zone has a lower threshold than the Galactic zone.  
+
The analysis in polarization has been performed in a non-blind fashion, looking at the position of the sources previously detected in intensity. As a result, polarization flux densities and polarization angles have been measured for hundreds of sources with a significance >99.99%. This high threshold in significance has been chosen to minimize the possibility of misinterpreting a peak of the polarized background as a source. This implies that, in general, most of the polarized sources are very bright, introducing an additional selection effect.
  
In the PCCS2 we still have an 80% reliability goal, but a new approach has been followed. There was a demand for the possibility of producing an even higher reliability catalogue from Planck, and a new reliability flag has been added to the catalogues for this purpose.
+
<center><small>'''PCCS2 in polarization.'''</small></center>
  
In this version of the Planck catalogue of compact sources, between 100-857 GHz, we have split the catalogue into two, PCCS2 and PCCS2E, based on our ability to validate each of the sources.  
+
[[File:PCCS_POL_30_44_70_v2a.png|800px|thumb|center|Sky distribution of the PCCS2 polarization sources in three different channels: 30GHz (red circles); 44GHz (green circles); and 70GHz (blue circles).]]
  
For the lower frequencies, between 30 and 70 GHz, we still use a S/N threshold of 4. Moreover, as will be explained below, we use external catalogues and a multifrequency analysis to validate the sources. For the higher frequency channels, at 100 GHz and above, there is very little external information available to validate the catalogues and the validation has instead been done statistically and by applying Galactic masks and cirrus masks.
+
[[File:PCCS_POL_100_143_217_353.png|800px|thumb|center|Sky distribution of the PCCS2 polarization sources in four different channels: 100GHz (red circles); 143GHz (blue circles); 217GHz (green circles); and 353 GHz (black).]]
  
=== Photometry ===
+
<center><small>'''PCCS2E in polarization.'''</small></center>
In addition of the native flux density estimation provided by the detection algorithm, three additional measurements are obtained for each of the sources in the parent samples in total intensity.
 
These additional flux density estimations are based on aperture photometry, PSF fitting and Gaussian fitting (see {{PlanckPapers|planck2013-p05}} for a detailed description of these additional photometries). The native flux density estimation is the only one that is obtained directly from the projected filtered maps while for the others the flux density estimates have a local background subtracted. The flux density estimations have not been color corrected because that would limit the usability of the catalogue. Color corrections are available in Section 7.4 of the LFI DPC paper {{PlanckPapers|planck2014-a03||Planck-2015-A03}} and Section of the HFI DPC paper {{PlanckPapers|planck2014-a08||Planck-2015-A08}}, and can be applied by the user.
 
In polarization we have used two methods to measure the flux densities in the Stokes Q and U maps. One is a maximum likelihood filtering method and the other is aperture photometry.
 
  
=== Validation process ===
+
[[File:PCCS_POL_100_143_217_353_E.png|800px|thumb|center|Sky distribution of the PCCS2E polarization sources at three different channels: 100GHz (red circles); 143GHz (blue circles); 217GHz (green circles); and 353 GHz (black).]]
The PCCS, its sources and the four different estimates of the flux density, have undergone an extensive internal and external validation process to ensure the quality of the catalogues. The validation of the non-thermal radio sources can be done with a large number of existing catalogues, whereas the validation of thermal sources is mostly done with simulations. These two approaches will be discussed below. Detections identified with known sources have been appropriately flagged in the catalogues.
 
  
==== Internal validation ====
 
The catalogues have been validated through an internal Monte-Carlo quality assessment process that uses large numbers of source injection and detection loops to characterize their properties, both in total intensity and polarization. For each channel, we calculate statistical quantities describing the quality of detection, photometry and astrometry of the detection code. The detection in total intensity is described by the completeness and reliability of the catalogue: completeness is a function of intrinsic flux, the selection threshold applied to detection (S/N) and location, while reliability is a function only of the detection S/N. The quality of photometry and astrometry is assessed through direct comparison of detected position and flux density parameters with the known inputs of matched sources. An input source is considered to be detected if a detection is made within one beam FWHM of the injected position. In polarization, we have also made Monte-Carlo quality assessments injecting polarized sources into the maps and attempting to detect and characterize their properties. In the three lowest frequencies, the sources have been injected in the real Q and U maps, while at 100 GHz and above, maps from the Full Focal Plane 8 simulations have been used.
 
  
==== External validation ====
+
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
At the three lowest frequencies of Planck, it is possible to validate the PCCS source identifications, completeness, reliability, positional accuracy and flux density accuracy using external data sets, particularly large-area radio surveys (NEWPS, AT20G, CRATES). Moreover, the external validation offers the opportunity for an absolute validation of the different photometries, directly related with the calibration and the knowledge of the beams. We have used several external catalogues to validate the data, but one additional excercise has been done. Simultaneous observations of a sample of 61 sources has been carried out in the Very Large Array, the Australia Compact Array and Planck at 30 and 44 GHz. Special Planck maps have been made covering just the observation period to avoid having more than one observation of the same source in the maps, minimizing the variability effects. As a result of this exercise, we have been able to validate our flux densities at the few percent level.
+
|+ <small>'''Table 1: PCCS2 and PCCS2E characteristics.'''</small>
 
+
|- bgcolor="ffdead" 
At higher frequencies, surveys as the South-Pole Telescope (SPT), the Atacama Cosmology Telescope (ACT) and H-ATLAS or HERMES from Herschel are very important, although only for limited regions of the sky. In particular, the Herschel synergy is crucial to study the possible contamination of the catalogues caused by the Galactic cirrus at high frequencies.
+
! Channel || 30 || 44 || 70 || 100 || 143 || 217 || 353 || 545 || 857
 
+
|-
=== Cautionary notes ===
+
| '''Frequency [GHz]''' || 28.4 || 44.1 || 70.4 || 100.0 || 143.0 || 217.0 || 353.0 || 545.0 || 857.0
We list here some cautionary notes for users of the PCCS.
+
|-
 
+
|'''Wavelength [&mu;m]''' || 10561 || 6807 || 4260 || 3000 || 2098 || 1382 || 850 || 550 || 350
* Variability: At radio frequencies, many of the extragalactic sources are highly variable. A small fraction of them vary even on time scales of a few hours based on the brightness of the same source as it passes through the different Planck horns {{PlanckPapers|planck2013-p02}}{{PlanckPapers|planck2013-p03}}. Follow-up observations of these sources might show significant differences in flux density compared to the values in the data products. Although the maps used for the PCCS are based on 2.6 sky coverages, the PCCS provides only a single average flux density estimate over all Planck data samples that were included in the maps and does not contain any measure of the variability of the sources from survey to survey.
+
|-
 
+
!colspan="10" |Number of sources
* Contamination from CO: At infrared/submillimetre frequencies (100 GHz and above), the Planck bandpasses straddle energetically significant CO lines (see {{PlanckPapers|planck2013-p03a}}). The effect is the most significant at 100 GHz, where the line might contribute more than 50% of the measured flux density of some sources. Follow-up observations of these sources, especially those associated with Galactic star-forming regions, at a similar frequency but different bandpass, should correct for the potential contribution of line emission to the measured continuum flux density of the source.
+
|-
 
+
| PCCS2 || 1560 || 934 || 1296 || 1742 || 2160 || 2135 || 1344 || 1694 || 4891
* Bandpass corrections: For many sources in the three lowest Planck frequency channels, the bandpass correction of the Q and U flux densities is not negligible. Even though we have attempted to correct for this effect on a source by source basis and have propagated this uncertainty into the error bars on the polarized flux densities and polarization angles, there is still room for improvement. This can be seen in the residual leakage present at the position of Taurus A in the Stokes U maps. It is anticipated that there will be future updates to the LFI PCCS2 catalogues once the bandpass corrections and errors have been improved.
+
|-
 
+
| PCCS2E || &mdash; || &mdash; || &mdash; || 2487 || 4139 || 16842 || 22665 || 31068 || 43290
* Photometry: Each source has multiple estimates of flux density, DETFLUX, APERFLUX, GAUFLUX and PSFFLUX, as defined above. The evaluation of APERFLUX makes the smallest number of assumptions about the data and hence is the most robust, especially in regions of high non-Gaussian background emission, but it may have larger uncertainties than the other methods. For bright resolved sources, GAUFLUX is recommended, with the caveat that it may not be robust for sources close to the Galactic plane due to the strong backgrounds. We have noticed that at the position of some of the brightest sources in polarization there is a small spurious signal related to the complex beams in polarization. This signal can have a small impact on the measurements of the flux densities in Q and/or U. In particular, this spurious signal can have an impact on the polarization position angle in those objects where most of the flux density of the source happens to be in one of the Q or U maps, like in the Crab nebula. In {{PlanckPapers|planck2014-a35||Planck-2015-A35}} we have done an extensive analysis of the Crab nebula exploring different ways to remove this effect, but the polarization angles of the other sources in the catalogue have to be used with caution.
 
 
 
* Colour correction: The flux density estimates have not been colour corrected. Colour corrections are described in {{PlanckPapers|planck2013-p02}}, {{PlanckPapers|planck2014-a03||Planck-2015-A03}} and {{PlanckPapers|planck2013-p03}}, {{PlanckPapers|planck2014-a08||Planck-2015-A08}}.
 
 
 
* Cirrus/ISM: The upper bands of HFI could be contaminated with sources associated with Galactic interstellar medium features (ISM) or cirrus. The values of the parameters, CIRRUS N and SKY BRIGHTNESS in the catalogues may be used as indicators of contamination. CIRRUS N may be used to flag sources that might be clustered together and thereby associated with ISM structure. In order to provide some indications of the range of values of these parameters which could indicate contamination, we compared the properties of the IRAS-identified and non-IRAS-identified sources for both the PCCS2 and the PCCS2E, since outside the Galactic plane at Galactic latitudes |b| > 20◦, we can use the RIIFSCz {{BibCite|wang2014}} to provide a guide to the likely nature of sources. We cross match the PCCS2 857 GHz catalogue and the PCCS2E 857 GHz catalogue to the IRAS sources in the RIIFSCz using a 3 arcmin matching radius. Of the 4891 sources in the PCCS2 857 GHz catalogue 3094 have plausible IRAS counterparts while 1797 do not. Examination of histograms of the CIRRUS N and SKY BRIGHTNESS parameters in the PCCS2 show that these two classes of objects behave rather differently. The IRAS-identified sources have a peak sky brightness at about 1 MJy.sr−1. The non-IRAS-identified sources have a bimodal distribution with a slight peak at 1 MJy.sr−1 and a second peak at about 2.6 MJy.sr−1 . Both distributions have a long tail, but the non-IRAS-Identified tail is much longer. On this basis sources with SKY BRIGHTNESS > 4 MJy.sr−1 should be treated with caution. In contrast non-IRAS-identified sources with SKY BRIGHTNESS < 1.4 MJy.sr−1 are likely reliable. Examination of their sky distribution, for example, shows that many such sources lie in the IRAS coverage gaps. The CIRRUS N flag tells a rather similar story. Both IRAS-matched and IRAS non-matched sources have a peak CIRRUS N value of 2, but the non-matched sources have a far longer tail. Very few IRAS-matched sources have a value > 8 but many non- matched sources do. These should be treated with caution. The PCCS2E 857 GHz catalogue contains 10470 sources with |b| > 20◦ of which 1235 are matched to IRAS sources in the RIIFSCz and 9235 are not. As with the PCCS2 catalogue the distributions of CIRRUS N and SKY BRIGHTNESS are different, with the differences even more pronounced for these PCCS2E sources. Once again, few IRAS-matched sources have SKY BRIGHTNESS > 4 MJy.sr−1 , but the non-matched sources have brightnesses extending to >55MJy.sr−1. Similarly hardly any of the IRAS-matched sources have CIRRUS N > 8 but nearly half the unmatched sources do. The WHICH ZONE flag in the PCCS2E encodes the region in which the source sits, be it inside the filament mask (WHICH ZONE=1), the Galactic region (WHICH ZONE=2), or both (WHICH ZONE=3). Of the 9235 PCCS2E 857GHz sources that do not match an IRAS source and that lie in the region, |b| > 20◦, 1850 (20%) have WHICH ZONE=1, 2637 (29 %) have WHICH ZONE=2 and 4748 (51 %) have WHICH ZONE=3. The PCCS2E covers 30.36 % of the region |b| > 20◦ , where 2.47 % is in the filament mask, 23.15 % in the Galactic region and 4.74 % in both. If the 9235 unmatched detections were distributed uniformly over the region, |b| > 20◦, we can predict the number of non-matched sources in each zone and compare this to the values we have. We find that there are 2.5 and 3.3 times more sources than expected in zones 1 and 3, showing that the filament mask is indeed a useful criterion for regarding sources detected within it as suspicious. It should be noted that the EXTENDED flag could also be used to identify ISM features, but nearby Galactic and extra-galactic sources that are extended at Planck spatial resolution will also meet this criterion.
 
 
 
 
 
 
 
 
 
=== (2015) Second Catalogue of Compact Sources ===
 
 
 
The second Planck Catalogue of Compact Sources (PCCS2) is a set of single-frequency source catalogues extracted from the Planck full-mission maps in intensity and polarization (LFI_SkyMap_0??_1024_R2.01_full.fits and HFI_SkyMap_???_2048_R2.00_full.fits). The catalogues have been constructed as described in  [[Compact_Source_catalogues#Planck_Catalogue_of_Compact_Sources|PCCS]] and in section 2 of {{PlanckPapers|planck2014-a35}}. The validation of the catalogues is described in section 3 of {{PlanckPapers|planck2014-a35}}.
 
 
 
The catalogue at 100 GHz and above has been divided into two sub-catalogues: the PCCS2, here the sources have been detected in regions of the sky where it is possible to estimate the reliability of the detections, either statistically or by using external catalogues; PCCS2, here the detected sources are located in regions of the sky where it is not possible to make an estimate of their reliability.
 
 
 
By definition, the reliability of the whole  PCCS2 is &ge; 80%, and a flag is available that allows the user to select a subsample of sources with a higher level of reliability (e.g., 90% or 95%).
 
 
 
The nine Planck full-mission frequency channel maps are used as input to the source detection pipelines. They contain 48 months of data for LFI channels and 29 months of data for HFI channels. Therefore the flux densities of sources obtained from the full-mission maps are the average of at least 8 observations for LFI channels or at least 4 observations for HFI channels. The relevant properties of the frequency maps and main parameters used to generate the catalogues are summarized in Tables 1 and 2.
 
 
 
Four different photometry methods have been used. For one of the methods, the native photometry from the Mexican hat wavelet detection algorithm, the analysis is performed on patches containing tangent plane projections of the map. For the other methods (aperture photometry, point spread function fitting, and Gaussian fitting), the analysis is performed directly on the full-sky maps.
 
 
 
<center>'''PCCS2 in Intensity'''</center>
 
 
 
[[File:COMB_30_143_857_PCCS2a.png|800px|thumb|center|Sky distribution of the PCCS2 intensity sources at three different channels: 30 GHz (red circles), 143 GHz (blue circles) and 857 GHz (green circles). The dimension of the circles is related to the brightness of the sources and the beam size of each channel.]]
 
 
 
<center>'''PCCS2E in Intensity'''</center>
 
 
 
[[File:COMB_30_143_857_PCCS2Ea.png|800px|thumb|center|Sky distribution of the PCCS2E intensity sources at three different channels: 143 GHz (blue circles) and 857 GHz (green circles).]]
 
 
 
The analysis in polarization has been performed in a non-blind fashion, looking at the position of the sources previously detected in intensity. As a result, polarization flux densities and polarization angles have been measured for hundreds of sources with a significance >99.99%. This high threshold in significance has been chosen to minimize the possibility of misinterpreting a peak of the polarized background as a source. This implies that, in general, most of the polarized sources are very bright, introducing an additional selection effect.
 
 
 
<center>'''PCCS2 in Polarization'''</center>
 
 
 
[[File:PCCS_POL_30_44_70_v2a.png|800px|thumb|center|Sky distribution of the PCCS2 polarization sources at three different channels: 30GHz (red circles), 44GHz (green circles) and 70GHz (blue circles).]]
 
 
 
[[File:PCCS_POL_100_143_217_353.png|800px|thumb|center|Sky distribution of the PCCS2 polarization sources at three different channels: 100GHz (red circles), 143GHz (blue circles) and 217GHz (green circles) and 353 GHz (black).]]
 
 
 
<center>'''PCCS2E in Polarization'''</center>
 
 
 
[[File:PCCS_POL_100_143_217_353_E.png|800px|thumb|center|Sky distribution of the PCCS2E polarization sources at three different channels: 100GHz (red circles), 143GHz (blue circles) and 217GHz (green circles) and 353 GHz (black).]]
 
 
 
 
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
 
|+ '''Table 1: PCCS2 and PCCS2E characteristics.'''
 
|- bgcolor="ffdead" 
 
! Channel || 30 || 44 || 70 || 100 || 143 || 217 || 353 || 545 || 857
 
 
|-
 
|-
| '''Frequency [GHz]''' || 28.4 || 44.1 || 70.4 || 100.0 || 143.0 || 217.0 || 353.0 || 545.0 || 857.0
+
| Union PCCS2+PCCS2E  || &mdash; || &mdash; || &mdash; || 4229 || 6299 || 18977 || 24009 || 32762 || 48181
 
|-
 
|-
|'''Wavelength [&mu;m]''' || 10561 || 6807 || 4260 || 3000 || 2098 || 1382 || 850 || 550 || 350
+
!colspan="10" |Number of sources in the extragalactic zone<sup>a</sup>
 
|-
 
|-
!colspan="1" |Number of sources
+
| PCCS2  || 745 || 367 || 504 || 1742 || 2160 ||  2135 ||  1344 ||  1694 ||  4891
|-
 
| PCCS2  || 1560 || 934 || 1296 || 1742 || 2160 || 2135 || 1344 || 1694 || 4891
 
|-
 
| PCCS2E || &mdash; || &mdash; || &mdash; || 2487 || 4139 || 16842 || 22665 || 31068 || 43290
 
|-
 
| Union PCCS2+PCCS2E  || &mdash; || &mdash; || &mdash; || 4229 || 6299 || 18977 || 24009 || 32762 || 48181
 
|-
 
!colspan="10" |Number of sources in the extragalactic zone<sup>a</sup>.
 
|-
 
| PCCS2  || 745 || 367 || 504 || 1742 || 2160 ||  2135 ||  1344 ||  1694 ||  4891
 
 
|-
 
|-
 
| PCCS2E || &mdash; || &mdash; ||  &mdash; ||    0 ||    0 ||    26 ||  289 ||  839 ||  2097
 
| PCCS2E || &mdash; || &mdash; ||  &mdash; ||    0 ||    0 ||    26 ||  289 ||  839 ||  2097
Line 129: Line 62:
 
| Union PCCS2+PCSS2E || &mdash; || &mdash; || &mdash; || 1742 || 2160 ||  2161 ||  1633 ||  2533 ||  6988
 
| Union PCCS2+PCSS2E || &mdash; || &mdash; || &mdash; || 1742 || 2160 ||  2161 ||  1633 ||  2533 ||  6988
 
|-
 
|-
!colspan="10" |Flux densities [mJy] in the extragalactic zone<sup>a</sup> .
+
!colspan="10" |Flux densities [mJy] in the extragalactic zone<sup>a</sup>
 
|-
 
|-
 
!colspan="1" |PCCS2
 
!colspan="1" |PCCS2
 
|-
 
|-
| minimum<sup>b</sup> ||  376 ||  603 ||  444 ||  232 ||  147 ||  127 ||  242 ||  535 ||  720
+
| Minimum<sup>b</sup> ||  376 ||  603 ||  444 ||  232 ||  147 ||  127 ||  242 ||  535 ||  720
 
|-
 
|-
 
| 90% completeness ||  426 ||  676 ||  489 ||  269 ||  177 ||  152 ||  304 ||  555 ||  791
 
| 90% completeness ||  426 ||  676 ||  489 ||  269 ||  177 ||  152 ||  304 ||  555 ||  791
 
|-
 
|-
| uncertainty ||  87 ||  134 ||  101 ||  55 ||  35 ||    29 ||    55 ||  105 ||  168
+
| Uncertainty ||  87 ||  134 ||  101 ||  55 ||  35 ||    29 ||    55 ||  105 ||  168
 
|-
 
|-
 
!colspan="1" |PCCS2E
 
!colspan="1" |PCCS2E
 
|-
 
|-
| minimum<sup>b</sup> || &mdash; || &mdash; || &mdash; || &mdash;  || &mdash; ||  189 ||  350 ||  597 ||  939
+
| Minimum<sup>b</sup> || &mdash; || &mdash; || &mdash; || &mdash;  || &mdash; ||  189 ||  350 ||  597 ||  939
 
|-
 
|-
 
| 90% completeness ||  &mdash; ||  &mdash; || &mdash; || &mdash; || &mdash; ||  144 ||  311 ||  557 ||  927
 
| 90% completeness ||  &mdash; ||  &mdash; || &mdash; || &mdash; || &mdash; ||  144 ||  311 ||  557 ||  927
 
|-
 
|-
| uncertainty || &mdash; ||  &mdash; ||  &mdash; || &mdash; || &mdash; ||    35 ||    73 ||  144 ||  278
+
| Uncertainty || &mdash; ||  &mdash; ||  &mdash; || &mdash; || &mdash; ||    35 ||    73 ||  144 ||  278
 
|-
 
|-
 
|}
 
|}
 
'''Table 1 Notes'''
 
'''Table 1 Notes'''
 
+
'''<sup>a</sup>''' 30-70 GHz: the extragalactic zone is defined by |b| > 30&deg;. For 100-857 GHz the numbers outside of the Galactic region where the reliability cannot be accurately assessed. Note that for the PCCS2E the only sources that occur in this region lie in the filament mask.<BR>
'''a''' 30-70 GHz: the extragalactic zone is given by |b| > 30&deg;. 100-857 GHz: outside of galactic region where the reliability cannot be accurately assessed. Note that for the PCCS2E the only sources which occur in this region lie in the filament mask.
+
'''<sup>b</sup>''' Minimum flux density of the catalogue in the extragalactic zone after excluding the faintest 10% of sources.
 
 
'''b''' Minimum flux density of the catalogue in the extragalactic zone after excluding the faintest 10% of sources.
 
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
|+ '''Table 2: PCCS2 & PCCS2E polarization characteristics for sources with polarized emission significance > 99.99%'''
+
|+ <small>'''Table 2: PCCS2 & PCCS2E polarization characteristics for sources with polarized emission significance > 99.99%'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
 
!Channel  ||  30  ||  44  ||  70  ||  100  ||  143  ||  217  ||  353
 
!Channel  ||  30  ||  44  ||  70  ||  100  ||  143  ||  217  ||  353
Line 165: Line 96:
 
|Polarized flux density uncertainty [mJy]  ||  46  ||  88  ||  91  ||  30  ||  26  ||  30  ||  81
 
|Polarized flux density uncertainty [mJy]  ||  46  ||  88  ||  91  ||  30  ||  26  ||  30  ||  81
 
|-
 
|-
|Minimum polarized flux density completeness 90% [mJy]  ||  199  ||  412  ||  397  ||  135  ||  100  ||  136  ||  347
+
|Minimum polarized flux density for 90% completeness [mJy]  ||  199  ||  412  ||  397  ||  135  ||  100  ||  136  ||  347
 
|-
 
|-
|Minimum polarized flux density completeness 95% [mJy]  ||  251  ||  468  ||  454  ||  160  ||  111  ||  153  ||  399
+
|Minimum polarized flux density for 95% completeness [mJy]  ||  251  ||  468  ||  454  ||  160  ||  111  ||  153  ||  399
 
|-
 
|-
|Minimum polarized flux density completeness 100% [mJy]  ||  600  ||  700  ||  700  ||  250  ||  147  ||  257  ||  426
+
|Minimum polarized flux density for 100% completeness [mJy]  ||  600  ||  700  ||  700  ||  250  ||  147  ||  257  ||  426
 
|-
 
|-
|
+
-
 
|-
 
|-
 
|Number of significantly polarized sources in PCCS2E  ||  &mdash;  || &mdash;  || &mdash;  ||  43  ||  111  ||  325  ||  666
 
|Number of significantly polarized sources in PCCS2E  ||  &mdash;  || &mdash;  || &mdash;  ||  43  ||  111  ||  325  ||  666
Line 179: Line 110:
 
|Polarized flux density uncertainty [mJy]  || &mdash;  ||  &mdash; || &mdash; ||  52  ||  44  ||  55  ||  178
 
|Polarized flux density uncertainty [mJy]  || &mdash;  ||  &mdash; || &mdash; ||  52  ||  44  ||  55  ||  178
 
|-
 
|-
|Minimum polarized flux density completeness 90% [mJy]  ||  &mdash;  ||  &mdash;  ||  &mdash;  ||  410  ||  613  ||  270  ||  567
+
|Minimum polarized flux density for 90% completeness [mJy]  ||  &mdash;  ||  &mdash;  ||  &mdash;  ||  410  ||  613  ||  270  ||  567
 
|-
 
|-
|Minimum polarized flux density completeness 95% [mJy]  ||  &mdash;  ||  &mdash;  ||  &mdash;  ||  599  ||  893  ||  464  ||  590
+
|Minimum polarized flux density for 95% completeness [mJy]  ||  &mdash;  ||  &mdash;  ||  &mdash;  ||  599  ||  893  ||  464  ||  590
 
|-
 
|-
|Minimum polarized flux density completeness 100% [mJy]  || &mdash;  || &mdash;  ||  &mdash;  ||  835  ||  893  ||  786  ||  958
+
|Minimum polarized flux density for 100% completeness [mJy]  || &mdash;  || &mdash;  ||  &mdash;  ||  835  ||  893  ||  786  ||  958
 
|-
 
|-
 
|}
 
|}
 
'''Table 2 Notes'''
 
'''Table 2 Notes'''
  
'''a''' Minimum polarized flux density of the catalogue of significantly polarised sources after excluding the faintest 10% of sources.
+
'''<sup>a</sup>''' Minimum polarized flux density of the catalogue of significantly polarized sources after excluding the faintest 10% of sources.
  
 
==== Catalogues ====
 
==== Catalogues ====
  
The PCCS2 catalogues are contained in the FITS files:
+
The PCCS2 catalogues (at each frequency) are contained in the FITS files
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_030_R2.04.fits|link=COM_PCCS_030_R2.04.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_030_R2.04.fits|link=COM_PCCS_030_R2.04.fits}}
Line 202: Line 133:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353_R2.01.fits|link=COM_PCCS_353_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353_R2.01.fits|link=COM_PCCS_353_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545_R2.01.fits|link=COM_PCCS_545_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545_R2.01.fits|link=COM_PCCS_545_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857_R2.01.fits|link=COM_PCCS_857_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857_R2.01.fits|link=COM_PCCS_857_R2.01.fits}} .
  
and the PCCS2E catalogues are contained in the FITS files:
+
The PCCS2E catalogues are contained in the FITS files
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-excluded_R2.01.fits|link=COM_PCCS_100-excluded_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-excluded_R2.01.fits|link=COM_PCCS_100-excluded_R2.01.fits}}
Line 213: Line 144:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-excluded_R2.01.fits|link=COM_PCCS_857-excluded_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-excluded_R2.01.fits|link=COM_PCCS_857-excluded_R2.01.fits}}
  
The structure of these files is as follows:
+
The structure of these files is as follows.
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
|+ '''PCCS2/PCCS2E FITS file structure'''
+
|+ <small>'''PCCS2/PCCS2E FITS file structure'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
 
!colspan="4" | Extension 0: Primary header, no data
 
!colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"
 
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-
 
|-
 
|INSTRUME || String || || Instrument (LFI / HFI)
 
|INSTRUME || String || || Instrument (LFI / HFI)
Line 232: Line 163:
 
| TELESCOP || String || || Telescope (PLANCK)
 
| TELESCOP || String || || Telescope (PLANCK)
 
|-
 
|-
| CREATOR || String || || Pipeline Version
+
| CREATOR || String || || Pipeline version
 
|-
 
|-
 
| DATE-OBS || String || days || Beginning of the survey: yyyy-mm-dd
 
| DATE-OBS || String || days || Beginning of the survey: yyyy-mm-dd
Line 250: Line 181:
 
!colspan="4" | Extension 1:  BINTABLE, EXTNAME = PCCS2_''fff'' (where ''fff'' is the frequency channel)
 
!colspan="4" | Extension 1:  BINTABLE, EXTNAME = PCCS2_''fff'' (where ''fff'' is the frequency channel)
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
! Column Name || Data Type || Units || Description
+
! Column Name || Data type || Units || Description
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
 
!colspan="4"|Identification
 
!colspan="4"|Identification
Line 258: Line 189:
 
!colspan="4"|Source position
 
!colspan="4"|Source position
 
|-
 
|-
|GLON || Real*8 || degrees || Galactic longitude based on extraction algorithm
+
|GLON || Real*8 || deg || Galactic longitude based on extraction algorithm
 
|-
 
|-
|GLAT || Real*8 || degrees || Galactic latitude based on extraction algorithm
+
|GLAT || Real*8 || deg || Galactic latitude based on extraction algorithm
 
|-
 
|-
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON,GLAT)
+
|RA  || Real*8 || deg || Right ascension (J2000) transformed from (GLON,GLAT)
 
|-
 
|-
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON,GLAT)
+
|DEC  || Real*8 || deg || Declination (J2000) transformed from (GLON,GLAT)
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
 
!colspan="4"|Photometry
 
!colspan="4"|Photometry
Line 270: Line 201:
 
|DETFLUX || Real*4 || mJy || Flux density of source as determined by detection method
 
|DETFLUX || Real*4 || mJy || Flux density of source as determined by detection method
 
|-
 
|-
|DETFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from detection method
+
|DETFLUX_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived flux density from detection method
 
|-
 
|-
|APERFLUX || Real*4 || mJy || Flux density of source as determined from the aperture photometry
+
|APERFLUX || Real*4 || mJy || Flux density of source as determined from aperture photometry
 
|-
 
|-
|APERFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from the aperture photometry
+
|APERFLUX_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived flux density from aperture photometry
 
|-
 
|-
 
|PSFFLUX || Real*4 || mJy || Flux density of source as determined from PSF fitting
 
|PSFFLUX || Real*4 || mJy || Flux density of source as determined from PSF fitting
 
|-
 
|-
|PSFFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from PSF fitting
+
|PSFFLUX_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived flux density from PSF fitting
 
|-
 
|-
 
|GAUFLUX || Real*4 || mJy || Flux density of source as determined from 2-D Gaussian fitting
 
|GAUFLUX || Real*4 || mJy || Flux density of source as determined from 2-D Gaussian fitting
 
|-
 
|-
|GAUFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting
+
|GAUFLUX_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived flux density from 2-D Gaussian fitting
 
|-
 
|-
 
|GAU_SEMI1 || Real*4 || arcmin || Gaussian fit along axis 1 (FWHM; see note 2 for axis definition)
 
|GAU_SEMI1 || Real*4 || arcmin || Gaussian fit along axis 1 (FWHM; see note 2 for axis definition)
 
|-
 
|-
|GAU_SEMI1_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 1
+
|GAU_SEMI1_ERR || Real*4 || arcmin || Uncertainty (1 &sigma;) in derived Gaussian fit along axis 1
 
|-
 
|-
 
|GAU_SEMI2 || Real*4 || arcmin || Gaussian fit along axis 2 (FWHM)
 
|GAU_SEMI2 || Real*4 || arcmin || Gaussian fit along axis 2 (FWHM)
 
|-
 
|-
|GAU_SEMI2_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 2
+
|GAU_SEMI2_ERR || Real*4 || arcmin || Uncertainty (1 &sigma;) in derived Gaussian fit along axis 2
 
|-
 
|-
 
|GAU_THETA || Real*4 || deg || Gaussian fit orientation angle (see note 2)
 
|GAU_THETA || Real*4 || deg || Gaussian fit orientation angle (see note 2)
 
|-
 
|-
|GAU_THETA_ERR || Real*4 || deg || Uncertainty (1 sigma) in derived gaussian fit orientation angle
+
|GAU_THETA_ERR || Real*4 || deg || Uncertainty (1 &sigma;) in derived Gaussian fit orientation angle
 
|-
 
|-
 
|GAU_FWHM_EFF || Real*4 || arcmin || Gaussian fit effective FWHM
 
|GAU_FWHM_EFF || Real*4 || arcmin || Gaussian fit effective FWHM
Line 302: Line 233:
 
|P || Real*4 || mJy || Polarization flux density of the sources as determined by a matched filter (see note 3)
 
|P || Real*4 || mJy || Polarization flux density of the sources as determined by a matched filter (see note 3)
 
|-
 
|-
|P_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived polarization flux density (see note 3)
+
|P_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived polarization flux density (see note 3)
 
|-
 
|-
 
|ANGLE_P || Real*4 || degrees || Orientation of polarization with respect to NGP (see notes 2 and 3)
 
|ANGLE_P || Real*4 || degrees || Orientation of polarization with respect to NGP (see notes 2 and 3)
 
|-
 
|-
|ANGLE_P_ERR || Real*4 || degrees || Uncertainty (1 sigma) in orientation of polarization (see note 3)
+
|ANGLE_P_ERR || Real*4 || degrees || Uncertainty (1 &sigma;) in orientation of polarization (see note 3)
 
|-
 
|-
 
|APER_P || Real*4 || mJy || Polarization flux density of the sources as determined by aperture photometry (see note 3)
 
|APER_P || Real*4 || mJy || Polarization flux density of the sources as determined by aperture photometry (see note 3)
 
|-
 
|-
|APER_P_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived polarization flux density (see note 3)
+
|APER_P_ERR || Real*4 || mJy || Uncertainty (1 &sigma;) in derived polarization flux density (see note 3)
 
|-
 
|-
 
|APER_ANGLE_P || Real*4 || degrees || Orientation of polarization with respect to NGP (see notes 2 and 3)
 
|APER_ANGLE_P || Real*4 || degrees || Orientation of polarization with respect to NGP (see notes 2 and 3)
 
|-
 
|-
|APER_ANGLE_P_ERR || Real*4 || degrees || Uncertainty (1 sigma) in orientation of polarization (see note 3)
+
|APER_ANGLE_P_ERR || Real*4 || degrees || Uncertainty (1 &sigma;) in orientation of polarization (see note 3)
 
|-
 
|-
|P_UPPER_LIMIT || Real*4 || mJy || Polarization flux density 99.99% upper limit. This is provided only when P column is set to NULL; otherwise this column itself contains a NULL.
+
|P_UPPER_LIMIT || Real*4 || mJy || Polarization flux density 99.99% upper limit. This is provided only when the P column is set to NULL; otherwise this column itself contains NULL.
 
|-
 
|-
|APER_P_UPPER_LIMIT || Real*4 || mJy || Polarization flux density 99.99% upper limit. This is provided only when APER_P column is set to NULL; otherwise this column itself contains a NULL.
+
|APER_P_UPPER_LIMIT || Real*4 || mJy || Polarization flux density 99.99% upper limit. This is provided only when the APER_P column is set to NULL; otherwise this column itself contains NULL.
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
 
!colspan="4"|Marginal polarization measurements (100-353 GHz only) &ndash; see note 4
 
!colspan="4"|Marginal polarization measurements (100-353 GHz only) &ndash; see note 4
Line 324: Line 255:
 
|P_STAT || Integer*2 ||  || Polarization detection status
 
|P_STAT || Integer*2 ||  || Polarization detection status
 
|-
 
|-
|PX || Real*4|| mJy || Polarization flux density of the sources as determined by a matched filter using Bayesian polarization estimator.
+
|PX || Real*4|| mJy || Polarization flux density of the sources as determined by a matched filter using a Bayesian polarization estimator
 
|-
 
|-
 
|PX_ERR_LOWER || Real*4|| mJy || PX uncertainty; lower 95% error bar
 
|PX_ERR_LOWER || Real*4|| mJy || PX uncertainty; lower 95% error bar
Line 330: Line 261:
 
|PX_ERR_UPPER || Real*4|| mJy || PX uncertainty; upper 95% error bar
 
|PX_ERR_UPPER || Real*4|| mJy || PX uncertainty; upper 95% error bar
 
|-
 
|-
|ANGLE_PX || Real*4|| degrees || Orientation of polarization with respect to NGP using Bayesian polarization estimator (see note 2)
+
|ANGLE_PX || Real*4|| deg || Orientation of polarization with respect to NGP using Bayesian polarization estimator (see note 2)
 
|-
 
|-
|ANGLE_PX_ERR_LOWER || Real*4|| degrees || ANGLE_PX uncertainty; lower 95% error bar
+
|ANGLE_PX_ERR_LOWER || Real*4|| deg || ANGLE_PX uncertainty; lower 95% error bar
 
|-
 
|-
|ANGLE_PX_ERR_UPPER || Real*4|| degrees || ANGLE_PX uncertainty; upper 95% error bar
+
|ANGLE_PX_ERR_UPPER || Real*4|| deg || ANGLE_PX uncertainty; upper 95% error bar
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
 
!colspan="4"|Flags and validation
 
!colspan="4"|Flags and validation
Line 350: Line 281:
 
|HIGHEST_RELIABILITY_CAT || Integer*4 || || See note 7
 
|HIGHEST_RELIABILITY_CAT || Integer*4 || || See note 7
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
!colspan="4"|Flags and validation (PCCS2E 100-857 GHz only)
+
!colspan="4"|Flags and validation (PCCS2E, 100-857 GHz only)
 
|-
 
|-
 
|WHICH_ZONE || Integer*2 || || See note 8
 
|WHICH_ZONE || Integer*2 || || See note 8
Line 356: Line 287:
 
!colspan="4"|Flags and validation (217-857 GHz only)
 
!colspan="4"|Flags and validation (217-857 GHz only)
 
|-
 
|-
|CIRRUS_N || Integer*2 || || Number of sources (S/N > 5) detected at 857 GHz within a 1-degree radius.
+
|CIRRUS_N || Integer*2 || || Number of sources (S/N > 5) detected at 857 GHz within a 1&deg; radius.
 
|-
 
|-
|SKY_BRIGHTNESS || Real*4 || MJy/sr || The mean 857 GHz brightness within a 2-degree radius. This may be used as another indicator of cirrus contamination.
+
|SKY_BRIGHTNESS || Real*4 || MJy sr<sup>-1</sup> || The mean 857 GHz brightness within a 2&deg; radius. This may be used as another indicator of cirrus contamination.
 
|-bgcolor="ffdead"
 
|-bgcolor="ffdead"
 
!colspan="4"| Flux densities at other frequencies (857 GHz only)
 
!colspan="4"| Flux densities at other frequencies (857 GHz only)
Line 376: Line 307:
  
 
'''Notes'''
 
'''Notes'''
# Format is <tt>PCCS2 fff Glll.ll&plusmn;bb.bb</tt> for sources in the PCCS2 and <tt>PCCS2E fff Glll.ll&plusmn;bb.bb</tt> for sources in the PCCS2E, where fff is the frequency channel and (l, b) is the position of the source in Galactic coordinates truncated to two decimal places.
+
# Format is <tt>PCCS2 fff Glll.ll&plusmn;bb.bb</tt> for sources in the PCCS2 and <tt>PCCS2E fff Glll.ll&plusmn;bb.bb</tt> for sources in the PCCS2E, where "fff" is the frequency channel and l and b the position of the source in Galactic coordinates truncated to two decimal places.
# We follow the IAU/IEEE convention (Hamaker & Bregman 1996) for defining the angle of polarization of a source, and this convention is also used for the other angles in the catalogue. The angle is measured from the North Galactic Pole in a clockwise direction from -90 to 90 degrees.
+
# We follow the IAU/IEEE convention (Hamaker & Bregman 1996) for defining the angle of polarization of a source in this catalogue, and this convention is also used for the other angles in the catalogue. The angle is measured from the North Galactic Pole in a clockwise direction from -90&deg; to 90&deg;.  Note that this is different than the convention used for the CMB maps.
 
# Provided when the significance of the polarization measurement is > 99.99% and set to NULL otherwise.
 
# Provided when the significance of the polarization measurement is > 99.99% and set to NULL otherwise.
# The P_STAT flag gives the status of the marginal polarization detection, possible values are:
+
# The P_STAT flag gives the status of the marginal polarization detection. Possible values are:
#: 3 &ndash; Bright: P field filled in; all PX fields set to NULL.
+
#: 3 &ndash; bright, the P field filled in and all PX fields set to NULL;
#: 2 &ndash; Significant: P field is set to NULL; 0 is outside the PX 95% HPD; all PX fields are filled.
+
#: 2 &ndash; significant, the P field is set to NULL, 0 is outside the PX 95% HPD, and all PX fields are filled;
#: 1 &ndash; Marginal: P field is set to NULL; 0 is inside the PX 95% HPD, but mode of PX posterior distribution is not 0; all PX fields are filled.
+
#: 1 &ndash; marginal, the P field is set to NULL, 0 is inside the PX 95% HPD (but the mode of the PX posterior distribution is not 0) and all PX fields are filled;
#: 0 &ndash; No detection: P field is set to NULL; mode of PX posterior distribution is 0; PX_ERRL, ANGLE_PX, ANGLE_PX_ERR_LOWER, and ANGLE_PX_ERR_UPPER are set to NULL.
+
#: 0 &ndash; no detection, the P field is set to NULL, the mode of the PX posterior distribution is 0, PX_ERRL, ANGLE_PX, ANGLE_PX_ERR_LOWER, and ANGLE_PX_ERR_UPPER are set to NULL.
# The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criterion for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
+
# The EXTENDED flag has the value of "0" if the source is compact and the value of "1" if it is extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criterion for extension being &radic;(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
# The EXT_VAL flag gives the status of the external validation, possible values are:
+
# The EXT_VAL flag gives the status of the external validation. Possible values are:
#: 3 &ndash; The source has a clear counterpart in one of the catalogues used as ancillary data.
+
#: 3 &ndash; the source has a clear counterpart in one of the catalogues used as ancillary data;
#: 2 &ndash; The source does not have a clear counterpart in one of the catalogues used as ancillary data but it has been detected by the internal multi-frequency method.
+
#: 2 &ndash; the source does not have a clear counterpart in one of the catalogues used as ancillary data, but it has been detected by the internal multi-frequency method;
#: 1 &ndash; The source does not have a clear counterpart in one of the catalogues used as ancillary data and it has not been detected by the internal multi-frequency method, but it has been detected in a previous Planck source catalogue.
+
#: 1 &ndash; the source does not have a clear counterpart in one of the catalogues used as ancillary data and it has not been detected by the internal multi-frequency method, but it has been detected in a previous Planck source catalogue;
#: 0 &ndash; The source does not have a clear counterpart in one of the catalogues used as ancillary data and it has not been detected by the internal multi-frequency method.
+
#: 0 &ndash; the source does not have a clear counterpart in one of the catalogues used as ancillary data and has not been detected by the internal multi-frequency method.
# The HIGHEST_RELIABILTY_CAT column contains the highest reliability catalogue to which the source belongs. As the full catalogue reliability is &ge; 80%, this is the lowest possible value in this column. Where possible this is provided in steps of 1% otherwise it is in steps of 5%.
+
# The HIGHEST_RELIABILTY_CAT column contains the highest reliability catalogue to which the source belongs. As the full catalogue reliability is &ge; 80%, this is the lowest possible value in this column. Where possible this is provided in steps of 1%, otherwise it is in steps of 5%.
 
# The WHICH_ZONE column encodes the zone in which the source lies:
 
# The WHICH_ZONE column encodes the zone in which the source lies:
#: 1 &ndash; source lies inside filament mask.
+
#: 1 &ndash; source lies inside the filament mask;
#: 2 &ndash; source lies inside Galactic zone.
+
#: 2 &ndash; source lies inside the Galactic zone;
#: 3 &ndash; sources lies in both filament mask and Galactic zone.
+
#: 3 &ndash; sources lies in both the filament mask and Galactic zone.
  
 
==== Zone map ====
 
==== Zone map ====
  
For each HFI frequency channel there is an associated map which defines the quantified-reliability (PCCS2) and unquantified-reliability (PCCS2E) zones are on the sky.
+
For each HFI frequency channel there is an associated map that defines where the quantified-reliability (PCCS2) and unquantified-reliability (PCCS2E) zones are on the sky.
  
The files are called:
+
The files are called
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-zoneMask_R2.01.fits|link=COM_PCCS_100-zoneMask_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-zoneMask_R2.01.fits|link=COM_PCCS_100-zoneMask_R2.01.fits}}
Line 407: Line 338:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-zoneMask_R2.01.fits|link=COM_PCCS_353-zoneMask_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-zoneMask_R2.01.fits|link=COM_PCCS_353-zoneMask_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-zoneMask_R2.01.fits|link=COM_PCCS_545-zoneMask_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-zoneMask_R2.01.fits|link=COM_PCCS_545-zoneMask_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-zoneMask_R2.01.fits|link=COM_PCCS_857-zoneMask_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-zoneMask_R2.01.fits|link=COM_PCCS_857-zoneMask_R2.01.fits}} .
  
The structure of the files is as follows:
+
The structure of the files is shown in the following table.
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
|+ '''Zone map FITS file structure'''
+
|+ <small>'''Zone map FITS file structure'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
 
!colspan="4" | Extension 0: Primary header, no data
 
!colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"
 
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-
 
|-
 
|DATE || String ||  || Date of creation of file
 
|DATE || String ||  || Date of creation of file
Line 422: Line 353:
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS keyword || Data Type || Value || Description
+
! FITS keyword || Data type || Value || Description
 
|-
 
|-
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
Line 438: Line 369:
  
 
'''Notes'''
 
'''Notes'''
# This FITS extension contains an integer HEALPix map which encodes the information on which of 4 possible regions on the sky each pixel belongs to:
+
# This FITS extension contains an integer HEALPix map, which encodes the information on which of four possible regions on the sky each pixel belongs to:
#: 0 &ndash; quantified-reliability zone (PCCS2).
+
#: 0 &ndash; quantified-reliability zone (PCCS2);
#: 1 &ndash; filament mask.
+
#: 1 &ndash; filament mask;
#: 2 &ndash; Galactic zone.
+
#: 2 &ndash; Galactic zone;
 
#: 3 &ndash; filament mask and Galactic zone.
 
#: 3 &ndash; filament mask and Galactic zone.
  
 
==== S/N threshold map ====
 
==== S/N threshold map ====
  
For each HFI frequency channel there are a number of maps which contains the S/N threshold used to accept sources into the PCCS2 and PCCS2E catalogues.
+
For each HFI frequency channel there are a number of maps that contains the S/N threshold used to accept sources into the PCCS2 and PCCS2E catalogues.
  
For the full catalogue (80% reliability in the quantified reliability zone) they are:
+
For the full catalogue (80% reliability in the quantified reliability zone) they are
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold_R2.01.fits|link=COM_PCCS_100-SN-threshold_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold_R2.01.fits|link=COM_PCCS_100-SN-threshold_R2.01.fits}}
Line 455: Line 386:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold_R2.01.fits|link=COM_PCCS_353-SN-threshold_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold_R2.01.fits|link=COM_PCCS_353-SN-threshold_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold_R2.01.fits|link=COM_PCCS_545-SN-threshold_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold_R2.01.fits|link=COM_PCCS_545-SN-threshold_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold_R2.01.fits|link=COM_PCCS_857-SN-threshold_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold_R2.01.fits|link=COM_PCCS_857-SN-threshold_R2.01.fits}} .
  
For 85% reliability they are:
+
For 85% reliability they are
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-85pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-85pc-reliability_R2.01.fits}}
Line 464: Line 395:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-85pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-85pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-85pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-85pc-reliability_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-85pc-reliability_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-85pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-85pc-reliability_R2.01.fits}} .
  
For 90% reliability they are:
+
For 90% reliability they are
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-90pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-90pc-reliability_R2.01.fits}}
Line 473: Line 404:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-90pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-90pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-90pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-90pc-reliability_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-90pc-reliability_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-90pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-90pc-reliability_R2.01.fits}} .
  
For 95% reliability they are:
+
For 95% reliability they are
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-95pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_100-SN-threshold-95pc-reliability_R2.01.fits}}
Line 482: Line 413:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-95pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_353-SN-threshold-95pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-95pc-reliability_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_545-SN-threshold-95pc-reliability_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-95pc-reliability_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-SN-threshold-95pc-reliability_R2.01.fits|link=COM_PCCS_857-SN-threshold-95pc-reliability_R2.01.fits}} .
  
The structure of the files is as follows:
+
The structure of the files is shown in the following table.
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
|+ '''Zone map FITS file structure'''
+
|+ <small>'''Zone map FITS file structure'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
 
!colspan="4" | Extension 0: Primary header, no data
 
!colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"
 
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-
 
|-
 
|DATE || String ||  || Date of creation of file
 
|DATE || String ||  || Date of creation of file
Line 497: Line 428:
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS keyword || Data Type || Value || Description
+
! FITS keyword || Data type || Value || Description
 
|-
 
|-
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
Line 517: Line 448:
 
====Noise map====
 
====Noise map====
  
For each HFI frequency channel there is an associated map which contains the detection noise as a function of position on the sky.
+
For each HFI frequency channel there is an associated map that contains the detection noise as a function of position on the sky.
  
The files are called:
+
The files are called
  
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-noise-level_R2.01.fits|link=COM_PCCS_100-noise-level_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_100-noise-level_R2.01.fits|link=COM_PCCS_100-noise-level_R2.01.fits}}
Line 526: Line 457:
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-noise-level_R2.01.fits|link=COM_PCCS_353-noise-level_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_353-noise-level_R2.01.fits|link=COM_PCCS_353-noise-level_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-noise-level_R2.01.fits|link=COM_PCCS_545-noise-level_R2.01.fits}}
 
: {{PLASingleFile|fileType=cat|name=COM_PCCS_545-noise-level_R2.01.fits|link=COM_PCCS_545-noise-level_R2.01.fits}}
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-noise-level_R2.01.fits|link=COM_PCCS_857-noise-level_R2.01.fits}}
+
: {{PLASingleFile|fileType=cat|name=COM_PCCS_857-noise-level_R2.01.fits|link=COM_PCCS_857-noise-level_R2.01.fits}} .
  
The structure of the files is as follows:
+
The structure of the files shown in the following table.
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
 
{| border="1" cellpadding="3" cellspacing="0" align="center" width=800px style="text-align:left"
|+ '''Zone map FITS file structure'''
+
|+ <small>'''Zone map FITS file structure'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
 
!colspan="4" | Extension 0: Primary header, no data
 
!colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"
 
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-
 
|-
 
|DATE || String ||  || Date of creation of file
 
|DATE || String ||  || Date of creation of file
Line 541: Line 472:
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS keyword || Data Type || Value || Description
+
! FITS keyword || Data type || Value || Description
 
|-
 
|-
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
Line 559: Line 490:
  
  
==== Previous releases (PCCS and ERCSC) ====
+
==== Previous releases: (2013) PCCS and (2011) ERCSC ====
 
<hr>
 
<hr>
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
<div class="toccolours mw-collapsible mw-collapsed" style="background-color: #EEE8AA;width:95%">
 
'''Second Planck Release (2013): Description of the PCCS'''
 
'''Second Planck Release (2013): Description of the PCCS'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
Line 585: Line 516:
 
| '''Beam FWHM<span style="color:red"><sup>1</sup></span> [arcmin]''' || 32.38 || 27.10 || 13.30 || 9.88 || 7.18 || 4.87 || 4.65 || 4.72 || 4.39
 
| '''Beam FWHM<span style="color:red"><sup>1</sup></span> [arcmin]''' || 32.38 || 27.10 || 13.30 || 9.88 || 7.18 || 4.87 || 4.65 || 4.72 || 4.39
 
|-
 
|-
|'''SNR threshold''' || 4.0 || 4.0 || 4.0 || 4.6 || 4.7 || 4.8 || 4.9<span style="color:red"><sup>2</sup></span>/6.0<span style="color:red"><sup>3</sup></span> || 4.7/7.0 || 4.9/7.0
+
|'''S/N threshold''' || 4.0 || 4.0 || 4.0 || 4.6 || 4.7 || 4.8 || 4.9<span style="color:red"><sup>2</sup></span>/6.0<span style="color:red"><sup>3</sup></span> || 4.7/7.0 || 4.9/7.0
 
|-
 
|-
 
| '''# of detections''' || 1256 || 731 || 939 || 3850 || 5675 || 16070 || 17689 || 26472 || 35719  
 
| '''# of detections''' || 1256 || 731 || 939 || 3850 || 5675 || 16070 || 17689 || 26472 || 35719  
Line 652: Line 583:
 
!colspan="4" | Extension 0: Primary header, no data
 
!colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"  
 
|- bgcolor="ffdead"  
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-  
 
|-  
 
|INSTRUME || String || || LFI or HFI
 
|INSTRUME || String || || LFI or HFI
Line 672: Line 603:
 
!colspan="4" | Extension 1:  (BINTABLE)
 
!colspan="4" | Extension 1:  (BINTABLE)
 
|-bgcolor="ffdead"  
 
|-bgcolor="ffdead"  
! Column Name || Data Type || Units || Description
+
! Column Name || Data type || Units || Description
 
|-bgcolor="ffdead"  
 
|-bgcolor="ffdead"  
 
!colspan="4"|Identification
 
!colspan="4"|Identification
 
|-
 
|-
|NAME || String || || Source name (Note 1)
+
|NAME || String || || Source name (note 1)
 
|-bgcolor="ffdead"  
 
|-bgcolor="ffdead"  
 
!colspan="4"|Source Position
 
!colspan="4"|Source Position
Line 706: Line 637:
 
|GAUFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting
 
|GAUFLUX_ERR || Real*4 || mJy || Uncertainty (1 sigma) in derived flux density from 2-D Gaussian fitting
 
|-
 
|-
|GAU_SEMI1 || Real*4 || arcmin || Gaussian fit along axis 1 (FWHM; see Note 4 for axis definition)
+
|GAU_SEMI1 || Real*4 || arcmin || Gaussian fit along axis 1 (FWHM; see note 4 for axis definition)
 
|-
 
|-
 
|GAU_SEMI1_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 1
 
|GAU_SEMI1_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 1
Line 714: Line 645:
 
|GAU_SEMI2_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 2
 
|GAU_SEMI2_ERR || Real*4 || arcmin || Uncertainty (1 sigma) in derived Gaussian fit along axis 2
 
|-
 
|-
|GAU_THETA || Real*4 || deg || Gaussian fit orientation angle (Note 4)
+
|GAU_THETA || Real*4 || deg || Gaussian fit orientation angle (note 4)
 
|-
 
|-
 
|GAU_THETA_ERR || Real*4 || deg || Uncertainty (1 sigma) in derived gaussian fit orientation angle
 
|GAU_THETA_ERR || Real*4 || deg || Uncertainty (1 sigma) in derived gaussian fit orientation angle
Line 722: Line 653:
 
!colspan="4"|Flags and validation
 
!colspan="4"|Flags and validation
 
|-
 
|-
|EXTENDED || Integer*2 || || Extended source flag (Note 2)
+
|EXTENDED || Integer*2 || || Extended source flag (note 2)
 
|-
 
|-
 
|CIRRUS_N || Integer*2 || || Number of sources detected at 857 GHz within 1 degree
 
|CIRRUS_N || Integer*2 || || Number of sources detected at 857 GHz within 1 degree
 
|-
 
|-
|EXT_VAL || Integer*2 || || External validation flag (Note 3)
+
|EXT_VAL || Integer*2 || || External validation flag (note 3)
 
|-
 
|-
 
|ERCSC || String || || Name of the ERCSC counterpart if any  
 
|ERCSC || String || || Name of the ERCSC counterpart if any  
Line 747: Line 678:
  
 
'''Notes'''
 
'''Notes'''
# Source names consist of a prefix and a position. The prefix used is PCCS1 fff for the catalogue at fff GHz. The position is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (l,b) values are truncated to two decimal places. For example, a source detected at (l,b) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PCCS1 545 G120.23±04.23.
+
# Source names consist of a prefix and a position. The prefix used is PCCS1 fff for the catalogue at fff GHz. The position is in Galactic coordinates and specified as "Glll.ll±bb.bb" where the (<i>l</i>,<i>b</i>) values are truncated to two decimal places. For example, a source detected at (<i>l</i>,<i>b</i>) = (120.237, 4.231) in the 545 GHz Planck map would be labelled PCCS1 545 G120.23±04.23.
 
# The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
 
# The EXTENDED flag has the value of 0 if the source is compact and the value of 1 is it extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criteria for extension being sqrt(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
 
# The EXT_VAL flag takes the value of 0, 1, or 2, based on the following conditions:
 
# The EXT_VAL flag takes the value of 0, 1, or 2, based on the following conditions:
Line 754: Line 685:
 
#: = 0: The source has no clear counterpart in one of the ancillary catalogues and it has not been detected by the internal multi-frequency method or neighbouring frequencies.
 
#: = 0: The source has no clear counterpart in one of the ancillary catalogues and it has not been detected by the internal multi-frequency method or neighbouring frequencies.
 
# The x-axis is defined for each source as parallel to the line of constant colatitude, with the same direction as the longitude. Therefore the position angles are measured anticlockwise from the y-axis.
 
# The x-axis is defined for each source as parallel to the line of constant colatitude, with the same direction as the longitude. Therefore the position angles are measured anticlockwise from the y-axis.
 +
 +
  
 
</div>
 
</div>
 
</div>
 
</div>
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
<div class="toccolours mw-collapsible mw-collapsed" style="background-color: #d5fdf4;width:95%">
 
'''First Planck Release (2011): Description of the 2011 ERCSC (Early Compact Source, Cold Core and SZ Catalogues )'''
 
'''First Planck Release (2011): Description of the 2011 ERCSC (Early Compact Source, Cold Core and SZ Catalogues )'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
Line 767: Line 700:
 
The ERCSC consisted of nine source lists, one at each of the nine Planck frequency channels. The number of sources in the lists range from 705 at 30 GHz to 8988 at 857 GHz. No attempt was made to cross-match the sources from the different frequencies due to the wide range of spatial resolutions (33 arcmin at 30 GHz to 4.3 arcmin at 857 GHz) spanned by Planck. Furthermore, a list of ''Cold Cores'' of interstellar molecular clouds within the Galaxy and a list of galaxy clusters detected through the Sunyaev- Zel’dovich effect (SZ), were also provided. These consisted of candidate sources that were detected using multifrequency algorithms that use the distinct spectral signature of such sources. The Cold Cores catalogue contained 915 sources while the SZ cluster catalogue consisted of 189 sources
 
The ERCSC consisted of nine source lists, one at each of the nine Planck frequency channels. The number of sources in the lists range from 705 at 30 GHz to 8988 at 857 GHz. No attempt was made to cross-match the sources from the different frequencies due to the wide range of spatial resolutions (33 arcmin at 30 GHz to 4.3 arcmin at 857 GHz) spanned by Planck. Furthermore, a list of ''Cold Cores'' of interstellar molecular clouds within the Galaxy and a list of galaxy clusters detected through the Sunyaev- Zel’dovich effect (SZ), were also provided. These consisted of candidate sources that were detected using multifrequency algorithms that use the distinct spectral signature of such sources. The Cold Cores catalogue contained 915 sources while the SZ cluster catalogue consisted of 189 sources
  
In order to generate the ERCSC,  four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >90%. Reliability is defined as the fraction of sources in the catalog which have measured flux densities which are within 30% of their true flux density. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux density limit of the catalogue at $|b| > 30$ deg is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion.  The sensitivity of the ERCSC is shown in the figure below. The ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs.  
+
In order to generate the ERCSC,  four source detection algorithms were run as part of the ERCSC pipeline. A Monte-Carlo algorithm based on the injection and extraction of artificial sources into the Planck maps was implemented to select reliable sources among all extracted candidates such that the cumulative reliability of the catalogue is >90%. Reliability is defined as the fraction of sources in the catalog which have measured flux densities which are within 30% of their true flux density. There is no requirement on completeness for the ERCSC. As a result of the Monte-Carlo assessment of reliability of sources from the different techniques, an implementation of the PowellSnakes source extraction technique was used at the five frequencies between 30 and 143 GHz while the SExtractor technique was used between 217 and 857 GHz. The 10σ photometric flux density limit of the catalogue at |<i>b</i>| > 30&deg; is 0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of the nine frequencies between 30 and 857GHz. Sources which are up to a factor of ~2 fainter than this limit, and which are present in "clean" regions of the Galaxy where the sky background due to emission from the interstellar medium is low, are included in the ERCSC if they meet the high reliability criterion.  The sensitivity of the ERCSC is shown in the figure below. The ERCSC sources have known associations to stars with dust shells, stellar cores, radio galaxies, blazars, infrared-luminous galaxies and Galactic interstellar medium features. A significant fraction of unclassified sources are also present in the catalogs.  
  
 
The multifrequency information from Planck allows some basic classification of the sources to be undertaken. In the Galactic plane, at frequencies below 100 GHz, the majority of the sources are dominated by synchrotron or free-free emission. At the higher frequencies, the sources are almost exclusively dominated by thermal dust emission. At high Galactic latitudes however, the synchrotron sources  dominate the source counts to 217 GHz with dusty sources being the primary source population at 353 GHz and higher. Recent attempts to classify a subset of the Planck 857 GHz sources at high latitudes based on cross-correlations with sources in other catalogs such as WISE and SDSS, found that almost half of them are associated with stars and low-redshift galaxies while a significant fraction (44%) might be interstellar medium features{{BibCite|Johnson2013}}.
 
The multifrequency information from Planck allows some basic classification of the sources to be undertaken. In the Galactic plane, at frequencies below 100 GHz, the majority of the sources are dominated by synchrotron or free-free emission. At the higher frequencies, the sources are almost exclusively dominated by thermal dust emission. At high Galactic latitudes however, the synchrotron sources  dominate the source counts to 217 GHz with dusty sources being the primary source population at 353 GHz and higher. Recent attempts to classify a subset of the Planck 857 GHz sources at high latitudes based on cross-correlations with sources in other catalogs such as WISE and SDSS, found that almost half of them are associated with stars and low-redshift galaxies while a significant fraction (44%) might be interstellar medium features{{BibCite|Johnson2013}}.
Line 778: Line 711:
  
 
The figure shows the ERCSC flux density limits, quanitfied as the faintest ERCSC source at |b|<10 deg (dashed black line) and at |b|>30 deg (solid black line), compared to those of other wide area surveys ({{PlanckPapers|planck2011-1-10}}). Also shown are spectra of known sources of foreground emission as red lines. The ERCSC sensitivity is worse in the Galactic plane due to the strong contribution of ISM emission, especially at submillimeter wavelengths. At face value, the WMAP and Planck flux density limits appear to be comparable at the lowest frequencies, but the Planck ERCSC is much more complete as discussed in {{PlanckPapers|planck2011-1-10}}.
 
The figure shows the ERCSC flux density limits, quanitfied as the faintest ERCSC source at |b|<10 deg (dashed black line) and at |b|>30 deg (solid black line), compared to those of other wide area surveys ({{PlanckPapers|planck2011-1-10}}). Also shown are spectra of known sources of foreground emission as red lines. The ERCSC sensitivity is worse in the Galactic plane due to the strong contribution of ISM emission, especially at submillimeter wavelengths. At face value, the WMAP and Planck flux density limits appear to be comparable at the lowest frequencies, but the Planck ERCSC is much more complete as discussed in {{PlanckPapers|planck2011-1-10}}.
 +
 +
</div>
 
</div>
 
</div>
 +
 
</div>
 
</div>
  
== (2015) Second SZ Catalogue ==
+
<div class="toccolours" style="background-color: #FFDAB9" >
 +
<div class="toccolours" style="background-color: #FFDAB9" >
 +
 
 +
=== (2015) Bayesian Extraction and Estimation Package (BeeP) reprocessing of PCCS2+PCCS2E at 857 GHz ===
 +
 
 +
<span class="sans-serif">BeeP</span>’s catalogue was developed using the data and the methodology described in the companion paper {{PlanckPapers|planck2020-LV}}.<br />
 +
 
 +
Traits:<br />
 +
* It is a catalogue of compact objects.
 +
* It is the result of a ‘''non-blind''’ exercise where Planck’s PCCS2+2E catalogue positions at 857 GHz were used. It contains exactly the same number of rows as the original catalogue and no attempt of detecting new sources was made.
 +
* It is a parametric Bayesian multi-channel algorithm. The source parameter estimates are derived from the posterior distributions of a data model likelihood.
 +
* It employs Planck all-sky temperature maps at <math display="inline">353, 545, 857</math> GHz channels from the Planck 2015 release and the <math display="inline">3000</math> GHz IRIS map, a reprocessed IRAS map.<br />
  
==Planck Sunyaev-Zeldovich catalogue==
+
The catalogue product is made of three components:<br />
 +
* A table with source parameter estimates and uncertainty summary statistics: [http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST.NAME=COM_PCCS_BEEP_R2.00.fits COM_PCCS_BEEP_R2.00.fits].
 +
* A collection of Spectral Energy Density (SED) figures. <span>Not yet available</span>
 +
* A collection of figures with the parameter posterior distributions. <span>Not yet available</span>
  
The Planck SZ catalogue is a nearly full-sky list of SZ detections obtained from the Planck data. It is fully described in {{PlanckPapers|planck2013-p05a}}, {{PlanckPapers|planck2014-a36||Planck-2015-A36}}. The catalogue is derived from the HFI frequency channel maps after masking and filling the bright point sources (SNR >= 10) from the PCCS catalogues in those channels. Three detection pipelines were used to construct the catalogue, two implementations of the matched multi-filter (MMF) algorithm and PowellSnakes (PwS), a Bayesian algorithm. All three pipelines use a circularly symmetric pressure profile, the non-standard universal profile from {{BibCite|arnaud2010}}, in the detection.
+
==== Table of source parameter estimates. ====
 +
The table with the source parameters contains 48181 rows, as many as in Planck 857 GHz channel PCCS2 and PCCSE catalogues combined. Each row has 108 fields (columns). If a field value is ill defined or not available, then its value is set to largest negative value of the double type in the IEEE standard: <math display="inline">\approx -1.797693 \times 10^{305}</math>. The table of source parameter estimates (columns) is divided into 5 sections:
  
* MMF1 and MMF3 are full-sky implementations of the MMF algorithm. The matched filter optimizes the cluster detection using a linear combination of maps, which requires an estimate of the statistics of the contamination. It uses spatial filtering to suppress both foregrounds and noise, making use of the prior knowledge of the cluster pressure profile and thermal SZ spectrum.
+
'''General'''<br />
 +
Contains fields that are independent of the physical model used to described the source, or background, emission. It holds the reliability assessment fields (see section A.1.2 and 6.2.3 of the companion paper).
 +
* <span class="sans-serif">BeeP</span> position columns were obtained using the MBB SED model.
 +
* If a likelihood maximum was not found, then <span class="sans-serif">MAXFOUND</span> is set to <math display="inline">0</math>, otherwise is <math display="inline">1</math>.
 +
* <span class="sans-serif">NPSNR</span> is <span class="sans-serif">BeeP</span>’s proxy for the Signal-to-Noise Ratio (SNR) in a statistical sense (detection significance) like ‘''how many sigmas this detection is''’. It cannot be read as the flux density divided by the flux density error bar. A Gaussian homogeneous background is assumed.
 +
* <span class="sans-serif">SRCSIG</span> is <span class="sans-serif">BeeP</span>’s detection significance. It is derived from <span class="sans-serif">NPSNR</span> with a non-Gaussianity correction based on <span class="sans-serif">RELTH</span> applied.
 +
* <span class="sans-serif">EST_QUALITY</span> indicates the expected quality of the source parameter estimates. The highest quality is 5. Then, if a source does not meet the conditions in table, the correspondent penalty is subtracted.
 +
* The field &quot;<span class="sans-serif">NAME</span>&quot; has the exact same source name as in Planck’s 857 GHz channel PCCS2+2E and should be used to reference any source in this catalogue.<br />
  
* PwS differs from the MMF methods. It is a fast Bayesian multi-frequency detection algorithm designed to identify and characterize compact objects in a diffuse background. The detection process is based on a statistical model comparison test. Detections may be accepted or rejected based on a generalized likelihood ratio test or in full Bayesian mode. These two modes allow quantities measured by PwS to be consistently compared with those of the MMF algorithms.
+
'''Thermal sub-catalogue''' (see section 6.2.1 of the companion paper)
 +
* The sources Spectral Energy Density (SED) was modeled after a Modified Black-Body (MBB) with <math display="inline">3</math> parameters: Temperature (<math display="inline">T</math>), Spectral index (<math display="inline">\beta</math>) and Flux density at a reference channel (<math display="inline">S_{\textsf{ref}}</math>).
 +
* The MBB parameters, together with the source radius and position, make the likelihood parameter set.
 +
* Colour correction coefficients were included in the likelihood.<br />
  
A union catalogue is constructed from the detections by all three pipelines. A mask to remove Galactic dust, nearby galaxies and point sources (leaving 83.7% of the sky) is applied a posteriori to avoid detections in areas where foregrounds are likely to cause spurious detections. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in section 4 of {{PlanckPapers|planck2014-a36}}.
+
'''‘Free’ amplitude at each channel sub-catalogue'''<br />
 +
Contains a sub-catalogue of independent flux density measurements (not dependent on a SED physical model) at each of the utilized channels (see section A.1.2 of the companion paper).
 +
* Main goal was to allow a direct comparison with catalogues obtained at each channel independently. No source SED model was used
 +
* The likelihood parameter set was the flux density at each channel plus source position and radius. The best fit flux densities at each channel and error bars were computed from the flux density posterior distributions. With the <math display="inline">4</math> pairs {<math display="inline">S_\nu,\sigma_{S_\nu}</math>}, a MBB curve was fitted using a Gaussian likelihood.
 +
* During the estimation of the initial flux densities at each channel, colour-correction was not used. However when later fitting the MBB parameters colour-correction coefficients were included.<br />
  
The size of a detection is given in terms of the scale size, &theta;<sub>s</sub>, and the flux is given in terms of the total integrated Comptonization parameter, Y = Y<sub>5R500</sub>. The parameters of the GNFW profile assumed by the detection pipelines are written in the headers of the catalogues. For the sake of convenience, the conversion factor from Y to Y<sub>500</sub> is also provided in the header.
+
'''Background thermal properties catalogue''' (see section 6.3 of the companion paper)
 +
* Main goal was to provide a measurement of the contrast between the thermal properties of the background and the source.
 +
* The average brightness around each PCCS2+2E position (<math display="inline">32\times32</math> pixels; <math display="inline">\approx 55'\times55'</math>) and its standard deviation were computed for each individual channel. The map offset levels had previously been corrected.
 +
* With the <math display="inline">4</math> pairs {<math display="inline">B_\nu,\sigma_{B_\nu}</math>}, a MBB curve with colour correction, was fitted using a Gaussian likelihood.
 +
* The Signal-to-Noise Ratio Raw (SNRr) was computed by dividing the source average brightness at each channel by the background brightness standard deviation. The source average brightness was estimated by dividing the MBB flux density estimate at that frequency by the total solid angle resulting from the convolution of the beam, at that channel, and the intrinsic source extension.<br />
  
The union catalogue contains the coordinates of a detection, its signal-to-noise ratio, an estimate of Y and its uncertainty, together with a summary of the validation information, including external identification of a cluster and its redshift if they are available. The pipeline from which the information is taken is called the reference pipeline. If more than one pipeline makes the same detection, the information is taken from the the pipeline that makes the most significant detection. Where the redshift is known, we provide the SZ mass for the reference pipeline.
+
'''Source ID and association fields'''<br />
 +
Adds a <span class="sans-serif">BeeP</span> source index. Contains the separation between <span class="sans-serif">BeeP</span>’s catalogue positions and those in Planck’s 857 PCCS2+2E and flags potential multiple detections of the same physical object. The field <span class="sans-serif">BEEPSRCASS</span> contains either the same index as that of the source or the index of a close neighbour if it is inside a radius of <math display="inline">8'</math> and its <span class="sans-serif">NPSNR</span> is higher.<br />
  
The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue. The full information on the degeneracy between &theta;<sub>s</sub> and Y is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. It is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters. The individual catalogues also contain Planck measurements of the SZ mass observable, M<sub>SZ</sub>, as calculated using a Y-M scaling relation and an assumed redshift to break the Y-&theta;<sub>s</sub> degeneracy. These are provided for each detection as functions of assumed redshift, in the range 0.01 < z < 1, along with the upper and lower 68% confidence limits.
+
[[File:fullSkyTempMol_3_01.png|800px|center]]
 +
<div style='text-align: center;'>Sky distribution of the sources Modified Black Body (MBB) model temperatures in the catalogue (colour scale in thermodynamic kelvins). ''Bottom:'' Spectral indices of the MBB model.</div>
 +
<br>
 +
[[File:fullSkyBetaMol_3_01.png|800px|center ]]
 +
<div style='text-align: center;'>Spectral indices of the MBB model.</div>
 +
<br>
 +
[[File:fullSkySrcsigMol_3_01.png|800px|center|none]]
 +
<div style='text-align: center;'>Sky distribution of the sources <math display="inline">\log_{10}</math><span class="sans-serif">SRCSIG</span> statistic (colour scale). Sources inside the IRIS mask were not included. Sources inside the IRIS mask were not included.</div>
  
The selection function of the union catalogue, the intersection catalogue and the individual catalogues are provided in additional files. The selection function files contains the probability of detection for clusters of given intrinsic parameters &theta;<sub>500</sub> and Y<sub>500</sub>.  The file includes the definition of the survey area in the form of a HEALPix mask, and is evaluated for a range of signal-to-noise thresholds between 4.5 and 10.
+
<div id="table:CorrectionFlux">
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
 +
|+ <small>'''Flux density corrections'''</small>
 +
|- bgcolor="ffdead" 
 +
|+  Recommended values for the flux density error bar correction <math display="inline">c</math> (mJy)
 +
! Set
 +
! location
 +
!align="right"| c (mJy)
 +
|-
 +
| PCCS2
 +
| Planck’s PCCS2 region
 +
|align="right"| 57
 +
|-
 +
| PCCS2E <math display="inline">\wedge \, |glat| > 10^\circ</math>
 +
| Planck’s PCCS2E region and <math display="inline">|glat| > 10^\circ</math>
 +
|align="right"| 168
 +
|-
 +
| <math display="inline">|glat| \leq 10^\circ</math>
 +
| <math display="inline">|glat| \leq 10^\circ</math>
 +
|align="right"| 820
 +
|}
 +
</div>
  
=== Union catalogue ===
+
==== Description of the catalogue columns. ====
  
The union catalogue is contained in  ''{{PLASingleFile|fileType=cat | name=HFI_PCCS_SZ-union_R2.08.fits | link=HFI_PCCS_SZ-union_R2.08.fits}}''.
+
<div id="table:catalogueFields">
  
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
{| border="1" cellpadding="3" cellspacing="0" align="center" width=750px
|- bgcolor="ffdead"  
+
|+ <small>'''BeeP Columns'''</small>
!colspan="4" | Extension 0: Primary header, no data
+
|- bgcolor="ffdead"
|- bgcolor="ffdead" 
+
|+ Description of the fields in the table component of the catalogue.
! FITS Keyword || Data Type || Units || Description
+
! Field name
|-  
+
! Type
|INSTRUME || String || || Instrument (HFI)
+
! Size
|-
+
! Units
| VERSION || String || || Version of catalogue
+
! Description
|-
+
! Comments
| DATE || String || || Date file created: yyyy-mm-dd
+
|-
|-  
+
|
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
+
|
|-
+
|
| TELESCOP || String || || Telescope (PLANCK)
+
|
|-
+
|
| CREATOR || String || || Pipeline version
+
|
|-
+
|-
| DATE-OBS || String || || Start date of the survey: yyyy-mm-dd
+
| NAME
|-
+
| char
| DATE-END || String || || End date of the survey: yyyy-mm-dd
+
| 20
|-
+
|
| PROCVER || String || || Data version
+
| PCCS2+2E Source name
|-
+
|
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter
+
|-
|-  
+
| PCCS2RA
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter
+
| double
|-
+
| 8
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter
+
| Degrees
|-
+
| J2000 RA in PCCS2+2E
| PP_C500 || Real*4 || || GNFW pressure profile c<sub>500</sub> parameter
+
|
|-  
+
|-
| PP_Y2YFH || Real*4 || || Conversion factor from Y to Y<sub>500</sub>
+
| PCCS2DEC
 
+
| double
|- bgcolor="ffdead" 
+
| 8
!colspan="4" | Extension 1: BINTABLE, EXTNAME = PSZ2_UNION
+
| Degrees
|- bgcolor="ffdead"  
+
| J2000 DEC in PCCS2+2E
! Column Name || Data Type || Units || Description
+
|
 +
|-
 +
| BEEPGLON
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic longitude estimated by <span class="sans-serif">BeeP</span>
 +
| Average of 95% highest likelihood samples
 
|-
 
|-
|INDEX || Int*4 || || Index used to cross-reference with individual catalogues
+
| BEEPGLAT
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic latitude estimated by <span class="sans-serif">BeeP</span>
 +
| Average of 95% highest likelihood samples
 
|-
 
|-
|NAME || String || || Source name (see note 1)
+
| BEEPRA
 +
| double
 +
| 8
 +
| Degrees
 +
| J2000 RA estimated by <span class="sans-serif">BeeP</span>
 +
| Computed from BEEPGLON and BEEPGLAT
 
|-
 
|-
|GLON || Real*8 || degrees || Galactic longitude
+
| BEEPDEC
 +
| double
 +
| 8
 +
| Degrees
 +
| J2000 DEC estimated by <span class="sans-serif">BeeP</span>
 +
| Computed from BEEPGLON and BEEPGLAT
 
|-
 
|-
|GLAT || Real*8 || degrees || Galactic latitude
+
| PCCS2GLON
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic longitude in PCCS2+2E
 +
|
 
|-
 
|-
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON,GLAT)
+
| PCCS2GLAT
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic latitude in PCCS2+2E
 +
|
 
|-
 
|-
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON,GLAT)
+
| NPSNR
 +
| double
 +
| 8
 +
| Unitless
 +
| Source detection significance uncorrected
 +
| Background assumed Gaussian (see section A.1.2 of PIP LV)
 
|-
 
|-
|POS_ERR || Real*4 || arcmin || Position uncertainty (95% confidence interval)
+
| RELTH
 +
| double
 +
| 8
 +
| Unitless
 +
| 95% percentile of the likelihood background statistic
 +
| Used to correct for the background non-gaussinaty (see section A.1.2 of PIP LV)
 
|-
 
|-
|SNR || Real*4 || || Signal-to-noise ratio of the detection
+
| ACCEPT
 +
| double
 +
| 8
 +
| Unitless
 +
| Sample acceptance ratio of the MCMC chain
 +
| If low (<math display="inline">< 10\%</math>) might be indicative of unreliable estimates
 
|-
 
|-
|PIPELINE || Int*4 || || Pipeline from which information is taken (reference pipeline): 1= MMF1; 2 = MMF3; 3 = PwS
+
| INPIX
 +
| double
 +
| 8
 +
| Unitless
 +
| Percentage of pixels in-painted in the field
 +
| Very high numbers might indicate unreliable estimates
 
|-
 
|-
|PIPE_DET || Int*4 || || Pipelines which detect this object (see note 2)
+
| MAXFOUND
 +
| double
 +
| 8
 +
| 0 / 1
 +
| If a likelihood maximum was found within a radius of 3 pixels from the original location
 +
| If a maximum is not found this is an indication that <span class="sans-serif">BeeP</span>’s position might not be a compact source
 
|-
 
|-
|PCCS2 || Bool || || Indicates whether detection matches with any in PCCS2 catalogues
+
| SRCSIG
 +
| double
 +
| 8
 +
| Unitless
 +
| Source detection significance
 +
| Corrected for background non-gaussianity (see section A.1.2 of PIP LV)
 
|-
 
|-
|PSZ || Int*4 || || Index of matching detection in PSZ1, or -1 if new detection
+
| EST_QUALITY
 +
| double
 +
| 8
 +
| Unitless
 +
| Source parameter estimates quality flag [5 - 0].
 +
| Quality starts at 5 and the penalties in table [[#table:QualityPenalties|[table:QualityPenalties]]] are applied. Higher values mean higher quality.
 
|-
 
|-
|IR_FLAG || Int*1 || || Flag denoting heavy infrared contamination
+
| POSERR
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source position uncertainty. Radius of uncertainty around source best fit position
 +
| <math display="inline">\sigma; \sigma</math> is the Rayleigh distribution scale factor (see section 6.2.3 of PIP LV)
 
|-
 
|-
|Q_NEURAL || Real*4 || || Neural network quality flag (see note 3)
+
|
|-
+
|
|Y5R500 || Real*4 || 10<sup>-3</sup>&nbsp;arcmin<sup>2</sup> || Mean marginal Y<sub>5R500</sub> as determined by reference pipeline
+
|
|-
+
|
|Y5R500_ERR || Real*4 || 10<sup>-3</sup>&nbsp;arcmin<sup>2</sup> || Uncertainty on Y<sub>5R500</sub> as determined by reference pipeline
+
|
 +
|
 +
|-
 +
| BETA
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index (MBB); Modified Black Body
 +
| Posterior median value
 +
|-
 +
| BETAL2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| BETAH2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| TEMP
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature (MBB); Modified Black Body
 +
| Posterior median value
 +
|-
 +
| TL2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| TH2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| EXT
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension before beam convolution
 +
| This radius is constant across all channels. The extension parameter was obtained with ''likelihood'' beam widths (see section A.2.3 of PIP LV); Posterior median value
 
|-
 
|-
|VALIDATION || Int*4 || || External validation status (see note 4)
+
| EXTL2SB
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|REDSHIFT_ID || String || || External identifier of cluster associated with redshift measurement (see note 5)
+
| EXTH2SB
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|REDSHIFT || Real*4 || || Redshift of cluster (see note 5)
+
| R
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source radius before beam convolution
 +
| This radius is constant across all channels. The parameter was computed from EXT and gives an indication of whether the source is extended (see section 6.2.2 of PIP LV)
 
|-
 
|-
|MSZ || Real*4 || 10<sup>14</sup>&nbsp;M<sub>sol</sub> || SZ mass proxy (see note 6)
+
| SREF
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency
 +
| Reference frequency is <math display="inline">857</math> GHz; Posterior median value
 
|-
 
|-
|MSZ_ERR_UP || Real*4 || 10<sup>14</sup>&nbsp;M<sub>sol</sub> || Upper bound of 68% SZ mass proxy confidence interval (see note 6)
+
| SREFL2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|MSZ_ERR_LOW || Real*4 || 10<sup>14</sup>&nbsp;M<sub>sol</sub> || Lower bound of 68% SZ mass proxy confidence interval (see note 6)
+
| SREFH2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|MCXC || String || || Identifier of X-ray counterpart in the MCXC, if one is present
+
| S3000
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz; MBB predicted at <math display="inline">3000</math> GHz
 +
| Posterior median value
 
|-
 
|-
|REDMAPPER || String || || Identifier of optical counterpart in the RedMAPPer catalogue, if one is present
+
| S3000L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|ACT || String || || Identifier of SZ counterpart in the ACT catalogues, if one is present
+
| S3000H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|SPT || String || || Identifier of SZ counterpart in the SPT catalogues, if one is present
+
| S857
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz; MBB predicted at <math display="inline">857</math> GHz
 +
| Posterior median value
 
|-
 
|-
|WISE_FLAG || Int*4 || || Confirmation flag of WISE overdensity (see note 7)
+
| S857L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|AMI_EVIDENCE || Real*4 || || Bayesian evidence for AMI counterpart detection (see note 8)
+
| S857H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|COSMO || Bool || || Indicates whether detection is in the cosmology sample
+
| S545
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">545</math> GHz; MBB predicted at <math display="inline">545</math> GHz
 +
| Posterior median value
 
|-
 
|-
|COMMENT|| String || || Comments on this detection
+
| S545L2SB
|}
+
| double
 
+
| 8
'''Notes'''
+
| Jy
# Format is <tt>PSZ2 Glll.ll&plusmn;bb.b</tt> where (l,b) are the Galactic coordinates truncated to 2 decimal places.
+
| Flux density at <math display="inline">545</math> GHz uncertainty lower boundary
# The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
+
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
# Neural network quality flag is 1-Q<sub>bad</sub>, following the definitions in Aghanim et al. 2014.
+
|-
# Summary of the external validation, encoding the most robust external identification: 10 = ENO follow-up; 11 = RTT follow-up; 12 = PanSTARRs; 13 = RedMAPPer non-blind; 14 = SDSS high-z; 15 = AMI; 16 = WISE; 20 = legacy identification from the PSZ1; 21 = MCXC; 22 = SPT; 23 = ACT; 24 = RedMAPPer; 25 = legacy identification from PSZ1 with externally updated redshift; 30 = NED; -1 = no known external counterpart.
+
| S545H2SB
# Redshift source is the most robust external identification listed in the VALIDATION field.
+
| double
# M<sub>SZ</sub> is the hydrostatic mass assuming the best-fit Y-M scaling relation of Arnaud 2010 as a prior. The uncertainties are statistical and based on the Planck measurement uncertainties only.  Not included in the uncertainties are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.
+
| 8
# Assigned by visual inspection: 0 = no significant galaxy overdensity; 1 = possible galaxy overdensity; 2 = probable galaxy overdensity; 3 = significant galaxy overdensity detected; -1 = possible galaxy overdensity (affected by bright star artefacts); -2 = no significant galaxy overdensity (affected by bright star artefacts); -3 = no assessment possible (affected by bright star artefacts); -10 = not analysed.
+
| Jy
# Defined in the paper.
+
| Flux density at <math display="inline">545</math> GHz uncertainty upper boundary
 
+
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
=== Individual catalogues ===
+
|-
 
+
| S353
The individual pipeline catalogues are contained in the FITS files
+
| double
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-MMF1_R2.08.fits  | link=HFI_PCCS_SZ-MMF1_R2.08.fits }} (MMF1 pipeline)
+
| 8
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-MMF3_R2.08.fits  | link=HFI_PCCS_SZ-MMF3_R2.08.fits }} (MMF3 pipeline)
+
| Jy
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-PwS_R2.08.fits  | link=HFI_PCCS_SZ-PwS_R2.08.fits }} (PowellSnakes pipeline)
+
| Flux density at <math display="inline">353</math> GHz; MBB predicted at <math display="inline">353</math> GHz
 
+
| Posterior median value
Their structure is as follows:
+
|-
 
+
| S353L2SB
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
| double
|+ '''FITS file structure'''
+
| 8
|- bgcolor="ffdead" 
+
| Jy
! colspan="4" | Extension 0: Primary header, no data
+
| Flux density at <math display="inline">353</math> GHz uncertainty lower boundary
|- bgcolor="ffdead" 
+
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
! FITS Keyword || Data Type || Units || Description
+
|-
|-  
+
| S353H2SB
|INSTRUME || String || || Instrument (HFI)
+
| double
|-  
+
| 8
| VERSION || String || || Version of catalogue
+
| Jy
|-  
+
| Flux density at <math display="inline">353</math> GHz uncertainty upper boundary
| DATE || String || || Date file created: yyyy-mm-dd
+
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
|-
+
|-
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
+
| BETAMLIKE
|-  
+
| double
| TELESCOP || String || || Telescope (PLANCK)
+
| 8
|-  
+
| Unitless
| CREATOR || String || || Pipeline version
+
| Source spectral index (MBB); Modified Black Body
|-  
+
| Maximum likelihood estimate
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd
+
|-
|-  
+
| TEMPMLIKE
| DATE-END || String || || End time of the survey: yyyy-mm-dd
+
| double
|-  
+
| 8
| PROCVER || String || || Data version
+
| Kelvin
|-  
+
| Source temperature (MBB); Modified Black Body
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter
+
| Maximum likelihood estimate
|-  
+
|-
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter
+
| SREFMLIKE
|-  
+
| double
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter
+
| 8
|-  
+
| Jy
| PP_C500 || Real*4 || || GNFW pressure profile c<sub>500</sub> parameter
+
| Flux density at reference frequency; Modified Black Body
|-  
+
| Maximum likelihood estimate
| PP_Y2YFH || Real*4 || || Conversion factor from Y to Y<sub>500</sub>
+
|-
 
+
|
|- bgcolor="ffdead"  
+
|
! colspan="4" | Extension 1: BINTABLE, EXTNAME = PSZ2_INDIVIDUAL
+
|
|- bgcolor="ffdead"  
+
|
! Column Name || Data Type || Units || Description
+
|
 +
|
 +
|-
 +
| FREEGLON
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic longitude (FREE channel amplitudes)
 +
| Average of 95% highest likelihood samples
 +
|-
 +
| FREEGLAT
 +
| double
 +
| 8
 +
| Degrees
 +
| Galactic latitude (FREE channel amplitudes)
 +
| Average of 95% highest likelihood samples
 +
|-
 +
| FREES3000
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz; Estimated directly at the IRIS map
 +
| Posterior median value
 +
|-
 +
| FREES3000L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| FREES3000H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">3000</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| FREES857
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz; Estimated directly at Planck’s <math display="inline">857</math> GHz map
 +
| Posterior median value
 +
|-
 +
| FREES857L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| FREES857H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">857</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| FREES545
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">545</math> GHz; Estimated directly at Planck’s <math display="inline">545</math> GHz map
 +
| Posterior median value
 +
|-
 +
| FREES545L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">545</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| FREES545H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">545</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| FREES353
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">353</math> GHz; Estimated directly at Planck’s <math display="inline">353</math> GHz map
 +
| Posterior median value
 +
|-
 +
| FREES353L2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">353</math> GHz uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| FREES353H2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at <math display="inline">353</math> GHz uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| FREEEXT
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension before beam convolution
 +
| This radius is constant across all channels. The extension parameter was obtained with ''likelihood'' beam widths (see section A.2.3 of PIP LV); Posterior median value
 +
|-
 +
| FREEEXTL2SB
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| FREEEXTH2SB
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source extension uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|INDEX || Int*4 || || Index from union catalogue
+
| FREER
 +
| double
 +
| 8
 +
| Arcmin
 +
| Source radius before beam convolution
 +
| This radius is constant across all channels. The parameter was computed from FREEEXT and gives an indication of whether the source is extended (see section 6.2.2 of PIP LV)
 
|-
 
|-
|NAME || String || || Source name (see note 1)
+
| FREEBETA
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index; Computed from the flux densities estimated at each channel<ref>A Gaussian likelihood was created using the <math display="inline">4</math> flux densities and error bars measured at each channel.</ref>
 +
| Posterior median value
 
|-
 
|-
|GLON || Real*8 || degrees || Galactic longitude
+
| FREEBETAL2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|GLAT || Real*8 || degrees || Galactic latitude
+
| FREEBETAH2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON, GLAT)
+
| FREETEMP
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature; Computed from the flux densities estimated at each channel
 +
| Posterior median value
 
|-
 
|-
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON, GLAT)
+
| FREETL2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|POS_ERR || Real*4 || arcmin || Position uncertainty (95% confidence interval)
+
| FREETH2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Source temperature uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|SNR || Real*4 || || Signal-to-noise ratio of detection
+
| FREESREF
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency; Estimated from the likelihood
 +
| Reference frequency is <math display="inline">857</math> GHz; Posterior median value
 
|-
 
|-
|TS_MIN || Real*4 || || Minimum value of &theta;<sub>s</sub> in grid in second extension HDU (see note 2)
+
| FREESREFL2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 
|-
 
|-
|TS_MAX || Real*4 || || Maximum value of &theta;<sub>s</sub> in grid in second extension HDU (see note 2)
+
| FREESREFH2SB
 +
| double
 +
| 8
 +
| Jy
 +
| Flux density at the reference frequency uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 
|-
 
|-
|Y_MIN || Real*4 || || Minimum value of Y in grid in second extension HDU (see note 2)
+
| FREEBETAMLIKE
 +
| double
 +
| 8
 +
| Unitless
 +
| Source spectral index; Computed from the flux densities estimated at each channel
 +
| Maximum likelihood estimate
 
|-
 
|-
|Y_MAX || Real*4 || || Maximum value of Y in grid in second extension HDU (see note 2)
+
| FREETEMPMLIKE
|- bgcolor="ffdead" 
+
| double
! Keyword || Data Type || Value || Description
+
| 8
|-  
+
| Kelvin
| PIPELINE || String || || Name of detection pipeline
+
| Source temperature; Computed from the flux densities estimated at each channel
 
+
| Maximum likelihood estimate
|- bgcolor="ffdead"  
+
|-
! colspan="4" | Extension 2: IMAGE, EXTNAME = PSZ2_PROBABILITY (see note 2)
+
| FREESREFMLIKE
|- bgcolor="ffdead" 
+
| double
! Keyword || Data Type || Value || Description
+
| 8
|-  
+
| Jy
| NAXIS1 || Integer || 256 || Dimension 1
+
| Flux density at the reference frequency; Computed from the flux densities estimated at each channel
|-  
+
| Maximum likelihood estimate
| NAXIS2 || Integer || 256 || Dimension 2
+
|-
|-  
+
| FREESCHI2
| NAXIS3 || Integer || N<sub>det</sub> || Dimension 3 = Number of detections
+
| double
|- bgcolor="ffdead"  
+
| 8
! Keyword || Data Type || Value || Description
+
| Unitless
|-  
+
| <math display="inline">\chi^2</math> of the maximum likelihood estimates
| PIPELINE || String || || Name of detection pipeline
+
| Reduced <math display="inline">\chi^2</math>
 
+
|-
|- bgcolor="ffdead"
+
|
! colspan="4" | Extension 3: IMAGE, EXTNAME = PSZ2_MSZ_ARRAY (see note 3)
+
|
|- bgcolor="ffdead" 
+
|
! Keyword || Data Type || Value || Description
+
|
|-  
+
|
| NAXIS1 || Integer || 100 || Dimension 1
+
|
|-  
+
|-
| NAXIS2 || Integer || 4 || Dimension 2
+
| BKGB3000
|-  
+
| double
| NAXIS3 || Integer || N<sub>det</sub> || Dimension 3 = Number of detections
+
| 8
 
+
| <span>Jy/pixel</span><ref>Pixel <math display="inline">\approx 2.95</math> arcmin<math display="inline">^2</math></ref>
|- bgcolor="ffdead" 
+
| Background brightness at <math display="inline">3000</math> GHz
! Keyword || Data Type || Value || Description
+
| Average over the patch (<math display="inline">32\times32</math> pixels)
|-  
+
|-
| PIPELINE || String || || Name of detection pipeline
+
| BKGB30001S
|}
+
| double
 
+
| 8
 
+
| <span>Jy/pixel</span>
'''Notes'''
+
| Background brightness standard deviation at <math display="inline">3000</math> GHz
# Format <tt>PSZ2 Glll.ll&plusmn;bb.bb</tt> where (l, b) are the Galactic coordinates truncated to 2 decimal places.
+
| Standard deviation over the patch (<math display="inline">32\times32</math> pixels)
# Extension 2 contains a three-dimensional image with the two-dimensional probability distribution in &theta;<sub>s</sub> and Y for each detection. The probability distributions are evaluated on a 256 &times; 256 linear grid between the limits specified in extension 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 &times; 256 &times; N<sub>det</sub>, where N<sub>det</sub> is the number of detections.  The first dimension is &theta;<sub>s</sub> and the second dimension is Y.
+
|-
# Extension 3 contains a three-dimensional image with the information on the M<sub>SZ</sub> observable per cluster as a function of assumed redshift. The image dimensions are 100 &times; 4 &times; N<sub>det</sub>, where N<sub>det</sub> is the number of detections. The first dimension is the assumed redshift. The second dimension has size 4: the first element is the assumed redshift value corresponding to the M<sub>SZ</sub> values. The second element is the M<sub>SZ</sub> lower 68% confidence bound, the third element is the M<sub>SZ</sub> estimate and the fourth element is the M<sub>SZ</sub> upper 68% confidence bound, all in units of 10<sup>14</sup>&nbsp;M<sub>sol</sub>. These uncertainties are based on the Planck measurement uncertainties only. Not included in the error estimates are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.
+
| BKGB857
 
+
| double
=== Selection function ===
+
| 8
 
+
| <span>Jy/pixel</span>
The selection function for the union, intersection and individual pipeline catalogues are contained in the FITS files:
+
| Background brightness at <math display="inline">857</math> GHz
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-union-survey_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-union-survey_R2.08.fits }} (union catalogue, survey mask)
+
| Average over the patch (<math display="inline">32\times32</math> pixels)
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-union-cosmolog_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-union-cosmology_R2.08.fits }} (union catalogue, cosmology mask)
+
|-
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-intersec-survey_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-intersec-survey_R2.08.fits }} (intersection catalogue, survey mask)
+
| BKGB8571S
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-intersec-cosmolog_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-intersec-cosmolog_R2.08.fits }} (intersection catalogue, cosmology mask)
+
| double
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-MMF1-survey_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-MMF1-survey_R2.08.fits }} (MMF1 catalogue, survey mask)
+
| 8
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-MMF1-cosmolog_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-MMF1-cosmolog_R2.08.fits }} (MMF1 catalogue, cosmology mask)
+
| <span>Jy/pixel</span>
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-MMF3-survey_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-MMF3-survey_R2.08.fits }} (MMF3 catalogue, survey mask)
+
| Background brightness standard deviation at <math display="inline">857</math> GHz
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-MMF3-cosmolog_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-MMF3-cosmolog_R2.08.fits }} (MMF3 catalogue, cosmology mask)
+
| Standard deviation over the patch (<math display="inline">32\times32</math> pixels)
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-PwS-survey_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-PwS-survey_R2.08.fits }} (PowellSnakes catalogue, survey mask)
+
|-
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-selfunc-PwS-cosmolog_R2.08.fits  | link=HFI_PCCS_SZ-selfunc-PwS-cosmolog_R2.08.fits }} (PowellSnakes catalogue, cosmology mask)
+
| BKGB545
 
+
| double
Their structure is as follows:
+
| 8
 
+
| <span>Jy/pixel</span>
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
| Background brightness at <math display="inline">545</math> GHz
|+ '''FITS file structure'''
+
| Average over the patch (<math display="inline">32\times32</math> pixels)
|- bgcolor="ffdead" 
+
|-
! colspan="4" | Extension 0: Primary header, no data
+
| BKGB5451S
|- bgcolor="ffdead"  
+
| double
! FITS Keyword || Data Type || Units || Description
+
| 8
|-  
+
| <span>Jy/pixel</span>
|INSTRUME || String || || Instrument (HFI)
+
| Background brightness standard deviation at <math display="inline">545</math> GHz
|-  
+
| Standard deviation over the patch (<math display="inline">32\times32</math> pixels)
| VERSION || String || || Version of catalogue
+
|-
|-  
+
| BKGB353
| DATE || String || || Date file created: yyyy-mm-dd
+
| double
|-
+
| 8
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
+
| <span>Jy/pixel</span>
|-  
+
| Background brightness at <math display="inline">353</math> GHz
| TELESCOP || String || || Telescope (PLANCK)
+
| Average over the patch (<math display="inline">32\times32</math> pixels)
|-  
+
|-
| CREATOR || String || || Pipeline version
+
| BKGB3531S
|-  
+
| double
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd
+
| 8
|-
+
| <span>Jy/pixel</span>
| DATE-END || String || || End time of the survey: yyyy-mm-dd
+
| Background brightness standard deviation at <math display="inline">353</math> GHz
|-  
+
| Standard deviation over the patch (<math display="inline">32\times32</math> pixels)
| PROCVER || String || || Data version
+
|-
|-  
+
| BKGBETA
| JOIN || String || || Join type (UNION, INTERSEC, MMF1, MMF3, PwS)
+
| double
|-  
+
| 8
| MASK || String || || Mask name (SURVEY, COSMOLOG)
+
| Unitless
 +
| Background spectral index (MBB); Computed from the background brightness estimated at each channel<ref>A Gaussian likelihood was created using the <math display="inline">4</math> background brightness and error bars measured at each channel.</ref>
 +
| Posterior median value
 +
|-
 +
| BKGBETAL2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Background spectral index uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| BKGBETAH2SB
 +
| double
 +
| 8
 +
| Unitless
 +
| Background spectral index uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| BKGTEMP
 +
| double
 +
| 8
 +
| Kelvin
 +
| Background temperature (MBB)
 +
| Posterior median value
 +
|-
 +
| BKGTL2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Background temperature uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| BKGTH2SB
 +
| double
 +
| 8
 +
| Kelvin
 +
| Background temperature uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| BKGBREF
 +
| double
 +
| 8
 +
| <span>Jy/pixel</span>
 +
| Background brightness at the reference frequency; Estimated from the likelihood
 +
| Reference frequency is <math display="inline">857</math> GHz; Posterior median value
 +
|-
 +
| BKGBREFL2SB
 +
| double
 +
| 8
 +
| <span>Jy/pixel</span>
 +
| Background brightness at the reference frequency uncertainty lower boundary
 +
| Lower boundary is the marginal posterior <math display="inline">2.275\%</math> percentile (<math display="inline">-2 \sigma</math>)
 +
|-
 +
| BKGBREFH2SB
 +
| double
 +
| 8
 +
| <span>Jy/pixel</span>
 +
| Background brightness at the reference frequency uncertainty upper boundary
 +
| Upper boundary is the marginal posterior <math display="inline">97.725\%</math> percentile (<math display="inline">+2 \sigma</math>)
 +
|-
 +
| BKGBETAMLIKE
 +
| double
 +
| 8
 +
| Unitless
 +
| Background spectral index (MBB)
 +
| Maximum likelihood estimate
 +
|-
 +
| BKGTEMPMLIKE
 +
| double
 +
| 8
 +
| Kelvin
 +
| Background temperature (MBB)
 +
| Maximum likelihood estimate
 +
|-
 +
| BKGBREFMLIKE
 +
| double
 +
| 8
 +
| Jy
 +
| Background brightness at the reference frequency
 +
| Maximum likelihood estimate
 +
|-
 +
| BKGCHI2
 +
| double
 +
| 8
 +
| Unitless
 +
| <math display="inline">\chi^2</math> of the maximum likelihood estimates
 +
| Reduced <math display="inline">\chi^2</math>
 +
|-
 +
| SNRR3000
 +
| double
 +
| 8
 +
| Unitless
 +
| Signal to Noise Ratio Raw (SNRr) at <math display="inline">3000</math> GHz
 +
| Source average brightness divided the background standard deviation brightness
 +
|-
 +
| SNRR30001S
 +
| double
 +
| 8
 +
| Unitless
 +
| 1 <math display="inline">\sigma</math> error bar of the SNRr at <math display="inline">3000</math> GHz
 +
| Source brightness error bar divided the background standard deviation brightness
 +
|-
 +
| SNRR857
 +
| double
 +
| 8
 +
| Unitless
 +
| Signal to Noise Ratio Raw at <math display="inline">857</math> GHz
 +
| Source average brightness divided the background standard deviation brightness
 +
|-
 +
| SNRR8571S
 +
| double
 +
| 8
 +
| Unitless
 +
| 1 <math display="inline">\sigma</math> error bar of the SNRr at <math display="inline">857</math> GHz
 +
| Source brightness error bar divided the background standard deviation brightness
 +
|-
 +
| SNRR545
 +
| double
 +
| 8
 +
| Unitless
 +
| Signal to Noise Ratio Raw at <math display="inline">545</math> GHz
 +
| Source average brightness divided the background standard deviation brightness
 +
|-
 +
| SNRR5451S
 +
| double
 +
| 8
 +
| Unitless
 +
| 1 <math display="inline">\sigma</math> error bar of the SNRr at <math display="inline">545</math> GHz
 +
| Source brightness error bar divided the background standard deviation brightness
 +
|-
 +
| SNRR353
 +
| double
 +
| 8
 +
| Unitless
 +
| Signal to Noise Ratio Raw at <math display="inline">353</math> GHz
 +
| Source average brightness divided the background standard deviation brightness
 +
|-
 +
| SNRR3531S
 +
| double
 +
| 8
 +
| Unitless
 +
| 1 <math display="inline">\sigma</math> error bar of the SNRr at <math display="inline">353</math> GHz
 +
| Source brightness error bar divided the background standard deviation brightness
 +
|-
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| SRCINDEX
 +
| double
 +
| 8
 +
| Unitless
 +
| Source index
 +
|
 +
|-
 +
| SRCSEP
 +
| double
 +
| 8
 +
| Arcmin
 +
| Separation between <span class="sans-serif">BeeP</span>’s catalogue positions and PCCS2+2E’s
 +
| BEEPGLON and BEEPGLAT used
 +
|-
 +
| BEEPSRCASS
 +
| double
 +
| 8
 +
| Unitless
 +
| Index of associated source
 +
| A source can be associated with another one if there is a source within a <math display="inline">8'</math> radius with higher <span class="sans-serif">NPSNR</span>
 +
|-
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|}
 +
 
 +
</div>
  
|- bgcolor="ffdead" 
+
==== Position and flux density correction ====
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 
|- bgcolor="ffdead" 
 
! FITS keyword || Data Type || Value || Description
 
|-
 
|PIXTYPE || String || HEALPIX || HEALPix pixelation
 
|-
 
|ORDERING || String || RING || Pixel ordering
 
|-
 
|NSIDE || Int*4 || 2048 || HEALPix resolution parameter
 
|-
 
|NPIX ||Int*4 || 50331648 || Number of pixels
 
|-
 
|COORDSYS || String || G || Coordinate system
 
  
|- bgcolor="ffdead"  
+
In sections B.2, B.3 and B.4 of the companion paper, it is suggested that the catalogue error bars of the source position (<span class="sans-serif">POSERR</span>) and flux density (<span class="sans-serif">SREFH2SB</span>, <span class="sans-serif">SREFL2SB</span>) estimates may be over-optimistic for objects with high <span class="sans-serif">NPSNR</span>. If a more accurate estimate of the uncertainty is desirable, then a correction must be added to the catalogue values.
! colspan="4" | Extension 2: IMAGE, EXTNAME = SELFUNC (see note 2)
+
 
|- bgcolor="ffdead" 
+
===== Position correction =====
! Keyword || Data Type || Value || Description
 
|-
 
| NAXIS1 || Integer || 30 || Dimension 1
 
|-  
 
| NAXIS2 || Integer || 32 || Dimension 2
 
|-
 
| NAXIS3 || Integer || 12 || Dimension 3
 
|- bgcolor="ffdead" 
 
! Keyword || Data Type || Value || Description
 
|-
 
| AXIS1 || String || CY500 || Name of axis 1
 
|-
 
| AXIS2 || String || T500 || Name of axis 2
 
|-
 
| AXIS3 || String || SNRCUT || Name of axis 3
 
|-
 
| UNITS || String || PERCENT || Units of selection function
 
|-
 
| COMPTYPE || String || DIFF || Type of selection function (differential)
 
  
|- bgcolor="ffdead"
+
On the grounds of the suggestion in the companion paper formulas B.3 and B.7, we recommend the following correction to be added: <math display="block">\label{eq:PositionCorrection}
! colspan="4" | Extension 3: IMAGE, EXTNAME = YGRID (see note 3)
+
\sigma^2_{pos} = \textsf{POSERR}^{2} + 0.00545,</math> where <span class="sans-serif">POSERR</span> must be expressed in arcmin. In the paper’s figure B.6 we show, in red and green, the effect of applying the suggested correction.
|- bgcolor="ffdead" 
 
! Keyword || Data Type || Value || Description
 
|-  
 
| NAXIS1 || Integer || 30 || Dimension 1
 
|- bgcolor="ffdead"  
 
! Keyword || Data Type || Value || Description
 
|-
 
| COL1 || String || CY500 || Grid values of Y<sub>500</sub>
 
  
|- bgcolor="ffdead"
+
===== Flux density correction =====
! colspan="4" | Extension 4: IMAGE, EXTNAME = TGRID (see note 4)
 
|- bgcolor="ffdead" 
 
! Keyword || Data Type || Value || Description
 
|-
 
| NAXIS1 || Integer || 32 || Dimension 1
 
|- bgcolor="ffdead" 
 
! Keyword || Data Type || Value || Description
 
|-
 
| COL1 || String || T500 || Grid values of &theta;<sub>500</sub>
 
  
|- bgcolor="ffdead"
+
<math display="block">\label{eq:CorrectionVar}
! colspan="4" | Extension 5: IMAGE, EXTNAME = SNR_THRESH (see note 5)
+
\sigma_s \equiv \sqrt{\sigma_{cat}^2 + (c * \ln({\small \textsf{NPSNR}}))^2},</math> where <math display="inline">c</math> is one of the constants in table [[#table:CorrectionFlux|1]] and <math display="inline">\sigma_{cat}</math> can be given either by
|- bgcolor="ffdead"  
 
! Keyword || Data Type || Value || Description
 
|-
 
| NAXIS1 || Integer || 12 || Dimension 1
 
|- bgcolor="ffdead"  
 
! Keyword || Data Type || Value || Description
 
|-
 
| COL1 || String || S/N || Grid values of S/N threshold
 
  
|}
+
<math display="inline">\frac{\textsf{SREFH2SB}-\textsf{SREFL2SB}}{4}</math>
 +
<br /> for a symmetric error bar, or<br />
 +
<math display="inline">\frac{\textsf{SREFH2SB}-\textsf{SREF}}{2}</math> and <math display="inline">\frac{\textsf{SREF}-\textsf{SREFL2SB}}{2}</math>
 +
<br /> if the non-symmetrical character of the uncertainty needs to be preserved.<br />
  
'''Notes'''
+
Example of a symmetrical correction: Source ''PCCS2 857 G002.95+57.96'' (<span class="sans-serif">NPSNR</span><math display="inline">= 32.43</math>). <math display="block">\label{eq:SrefCorrectionNUmerical}
# Extension 1 contains a mask defining the survey region, given by an N<sub>side</sub> = 2048 ring-ordered HEALPix map in GALACTIC coordinates. Pixels in the survey region have the value 1.0 while pixels outside of the survey region have value 0.0.
+
\sigma^2_{s} =  \left(\frac{\textsf{SREFH2SB}-\textsf{SREFL2SB}}{4}\right)^2 + (0.057 * \ln(\textsf{NPSNR}))^2,</math> where we have used the correction constant for the ‘''PCCS2 region''’, <math display="inline">c= 57</math> mJy.<br />
# Extension 2 contains a three-dimensional image containing the survey completeness probability distribution for various S/N thresholds. The information is stored in an image of size 30 &times; 32 &times; 12. The first dimension is Y<sub>500</sub>, the second dimension is &theta;<sub>500</sub> and the third dimension is the signal-to-noise threshold. The units are percent and lie in the range 0-100 and denote the detection probability of a cluster in the given (Y<sub>500</sub>, &theta;<sub>500</sub>) bin.
+
<math display="block">\sigma_{s} =  \sqrt{\left(\frac{1.22-0.71}{4}\right)^2 + (0.057 * \ln(32.43)^2} = 236 \, \textrm{mJy},</math> In figures 11 and B.7, we show, in red and blue, the effect of applying the symmetrical correction.
# Extension 3 contains the Y<sub>500</sub> grid values for the completeness data cube in the second extension. It has length 30 and spans the range from 1.12480 &times; 10<sup>-4</sup> arcmin<sup>2</sup> to 7.20325 &times; 10<sup>-2</sup> arcmin<sup>2</sup> in logarithmic steps.
 
# Extension 4 contains the θ<sub>500</sub> grid values for the completeness data cube in the second extension. It has length 32 and spans the range from 0.9416 arcmin to 35.31 arcmin in logarithmic steps.
 
# Extension 5 contains the signal-to-noise threshold grid values for the completeness data cube in the second extension. It has length 12 and contains thresholds from 4.5 to 10.0 in steps of 0.5.
 
  
=== Previous releases (PSZ1) ===
+
==== Spectral Energy Density (SED) plots ====
<hr>
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
'''Second Planck Release (2013): Description of the Planck SZ Catalogue'''
 
<div class="mw-collapsible-content">
 
  
The Planck SZ catalogue is constructed as described in [[Compact_Source_catalogues#Planck_Sunyaev-Zeldovich_catalogue|SZ catalogue]] and in section 2 of {{PlanckPapers|planck2013-p05a}}.
+
[[File:xSupPicts-COM_PCCS_857_R2_01__PCCS2_857_G171_77_59_53_s.png|500px|center|none]]
  
Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The individual catalogues are provided for the expert user in order to assess the consistency of the pipelines. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in sections 3-6 of {{PlanckPapers|planck2013-p05a}}.
+
<div style='text-align: center;'>Source ‘''SED plot''’, showing the SED curves for the MBB (upper panel) and Free (middle panel) models for one source (NGC 895). The background is given in the bottom panel. The yellow and red dashed curves are the median and maximum-likelihood fits, respectively. The purple and black bands are the <math display="inline">\pm1\,\sigma</math> and <math display="inline">\pm2\,\sigma</math> regions, respectively, of the full posterior density. Blue diamonds are the PCCS2+2E flux-density estimates (<span class="sans-serif">APERFLUX</span>). The green diamonds are: in the upper panel <span><code>BeeP</code></span>’s estimate of the flux density at 857 GHz, and in the middle panel <span><code>BeeP</code></span>’s Free estimates of the flux density at each frequency. In the lower panel, dark green diamonds are the background brightness estimates at each frequency, and the green curves are the maximum likelihood (dashed) and the median (solid) models. Red diamonds are the average source brightness divided by the background rms brightness in that patch, i.e., raw S/N. The data points are slightly displaced from their nominal frequencies to avoid overlaps. | Source ‘''SED plot''’, showing the SED curves for the MBB (upper panel) and Free (middle panel) models for one source (NGC 895). The background is given in the bottom panel. The yellow and red dashed curves are the median and maximum-likelihood fits, respectively. The purple and black bands are the <math display="inline">\pm1\,\sigma</math> and <math display="inline">\pm2\,\sigma</math> regions, respectively, of the full posterior density. Blue diamonds are the PCCS2+2E flux-density estimates (<span class="sans-serif">APERFLUX</span>). The green diamonds are: in the upper panel <span><code>BeeP</code></span>’s estimate of the flux density at 857 GHz, and in the middle panel <span><code>BeeP</code></span>’s Free estimates of the flux density at each frequency. In the lower panel, dark green diamonds are the background brightness estimates at each frequency, and the green curves are the maximum likelihood (dashed) and the median (solid) models. Red diamonds are the average source brightness divided by the background rms brightness in that patch, i.e., raw S/N. The data points are slightly displaced from their nominal frequencies to avoid overlaps.</div>
  
The union catalogue contains the coordinates and the signal-to-noise ratio of the detections and a summary of the external validation information, including external identification of a cluster and its redshift if it is available.
+
Another component of the catalogue is a collection of figures, one for each row, that displays the SED curves for each of the models. There are three different panels in each figure,
  
The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue.
+
* <span class="sans-serif">SOURCE</span>: Is the PCCS2+2E name of the source.
 +
* <span class="sans-serif">BEEPGLON</span> and <span class="sans-serif">BEEPGLAT</span>: Are the Galactic longitude and latitude computed by <span class="sans-serif">BeeP</span> using the MBB SED model.
 +
* <span class="sans-serif">SRCSIG</span>, <span class="sans-serif">NPSNR</span> and <span class="sans-serif">EST_QUALITY</span> are the fields defining the reliability of the source and the estimation quality (see companion paper section 5.4).
 +
* Upper panel - MBB SED curves.<br />
 +
This figure shows the SED curves drawn from the MBB parameter samples when marginalising over all others. There is a curve for each sample drawn from <span class="sans-serif">BeeP</span>’s posterior. In purple, if the sample was inside the <math display="inline">68\%</math> HPD<ref>Highest Probability Density region (HPD). For a complete definition see .</ref> of the full posterior, otherwise in black. The golden line is drawn from the Median of the marginalised distributions and the dashed red line from the maximum likelihood solution. The green diamond is <span><code>BeeP</code></span>’s estimate of the reference flux density (at 857 GHz).<br />
  
The size of a detection is given in terms of the scale size, $\theta_\mathrm{s}$, and the flux is given in terms of the total integrated Comptonization parameter, $Y = Y_{5r_{500}}$. The parameters of the GNFW profile assumed by the detection pipelines is written in the headers in the catalogues. For the sake of convenience, the conversion factor from $Y$ to $Y_{500}$ is also written in the header.
+
* Middle panel - ‘Free’ channel amplitudes.<br />
 +
The green diamonds are <span class="sans-serif">BeeP</span>’s posterior medians of the flux densities at each channel<ref>Sources inside the IRIS mask do not include a flux density at 3000 GHz.</ref>. The purple and black lines have the same meaning as in the upper panel but the posterior samples were drawn from fitting a MBB SED model, using a Gaussian likelihood, to the green diamonds and respective error bars. Blue diamonds are the PCCS2+2E flux-density estimates (<span class="sans-serif">APERFLUX</span>).<br />
  
The full information on the degeneracy between $\theta_\mathrm{s}$ and $Y$ is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. The degeneracy information is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters.
+
* Lower panel - Background/Foreground contrast parameters.<br />
 +
The dark green diamonds are the background brightness estimates at each frequency. The green curves were fitted to the individual brightness estimates using a MBB model and a Gaussian likelihood just like in the case of the middle panel. The green dashed line is the maximum likelihood solution and the solid the Median. The red diamonds are <span class="sans-serif">BeeP</span>’s SNRr: Source average brightness divided by the background brightness standard deviation in that patch.
 +
* The <span class="sans-serif">TEMP</span> and <span class="sans-serif">BETA</span> numerical parameter values, shown in all panels, are the marginalised posterior medians.
 +
* The <math display="inline">\chi^2</math> values are the reduced <math display="inline">\chi^2</math> of the maximum likelihood solution.
  
 +
==== Parameter posterior distributions (‘''corner plots''’) ====
  
+
This component of the catalogue is another collection of figures showing the MBB parameter posterior distributions of <span class="sans-serif">BeeP</span>’s likelihood in the form of a ‘''corner''’ plot (see figure [[#fig:CornerPlot|5]]).
'''Union Catalogue'''
+
 
 +
* <span class="sans-serif">SOURCE</span>: Is the PCCS2+2E name of the source.
 +
* <span class="sans-serif">GLON</span> and <span class="sans-serif">GLAT</span>: Are the Galactic longitude and latitude in the PCCS2+2E catalogue. These are the <math display="inline">(0,0)</math> coordinates of the parameters <math display="inline">dX</math> and <math display="inline">dY</math>.
 +
* <span class="sans-serif">SRCSIG</span>, <span class="sans-serif">NPSNR</span> and <span class="sans-serif">EST_QUALITY</span> are the fields defining the reliability of the source and the estimation quality (see companion paper section 5.4).
 +
* The figures in the diagonal are the marginal distributions (histogram) of each MBB parameter and the non-diagonal show the joint distribution (bi-dimensional histogram) of the row-column parameters.
 +
* Darker patterns mean higher probability density.
 +
* The vertical lines in the marginals ate the {<math display="inline">2.5, 50.0, 97.5</math>} percentiles.
 +
* The violet line is the PCCS2+2E catalogue flux density at the <math display="inline">857</math> GHz channel (<span class="sans-serif">APERFLUX</span>).
 +
 
 +
[[File:xSupPicts-COM_PCCS_857_R2_01__PCCS2_857_G171_77_59_53_c.png|500px|center|none]]
 +
 
 +
<div style='text-align: center;'>A source ‘''corner plot''’ , showing the parameter posterior distributions. This figure shows, in each non-diagonal position, the marginalised bi-dimensional posterior distribution of the parameter samples defining the row and the column. The diagonal locations contain posterior marginalized distributions. The violet line is the PCCS2+2E catalogue flux density at the <math display="inline">857</math> GHz channel. There is one of these plots for each source in <span class="sans-serif">BeeP</span>’s catalogue (<span class="sans-serif">APERFLUX</span>).</div>
 +
 
 +
</div>
 +
</div>
 +
 
 +
 
 +
<div class="toccolours" style="background-color: #FFDAB9" >
 +
<div class="toccolours" style="background-color: #FFDAB9" >
 +
 
 +
==(2015) Planck Catalogue of Galactic Cold Clumps==
  
The union catalogue is contained in ''{{PLASingleFile|fileType=cat | name=COM_PCCS_SZ-union_R1.12.fits | link=COM_PCCS_SZ-union_R1.12.fits}}''.
+
The Planck Catalogue of  Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds. The sources have been identified in Planck data as sources colder than their environment. The PGCC has been built using 48 months of Planck data at 857, 545, and 353 GHz, combined with the 3-THz IRAS data, as described in {{PlanckPapers | planck2014-a37}}.
  
 +
The all-sky distribution of the PGCC sources is plotted below on the 857-GHz emission shown in logarithmic scale between 10<sup>-2</sup> to 10<sup>2</sup> MJy sr<sup>-1</sup>.
 +
[[File:PGCC_allsky.png|800px|thumb|center|All-sky distribution of the PGCC sources.]]
  
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
Sources are divided into three categories based on the reliability of the flux density estimates in the IRAS 3-THz and Planck 857, 545, and 353 GHz bands:
|- bgcolor="ffdead" 
+
* FLUX_QUALITY=1, sources with flux density estimates S/N > 1 in all bands;
!colspan="4" | Extension 0: Primary header, no data
+
* FLUX_QUALITY=2, sources with flux density estimates S/N > 1 only in the 857-, 545-, and 353-GHz Planck bands, considered as very cold source candidates;
|- bgcolor="ffdead" 
+
* FLUX_QUALITY=3, sources without any reliable flux density estimates, listed as poor candidates.
! FITS Keyword || Data Type || Units || Description
+
The all-sky distributions of the PGCC sources per FLUX_QUALITY category are plotted below of the 857-GHz map in grey scale, varying in logarithmically between 10<sup>-2</sup> and 10<sup>2</sup> MJy sr<sup>-1</sup>.
|-  
+
[[File:PGCC_allsky_FQ1.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=1.]]
|INSTRUME || String || || Instrument.
+
[[File:PGCC_allsky_FQ2.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=2.]]
|-  
+
[[File:PGCC_allsky_FQ3.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=3.]]
| VERSION || String || || Version of catalogue.
+
 
|-  
+
Distance estimates have been obtained for 5574 PGCC sources using seven different methods, as described in {{PlanckPapers | planck2014-a37}}. A flag is set to quantify the quality of the distance estimates, defined as follows:
| DATE || String || || Date file created: yyyy-mm-dd.
+
* DIST_QUALITY=0, no distance estimate;
|-
+
* DIST_QUALITY=1, single distance estimate;
| ORIGIN || String || || Name of organization responsible for the data.
+
* DIST_QUALITY=2, multiple distance estimates which are consistent within 1&sigma;;
|-
+
* DIST_QUALITY=3, multiple distance estimates which are not consistent within 1&sigma;;
| TELESCOP || String || || PLANCK.
+
* DIST_QUALITY=4, single upper limits.
|-
+
The all-sky distribution of sources with robust distance estimates is shown below.
| CREATOR || String || || Pipeline version.
+
[[File:PGCC_allsky_DIST.png|800px|thumb|center|All-sky distribution of the  4655 PGCC sources for which a distance estimate with a DIST_QUALITY flag equal to 1 or 2 is available. The various types of distance estimates are defined as follows : kinematic (purple), optical extinction (blue), near-infrared extinction (green), molecular complex association (orange), and Herschel HKP-GCC (red). We also show the distribution of  the 664 sources with an upper-limit estimate  (DIST_QUALITY=4) provided by the near-infrared extinction method (light green). Molecular complexes are outlined with black contours.]]
|-  
+
 
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd.
+
The catalogue is contained in the FITS file {{PLASingleFile | fileType=cat | name=HFI_PCCS_GCC_R2.02.fits  | link=HFI_PCCS_GCC_R2.02.fits }}.
|-
+
Its structure is shown in the following table.
| DATE-END || String || || End time of the survey: yyyy-mm-dd.
 
|-
 
| PROCVER || String || || Data version.
 
|-
 
| PP_ALPHA || Real*4 || || GNFW pressure profile $\alpha$ parameter.
 
|-  
 
| PP_BETA || Real*4 || || GNFW pressure profile $\beta$ parameter.
 
|-  
 
| PP_GAMMA || Real*4 || || GNFW pressure profile $\gamma$ parameter.
 
|-
 
| PP_C500 || Real*4 || || GNFW pressure profile $c_{500}$ parameter.
 
|-
 
| PP_Y2YFH || Real*4 || || Conversion factor from $Y$ to $Y_{500}$.
 
  
|- bgcolor="ffdead"  
+
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=1000px
!colspan="4" | Extension 1: data extension (BINTABLE)
+
|+ <small>'''FITS file structure'''</small>
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
! Column Name || Data Type || Units || Description
+
! colspan="4" | Identification
 +
|- bgcolor="ffdead"
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|INDEX || Int*4 || || Index. Used to cross-reference with individual catalogues.
+
|NAME || String || || Source Name
 
|-
 
|-
|NAME || String || || Source name, (Note 1)
+
|SNR || real*8 || || Maximum S/N over the 857, 545, and 353 GHz Planck cold residual maps
 
|-
 
|-
|GLON || Real*8 || degrees || Galactic longitude.
+
|SNR_857 || real*8 || || S/N of the cold residual detection at 857 GHz
 
|-
 
|-
|GLAT || Real*8 || degrees || Galactic latitude.
+
|SNR_545 || real*8 || || S/N of the cold residual detection at 545 GHz
 
|-
 
|-
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON,GLAT).
+
|SNR_353 || real*8 || || S/N of the cold residual detection at 353 GHz
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Source position
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON,GLAT).
+
|GLON || real*8 || deg || Galactic longitude based on morphology fitting
 
|-
 
|-
|POS_ERR || Real*4 || arcmin || Position uncertainty (approximate 68% confidence interval). See [[#Caveats|Caveats]] below.
+
|GLAT || real*8 || deg || Galactic latitude based on morphology fitting
 
|-
 
|-
|SNR || Real*4 || || Signal-to-noise ratio of the detection.
+
|RA || real*8 || deg || Right ascension (J2000) in degrees transformed from (GLON, GLAT)
 
|-
 
|-
|PIPELINE || Int*4 || || Souce pipeline: 1= MMF1; 2 = MMF3; 3 = PwS.
+
|DEC || real*8 || deg || Declination (J2000) in degrees transformed from (GLON, GLAT)
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Morphology
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|PIPE_DET || Int*4 || || Pipelines which detect this object (note 2).
+
|GAU_MAJOR_AXIS || real*8 || arcmin || FWHM along the major axis of the elliptical Gaussian
 
|-
 
|-
|PCCS || Bool || || Indicates whether detection matches any PCCS source.
+
|GAU_MAJOR_AXIS_SIG || real*8 || arcmin || 1&sigma; uncertainty on the FWHM along the major axis
 
|-
 
|-
|VALIDATION || Int*4 || || External validation status (Note 3)
+
|GAU_MINOR_AXIS || real*8 || arcmin || FWHM along the minor axis of the elliptical Gaussian
 
|-
 
|-
|ID_EXT || String|| || External identifier of cluster.
+
|GAU_MINOR_AXIS_SIG || real*8 || arcmin || 1&sigma; uncertainty on the FWHM along the minor axis
 
|-
 
|-
|REDSHIFT || Real*4 || || Redshift of cluster.
+
|GAU_POSITION_ANGLE || real*8 || rad || Position angle of the elliptical Gaussian (see note 1)
 
|-
 
|-
|COSMO || Bool || || Detection is in the cosmology sample.
+
|GAU_POSITION_ANGLE_SIG || real*8 || rad || 1&sigma; uncertainty on the position angle
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Photometry
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|COMMENT|| Bool || || Detection has a comment in the associated text file (Note 4).
+
|FLUX_3000_CLUMP || real*8 || Jy || Flux density of the clump at 3 THz
|}
+
|-
 
+
|FLUX_3000_CLUMP_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the clump at 3 THz
 
+
|-
'''Notes'''
+
|FLUX_857_CLUMP || real*8 || Jy || Flux density of the clump at 857 GHz
# format is ''PSZ1 Glll.ll+mn;bb.b'' where (l,b) are the Galactic and truncated to 2 decimal places.
+
|-
# The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
+
|FLUX_857_CLUMP_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the clump at 857 GHz
# values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up;  20 = known cluster.
+
|-
# The  comments on the detections in the catalogue are contained in a text file called ''{{PLASingleFile|fileType=catdoc | name=COM_PCCS_SZ-union_comments_R1.11.txt | link=COM_PCCS_SZ-union_comments_R1.11.txt}}'', which contains one line for each detection in the union catalogue with COMMENT = T. The line starts with the INDEX and NAME of the detection to facilitate cross-referencing. The remainder of the line is the comment on that detection.
+
|FLUX_545_CLUMP || real*8 || Jy || Flux density of the clump at 545 GHz
 
+
|-
'''Individual Catalogues'''
+
|FLUX_545_CLUMP_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the clump at 545 GHz
 
+
|-
The individual pipeline catalogues are contained in the FITS files
+
|FLUX_353_CLUMP || real*8 || Jy || Flux density of the clump at 353 GHz
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-MMF1_R1.11.fits  | link=COM_PCCS_SZ-MMF1_R1.11.fits }} (Matched Multi-Filter method #1)
+
|-
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-MMF3_R1.12.fits  | link=COM_PCCS_SZ-MMF3_R1.12.fits }} (Matched Multi-Filter method #3)
+
|FLUX_353_CLUMP_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the clump at 353 GHz
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-PwS_R1.11.fits  | link=COM_PCCS_SZ-PwS_R1.11.fits }} (Powell Snakes method)
+
|-
Their structure is as follows:
+
|FLUX_3000_WBKG || real*8 || Jy || Flux density of the warm background at 3 THz (see note 2)
 
+
|-
 
+
|FLUX_3000_WBKG_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of warm background at 3 THz
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
|-
|+ '''FITS file structure'''
+
|FLUX_857_WBKG || real*8 || Jy || Flux density of the warm background at 857 GHz
|- bgcolor="ffdead" 
+
|-
 
+
|FLUX_857_WBKG_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the warm background at 857 GHz
! colspan="4" | Ext. 0: Primary header, no data
+
|-
|- bgcolor="ffdead" 
+
|FLUX_545_WBKG || real*8 || Jy || Flux density of the warm background at 545 GHz
! FITS Keyword || Data Type || Units || Description
+
|-
|-  
+
|FLUX_545_WBKG_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the warm background at 545 GHz
|INSTRUME || String || || Instrument.
+
|-
|-  
+
|FLUX_353_WBKG || real*8 || Jy || Flux density of the warm background at 353 GHz
| VERSION || String || || Version of catalogue.
+
|-
|-  
+
|FLUX_353_WBKG_SIG || real*8 || Jy || 1&sigma; uncertainty on the flux density of the warm background at 353 GHz
| DATE || String || || Date file created: yyyy-mm-dd.
+
|-
|-  
+
|FLUX_QUALITY || int*4 || 1-3 || Category of flux density reliability (see note 3)
| ORIGIN || String || || Name of organization responsible for the data.
+
|-
|-  
+
|FLUX_BLENDING || int*4 || 0/1 || 1 if blending issue with flux density estimate (see note 4)
| TELESCOP || String || || PLANCK.
+
|-
|-  
+
|FLUX_BLENDING_IDX || int*8 || || Catalogue index of the closest source responsible for blending
| CREATOR || String || || Pipeline version.
 
|-  
 
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd.
 
|-  
 
| DATE-END || String || || End time of the survey: yyyy-mm-dd.
 
|-  
 
| PROCVER || String || || Data version.
 
|-  
 
| PP_ALPHA || Real*4 || || GNFW pressure profile $\alpha$ parameter.
 
|-  
 
| PP_BETA || Real*4 || || GNFW pressure profile $\beta$ parameter.
 
|-  
 
| PP_GAMMA || Real*4 || || GNFW pressure profile $\gamma$ parameter.
 
|-  
 
| PP_C500 || Real*4 || || GNFW pressure profile $c_{500}$ parameter.
 
|-  
 
| PP_Y2YFH || Real*4 || || Conversion factor from $Y$ to $Y_{500}$.
 
|- bgcolor="ffdead" 
 
 
 
 
 
! colspan="4" | Ext. 1: EXTNANE = ''PSZ_INDIVIDUAL'' (BINTABLE)
 
|- bgcolor="ffdead" 
 
! Column Name || Data Type || Units || Description
 
 
|-
 
|-
|INDEX || Int*4 || || Index from union catalogue.
+
|FLUX_BLENDING_ANG_DIST || real*8 || arcmin || Angular distance to the closest source responsible for blending
 
|-
 
|-
|NAME || String || || Source name - see Note1
+
|FLUX_BLENDING_BIAS_3000 || real*8 || % || Relative bias of the flux density at 3 THz due to blending
 
|-
 
|-
|GLON || Real*8 || degrees || Galactic longitude.
+
|FLUX_BLENDING_BIAS_857 || real*8 || % || Relative bias of the flux density at 857 GHz due to blending
 +
|-
 +
|FLUX_BLENDING_BIAS_545 || real*8 ||  % || Relative bias of the flux density at 545 GHz due to blending
 +
|-
 +
|FLUX_BLENDING_BIAS_353 || real*8 ||  % || Relative bias of the flux density at 353 GHz due to blending
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Distance
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 +
|-
 +
|DIST_KINEMATIC || real*8 || kpc || Distance estimate [1] using kinematics
 +
|-
 +
|DIST_KINEMATIC_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [1] using kinematics
 +
|-
 +
|DIST_OPT_EXT_DR7 || real*8 || kpc || Distance estimate [2] using optical extinction on SDSS DR7
 +
|-
 +
|DIST_OPT_EXT_DR7_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [2] using optical extinction on SDSS DR7
 
|-
 
|-
|GLAT || Real*8 || degrees || Galactic latitude.
+
|DIST_OPT_EXT_DR9 || real*8 || kpc || Distance estimate [3] using optical extinction on SDSS DR9
 
|-
 
|-
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON,GLAT).
+
|DIST_OPT_EXT_DR9_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [3] using optical extinction on SDSS DR9
 
|-
 
|-
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON,GLAT).
+
|DIST_NIR_EXT_IRDC || real*8 || kpc || Distance estimate  [4] using near-IR extinction towards IRDCs
 
|-
 
|-
|POS_ERR || Real*4 || arcmin || Position uncertainty (approximate 68% confidence interval). See [[#Caveats|Caveats]] below.
+
|DIST_NIR_EXT_IRDC_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate  [4] using near-IR extinction towards IRDCs
 
|-
 
|-
|SNR || Real*4 || || Signal-to-noise ratio of the detection.
+
|DIST_NIR_EXT || real*8 || kpc || Distance estimate [5] using near-IR extinction
 
|-
 
|-
|SNR_COMPAT || Real*4 || || SNR of the detection in compatibility mode (Note 2)
+
|DIST_NIR_EXT_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [5] using near-IR extinction
 
|-
 
|-
|TS_MIN || Real*4 || || Minimum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below).
+
|DIST_MOLECULAR_COMPLEX || real*8 || kpc || Distance estimate [6] using molecular complex association
 
|-
 
|-
|TS_MAX || Real*4 || || Maximum value of $\theta_\mathrm{s}$ in grid in second extension HDU (see below).
+
|DIST_MOLECULAR_COMPLEX_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [6] using molecular complex association
 
|-
 
|-
|Y_MIN || Real*4 || || Minimum value of $Y$ in grid in second extension HDU (see below).
+
|DIST_HKP_GCC || real*8 || kpc || Distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
 
|-
 
|-
|Y_MAX || Real*4 || || Maximum value of $Y$ in grid in second extension HDU (see below).
+
|DIST_HKP_GCC_SIG || real*8 || kpc || 1&sigma; uncertainty on the distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
 
+
|-
|- bgcolor="ffdead" 
+
|DIST_OPTION || int*4 || 0-7 || Option of the best distance estimate used in other physical properties
! Keyword || Data Type || Value || Description
+
|-
|-  
+
|DIST_QUALITY || int*4 || 0-4 || Quality flag of the consistency between distance estimates (see note 5)
| PIPELINE || String || || Name of detection pipeline.
+
|-
|- bgcolor="ffdead"  
+
|DIST || real*8 || kpc || Best distance estimate used for further physical properties
 
+
|-
 
+
|DIST_SIG || real*8 || kpc || 1&sigma; uncertainty on the best distance estimate
! colspan="4" | Ext. 2: EXTNAME = ''PSZ_PROBABILITY'' (IMAGE) - Note 3
+
|- bgcolor="ffdead"
|- bgcolor="ffdead"  
+
! colspan="4" | Temperature
! Keyword || Data Type || Value || Description
+
|- bgcolor="ffdead"
|-  
+
! FITS Keyword || Data type || Units || Description
| NAXIS1 || Integer || 256 || Dim 1
+
|-
|-  
+
|TEMP_CLUMP || real*8 || K || Temperature of the clump with &beta; as a free parameter
| NAXIS2 || Integer || 256 || Dim 2
+
|-
|-  
+
|TEMP_CLUMP_SIG || real*8 || K || 1&sigma; uncertainty on the clump temperature with &beta; free
| NAXIS3 || Integer || Nsources || Dim 3 = Number of sources
+
|-
|- bgcolor="ffdead" 
+
|TEMP_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with &beta; free
! Keyword || Data Type || Value || Description
+
|-
|-  
+
|TEMP_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with &beta; free
| PIPELINE || String || || Name of detection pipeline.
+
|-
|}
+
|BETA_CLUMP || real*8 || || Spectral index &beta; of the clump
 
+
|-
 
+
|BETA_CLUMP_SIG || real*8 || || 1&sigma; uncertainty (from MCMC) on the emissivity spectral index &beta; of the clump
'''Notes'''
+
|-
# Format ''PSZ1 Glll.ll&plusmn;bb.bb'' where (l, b) are the Galactic coordinates truncated to 2 decimal places.
+
|BETA_CLUMP_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index &beta; of the clump
# For PwS, this is the S/N evaluated in a manner compatible with the MMF pipelines. For MMF1 and MMF3, it is identical to SNR.
+
|-
# Ext. 2 contains a three-dimensional image with the two-dimensional probability distribution in $\theta_\mathrm{s}$ and $Y$ for each detection. The probability distributions are evaluated on a 256 &times; 256 linear grid between the limits specified in Ext. 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 &times; 256 &times; n, where n is the number of detections.  The first dimension is $\theta_\mathrm{s}$ and the second dimension is $Y$.
+
|BETA_CLUMP_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index &beta; of the clump
 
+
|-
PPPPPPPP
+
|TEMP_BETA2_CLUMP || real*8 || K || Temperature of the clump with &beta; = 2
 
+
|-
'''Mask'''
+
|TEMP_BETA2_CLUMP_SIG || real*8 || K || 1&sigma; uncertainty on the temperature of the clump with &beta; = 2
 
+
|-
The mask used to construct the catalogue is contained in a file: ''{{PLASingleFile|fileType=catdoc | name=COM_PCCS_SZ-unionMask_2048_R1.11.fits| link=COM_PCCS_SZ-unionMask_2048_R1.11.fits}}''.
+
|TEMP_BETA2_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with &beta; = 2
 
+
|-
It is in GALACTIC coordinates, NESTED ordering, NSIDE=2048.
+
|TEMP_BETA2_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with &beta; = 2
 
+
|-
 
+
|TEMP_WBKG || real*8 || K || Temperature of the warm background with &beta; as a free parameter (see note 6)
PPPPPPPP
+
|-
 
+
|TEMP_WBKG_SIG || real*8 || K || 1&sigma; dispersion of the warm background temperature with &beta; free
'''Additional information'''
+
|-
 
+
|TEMP_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with &beta; free
A set of comments on the union catalogue is available in
+
|-
 
+
|TEMP_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with &beta; free
: ''{{PLASingleFile|fileType=cat | name=COM_DocPCCS_SZ-union-comments_R1.11.txt | link=COM_DocPCCS_SZ-union-comments_R1.11.txt}}''
+
|-
 
+
|BETA_WBKG || real*8 || || Spectral index &beta; of the warm background (see note 6)
Additional information on the SZ detections was retrieved from external sources and written into the FITS file
+
|-
 
+
|BETA_WBKG_SIG || real*8 || || 1&sigma; uncertainty (from MCMC) of the emissivity spectral index &beta; of the warm background
: ''{{PLASingleFile|fileType=cat | name=COM_PCCS_SZ-validation_R1.12.fits | link=COM_PCCS_SZ-validation_R1.12.fits}}''
+
|-
 
+
|BETA_WBKG_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index &beta; of the warm background
(for more details see {{PlanckPapers|planck2013-p05a}}). This file contains a single ''BINTABLE'' extension.  The table contains 1 line per source, and the columns and their meaning are given below.
+
|-
 
+
|BETA_WBKG_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index &beta; of the warm background
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
+
|-
|+ '''FITS file structure'''
+
|TEMP_BETA2_WBKG || real*8 || K || Temperature of the warm background with &beta; = 2
|- bgcolor="ffdead" 
 
 
 
! colspan="4" | Ext. 0:  (BINTABLE)
 
|- bgcolor="ffdead" 
 
! Column Name || Data Type || Units || Description
 
 
|-
 
|-
|INDEX || Int*4 || || Index from union catalogue.
+
|TEMP_BETA2_WBKG_SIG || real*8 || K || 1&sigma; uncertainty on the temperature of the warm background with &beta; = 2
 
|-
 
|-
|NAME || String || || Source name in union catalogue
+
|TEMP_BETA2_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with &beta; = 2
 
|-
 
|-
|REDSHIFT || Real*4 ||  || Redshift
+
|TEMP_BETA2_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with &beta; = 2
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Physical properties
 +
|- bgcolor="ffdead"  
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|REDSHIFT_SOURCE || Int*4 || || Source for redshift - see Note 4.
+
|NH2 || real*8 || cm<sup>-2</sup> || Column density <i>N</i><sub>H<sub>2</sub></sub> of the clump
 
|-
 
|-
|ALT_NAME  || String || || Alternative names.
+
|NH2_SIG || real*8 || cm<sup>-2</sup> || 1&sigma; uncertainty on the column density
 
|-
 
|-
|RA_MCXC  || Real*4 || degrees || Right Ascension of the MCXC identifier.
+
|NH2_LOW[1,2,3] || real*8 || cm<sup>-2</sup> || Lower 68%, 95%, and 99% confidence limit of the column density
 
|-
 
|-
|DEC_MCXC || Real*4 || degrees || Declination of the MCXC identifier.
+
|NH2_UP[1,2,3]  || real*8 || cm<sup>-2</sup> || Upper 68%, 95%, and 99% confidence limit of the column density
 
|-
 
|-
|YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || Compton parameter in R500 from SZ-proxy.
+
|MASS || real*8 || <i>M</i><sub>&#9737;</sub> || Mass estimate of the clump
 
|-
 
|-
|ERRP_YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || Error sup. in YZ_500
+
|MASS_SIG  || real*8 || <i>M</i><sub>&#9737;</sub> || 1&sigma; uncertainty on the mass estimate of the clump
 
|-
 
|-
|ERRM_YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || Error inf. in YZ_500
+
|MASS_LOW[1,2,3]  || real*8 || <i>M</i><sub>&#9737;</sub> || Lower 68%, 95%, and 99% confidence limit of the mass estimate
 
|-
 
|-
|M_YZ_500 || Real*4 || 10<sup>14</sup> Msol|| Derived mass estimate (M_YZ_500) from SZ proxy.
+
|MASS_UP[1,2,3]  || real*8 || <i>M</i><sub>&#9737;</sub> || Upper 68%, 95%, and 99% confidence limit of the mass estimate
 
|-
 
|-
|ERRP_M_YZ_500 || Real*4 || 10<sup>14</sup> Msol || Error sup. on M_YZ_500.
+
|DENSITY || real*8 || cm<sup>-3</sup> || Mean density of the clump
 +
|-
 +
|DENSITY_SIG  || real*8 || cm<sup>-3</sup>  || 1&sigma; uncertainty on the mean density estimate of the clump
 +
|-
 +
|DENSITY_LOW[1,2,3]  || real*8 || cm<sup>-3</sup>  || Lower 68%, 95%, and 99% confidence limit of the mean density estimate
 +
|-
 +
|DENSITY_UP[1,2,3]  || real*8 || cm<sup>-3</sup> || Upper 68%, 95%, and 99% confidence limit of the mean density estimate
 +
|-
 +
|SIZE || real*8 || pc || Physical size of the clump
 +
|-
 +
|SIZE_SIG  || real*8 || pc  || 1&sigma; uncertainty on the physical size estimate of the clump
 +
|-
 +
|SIZE_LOW[1,2,3]  || real*8 || pc  || Lower 68%, 95%, and 99% confidence limit of the physical size estimate
 +
|-
 +
|SIZE_UP[1,2,3]  || real*8 || pc || Upper 68%, 95%, and 99% confidence limit of the physical size estimate
 +
|-
 +
|LUMINOSITY || real*8 || <i>L</i><sub>&#9737;</sub> || Luminosity of the clump
 +
|-
 +
|LUMINOSITY_SIG  || real*8 || <i>L</i><sub>&#9737;</sub> || 1&sigma; uncertainty on the luminosity estimate of the clump
 
|-
 
|-
|ERRM_M_YZ_500 || Real*4 || 10<sup>14</sup> Msol || Error sup. on M_YZ_500.
+
|LUMINOSITY_LOW[1,2,3]  || real*8 || <i>L</i><sub>&#9737;</sub>  || Lower 68%, 95%, and 99% confidence limit of the luminosity estimate
 
|-
 
|-
|S_X || Real*4 || erg/s/cm<sup>2</sup>  || Unabsorbed X-ray flux - see Note 1.
+
|LUMINOSITY_UP[1,2,3]  || real*8 || <i>L</i><sub>&#9737;</sub> || Upper 68%, 95%, and 99% confidence limit of the luminosity estimate
 +
|- bgcolor="ffdead"  
 +
! colspan="4" | Flags
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 
|-
 
|-
|ERR_S_X || Real*4 || erg/s/cm<sup>2</sup>  || Error on unabsorbed X-ray flux.
+
|XFLAG_LMC || int*4 || 0/1 || 1 if part of the LMC
 
|-
 
|-
|Y_PSX_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || SZ signal for PSZ clusters identified with MCXC clusters- see Note 2.
+
|XFLAG_SMC || int*4 || 0/1 || 1 if part of the SMC
 
|-
 
|-
|SN_PSX || Real*4 || || Signal to noise for PSZ clusters identified with MCXC clusters - see Note 3.
+
|XFLAG_ECC || int*4 || 0/1 || 1 if present in the ECC
|}
+
|-
 
+
|XFLAG_PCCS_857 || int*4 || 0/1 || 1 if present in the PCCS 857 GHz band
'''Notes'''
+
|-
# Unabsorbed X-ray flux measured in an aperture of 5 arcmin in the band [0.1-2.4] keV. The aperture is centered on the Planck position, except for candidates associated with a BSC source for which we adopt the X-ray position. For sources with <math>(S/N)_{RASS} < 1\sigma</math>, we only quote an upper limit.
+
|XFLAG_PCCS_545 || int*4 || 0/1 || 1 if present in the PCCS 545 GHz band
# SZ signal re-extracted fixing the size to the X-ray size provided in the MCXC catalogue at the X-ray position, for PSZ clusters identified with MCXC clusters.
+
|-
# Computed in the Planck data at the X-ray position fixing the size to the X-ray size provided in the MCXC catalogue, for PSZ clusters identified with MCXC clusters.
+
|XFLAG_PCCS_353 || int*4 || 0/1 || 1 if present in the PCCS 353 GHz band
# Source for redshifts:
+
|-
    -1 : No redshift available
+
|XFLAG_PCCS_217 || int*4 || 0/1 || 1 if present in the PCCS 217 GHz band
      1 : MCXC updated compilation{{BibCite|Piffaretti2011}}
+
|-
      2 : Databases NED and SIMBAD-CDS
+
|XFLAG_PCCS_143 || int*4 || 0/1 || 1 if present in the PCCS 143 GHz band
      3 : SDSS cluster catalogue{{BibCite|Wen2012}}
+
|-
      4 : SDSS cluster catalogue{{BibCite|Szabo2011}}
+
|XFLAG_PCCS_100 || int*4 || 0/1 || 1 if present in the PCCS 100 GHz band
      5 : SPT{{BibCite|Vanderlinde2010}}{{BibCite|Williamson2011}}{{BibCite|Andersson2011}}{{BibCite|Plagge2010}}{{BibCite|Reichardt2013}}{{BibCite|Story2011}}{{BibCite|Song2012}}
+
|-
      6 : ACT{{BibCite|Hasselfield2013}}{{BibCite|Marriage2011}}{{BibCite|Menanteau2010}}{{BibCite|Sifon2013}}
+
|XFLAG_PCCS_70 || int*4 || 0/1 || 1 if present in the PCCS 70 GHz band
      7 : Search in SDSS galaxy catalogue from Planck Collab.
+
|-
    20 : XMM-Newton confirmation from Planck Collab.
+
|XFLAG_PCCS_44 || int*4 || 0/1 || 1 if present in the PCCS 44 GHz band
    50 : ENO-imaging confirmation from Planck Collab.
+
|-
    60 : WFI-imaging confirmation from Planck Collab.
+
|XFLAG_PCCS_30 || int*4 || 0/1 || 1 if present in the PCCS 30 GHz band
    65 : NTT-spectroscopic confirmation from Planck Collab.
+
|-
    500 : RTT-spectroscopic confirmation from Planck Collab.
+
|XFLAG_PSZ || int*4 || 0/1 || 1 if present in the PCCS PSZ
    600 : NOT-spectroscopic confirmation from Planck Collab.
+
|-
    650 : GEMINI-spectroscopic confirmation from Planck Collab.
+
|XFLAG_PHZ || int*4 || 0/1 || 1 if present in the PCCS HZ
    700 : ENO-spectroscopic confirmation from Planck Collab.
+
|-
 
+
|XFLAG_HKP_GCC || int*4 || 0/1 || 1 if present in the Herschel HKP-GCC
'''Caveats'''
 
 
 
The following issue was found in Feb. 2014 in R1.11 of the MMF3 catalogue: the POS_ERR field values are overestimated by a factor 3.125 on average.  This issue has been resolved in R1.12.  A corrected version of the union catalogue has also been produced (also R1.12)
 
  
The approximate 68% (1-sigma) confidence interval in the POS_ERR field is computed as half of the 95% (2-sigma) confidence interval. Previously this was erroneously described as a 95% confidence interval.
+
|}
  
  
 +
'''Notes'''
 +
# 1: The position angle of the 2D ellipse is defined as the angle between the axis parallele to the Galactic plane and the major axis, measured clockwise.
 +
# 2: The warm background flux densities are computed using the same solid angle as for the clump flux densities, but on the warm conponent map.
 +
# 3: See text above for a full description of the FLUX_QUALITY flag, for which "1" is best.
 +
# 4: This relative bias due to blending provides a rough estimate of the factor that should be applied to the clump flux densities to obtain a corrected estimate. It has been completed using on a very simple modelling of clump morphologies and the local environment. It therefore should be used with caution.
 +
# 5: See text above for a full description of the DIST_QUALITY flag.
 +
# 6: Temperature and spectral index of the warm background are based on the warm background flux density estimates obtained on the same solid angle used for the clumps
  
  
</div>
+
==(2015) Planck list of high-redshift source candidates==
</div>
 
  
 +
The Planck list of high-redshift source candidates (PHZ) is a list of 2151 sources located in the cleanest 26% of the sky and identified as point sources
 +
exhibiting an excess in the submillimetre compared to their environment. It has been built using the 48 months ofPlanck data at 857, 545, 353, and 217 GHz, combined with the 3-THz IRAS data, as described in {{PlanckPapers | planck2015-XXXIX}}. These sources are considered as high-z source candidates (z>1.5-2), given the very low contamination by Galactic cirrus, and their typical colour-colour ratios. A subsample of the PHZ list has already been followed-up with Herschel, and chararcterized as overdensities of red galaxies for more than 93% of the population, and as strongly lensed galaxies in 3% of the cases, as detailed in {{PlanckPapers | planck2014-XXVIII}}.
  
==(2015) Planck Catalogue of Galactic Cold Clumps==
+
The all-sky distribution of the PHZ sources is shown below on an orthographic projection.
 
+
[[File:PHZ_allsky.png|800px|thumb|center|All-sky distribution of the 2151 PHZ sources in orthographic projection.]]
= Catalogue of ''Planck'' Galactic Cold Clumps ==
 
 
 
The catalogue of ''Planck'' Galactic Cold Clumps (PGCC) is a list of 13188 Galactic sources and 54 sources located in the Small and Large Magellanic Clouds, identified as cold sources in Planck data, as described in {{PlanckPapers|planck2014-a37||Planck-2015-A37}}. The sources are extracted with the CoCoCoDeT algorithm (Montier, 2010<!--{{BibCite|Montier2010}}-->), using Planck-HFI 857, 545, and 353 GHz maps and the 3 THz IRIS map
 
(Miville 2005)<!--{{BibCite|Miville2005}}-->, an upgraded version of the IRAS data at 5 arcmin resolution. This is the first all-sky catalogue of Galactic cold sources obtained with homogeneous methods and data.
 
 
 
The CoCoCoDeT detection algorithm uses the 3 THz map as a spatial template of a warm background component. Local estimates of the average colour of the background are derived at 30 arcmin resolution around each pixel of the maps at 857, 545, and 353 GHz. Together these describe a local warm component that is subtracted, leaving  857, 545, and 353 GHz maps of the cold residual component map over the full sky. A point source detection algorithm is applied to these three maps. A detection requires S/N > 4 in pixels in all Planck bands and a minimum angular distance of 5 arcmin to other detections.
 
 
 
A 2D Gaussian fit provides an estimate of the position angle and FWHM size along the major and minor axes. The ellipse defined by the FWHM values is used in aperture photometry to derive the flux density estimates in all four bands. Based on the quality of the flux density estimates in all four bands, PGCC sources are divided into three categories of FLUX_QUALITY:
 
* FLUX_QUALITY=1 : sources with flux density estimates at S/N > 1 in all bands ;
 
* FLUX_QUALITY=2 : sources with flux density estimates at S/N > 1 only in 857, 545, and 353 GHz Planck bands, considered as very cold source candidates ;
 
* FLUX_QUALITY=3 : sources without any reliable flux density estimates, listed as poor candidates.
 
We also raise a flag on the blending between sources which can be used to quantify the reliability of the aperture photometry processing.
 
 
 
To estimate possible contamination by extragalactic sources we (1) cross-correlated the positions with catalogues of extragalactic sources, (2) rejected detections with SED [in colour-colour plots] consistent with radio sources, and (3) rejected detections with clear association to extragalactic sources visible in DSS images. Compared to the original number of sources, these only resulted in a small number of rejections.
 
  
Distance estimates, combining seven different methods, have been obtained for 5574 sources with estimates ranging from hundreds of pc in local molecular clouds up to 10.5 kpc along the Galactic plane.  The methods include cross-correlation with kinematic distances previously listed for infrared dark clouds (IRDCs), optical and near-infrared extinction using SDSS and 2MASS data, respectively, association with molecular clouds with known distances, and finally referencing parallel work done on a small sample of sources followed up with Herschel. Most PGCC sources appear to be located in the solar neighbourhood.
 
  
The derived physical properties of the PGCC sources are: temperature, column density, physical size, mass, density and luminosity.
+
The PHz source list is contained in the FITS file {{PLASingleFile | fileType=cat | name=HFI_PCCS_HZ_R2.00.fits  | link=HFI_PCCS_HZ_R2.00.fits }}.
PGCC sources exhibit an average temperature of about 14K, and ranging from 5.8 to 20K. They span a large range of physical properties (such as column density, mass and density) covering a large varety of objects, from dense cold cores to large molecular clouds.
+
Its structure is as follows.
 
 
The validation of this catalogue has been performed with a Monte Carlo Quality Assessment analysis wich allowed us to quantify the statistical reliability of the flux densities and of the source position and geometry estimates. The position accuracy is better than 0.2' and 0.8' for 68% and 95% of the sources, respectively, while the ellipticity of the sources is recovered with an accuracy better than 10% at 1<math>\sigma</math>. This kind of analysis is also very powerful to characterize the selection function of the CoCoCoDeT algorithm applied to Planck data. The completeness of the detection has been studied as a function of the temperature of the injected sources. It has been shown that sources with FLUX_QUALITY=2 are effectively sources with low temperatures and have a high completeness level for temperatures below 10K.
 
 
 
We computed the cross-correlation between the PGCC catalogue and the other internal ''Planck'' catalogues: PCCS2, PCCS2E, PSZ and PH''z''. The PGCC catalogue contains about 45% new sources, not simultaneously detected in the 857, 545, and 353 GHz bands of the PCCS2 and PCCS2E. A few sources (65) are also detected in the PSZ2 and PGCC catalogues, suggesting a dusty nature of these candidates. Finally there are only 15 sources in common between the PGCC and PHz (which is focused on extragalactic sources at high redshift), that require further analysis to elucidate.
 
 
 
The PGCC catalogue contains also 54 sources located in the Small and Large Magellanic Clouds (SMC and LMC), two nearby galaxies which are so close that we can identify individual clumps in them.
 
 
 
The all-sky distribution of the PGCC sources is shown below on top of the 857 GHz emission shown in logarithmic scale between 10<sup>-2</sup> to 10<sup>2</sup> MJy/sr.
 
[[File:PGCC_allsky.png|800px|thumb|center|All-sky distribution of the PGCC sources.]]
 
 
 
Sources are divided into three categories based on the reliability of the flux density estimates in IRAS 3 THz and Planck 857, 545, and 353 GHz bands.
 
* FLUX_QUALITY=1 : sources with flux density estimates S/N > 1 in all bands ;
 
* FLUX_QUALITY=2 : sources with flux density estimates S/N > 1 only in 857, 545, and 353 GHz Planck bands, considered as very cold source candidates ;
 
* FLUX_QUALITY=3 : sources without any reliable flux density estimates, listed as poor candidates.
 
The all-sky distributions of the PGCC sources per FLUX_QUALITY category are shown below on top of the 857 GHz map in grey scale shown in logarithmic scale between 10<sup>-2</sup> to 10<sup>2</sup> MJy/sr.
 
[[File:PGCC_allsky_FQ1.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=1.]]
 
[[File:PGCC_allsky_FQ2.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=2.]]
 
[[File:PGCC_allsky_FQ3.png|800px|thumb|center|All-sky distribution of the PGCC sources with FLUX_QUALITY=3.]]
 
 
 
Distance estimates have been obtained on 5574 PGCC sources using seven different methods/technics, as described in {{PlanckPapers | planck2014-a37}}. A flag is raised to quantify the quality of the distance estimates, defined as follows:
 
* DIST_QUALITY=0 : No distance estimate ;
 
* DIST_QUALITY=1 : Single distance estimate ;
 
* DIST_QUALITY=2 : Multiple distance estimates which are consistent within 1<math>\sigma</math> ;
 
* DIST_QUALITY=3 : Multiple distance estimates which are not consistent within 1<math>\sigma</math> ;
 
* DIST_QUALITY=4 : Single upper limits.
 
 
 
The all-sky distribution of the sources with robust distance estimates is shown below.
 
[[File:PGCC_allsky_DIST.png|800px|thumb|center|All-sky distribution of the  4655 PGCC sources for which a distance estimate with a DIST_QUALITY flag equal to 1 or 2 is available. The various types of distance estimates are defined as follows : kinematic (purple), optical extinction (blue), near-infrared extinction (green), molecular complex association (orange), and Herschel HKP-GCC (red). We also show the distribution of  the 664 sources with an upper-limit estimate  (DIST_QUALITY=4) provided by the near-infrared extinction method (light green). Molecular complexes are outlined with black contours.]]
 
 
 
The catalogue is contained in the FITS file {{PLASingleFile | fileType=cat | name=HFI_PCCS_GCC_R2.02.fits  | link=HFI_PCCS_GCC_R2.02.fits }}.  
 
It structure is as follows:
 
  
 
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=1000px
 
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=1000px
 
|+ '''FITS file structure'''
 
|+ '''FITS file structure'''
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
 
! colspan="4" | Identification
 
! colspan="4" | Identification
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS Keyword || Data type || Units || Description
|-  
+
|-
|NAME || String || || Source Name
+
|NAME || String || || Source name
|-  
+
|-
|SNR || real*8 || || Maximum S/N over the 857, 545, and 353 GHz Planck cold residual maps
+
|SNR_X545 || real*8 || || S/N in the 545 GHz excess map
|-  
+
|-
|SNR_857 || real*8 || || S/N of the cold residual detection at 857 GHz
+
|SNR_D857 || real*8 || || S/N in the 857 GHz cleaned map
|-  
+
|-
|SNR_545 || real*8 || || S/N of the cold residual detection at 545 GHz
+
|SNR_D545 || real*8 || || S/N in the 545 GHz cleaned map
|-  
+
|-
|SNR_353 || real*8 || || S/N of the cold residual detection at 353 GHz
+
|SNR_D353 || real*8 || || S/N in the 353 GHz cleaned map
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
 
! colspan="4" | Source position
 
! colspan="4" | Source position
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS Keyword || Data type || Units || Description
|-  
+
|-
 
|GLON || real*8 || deg || Galactic longitude based on morphology fitting
 
|GLON || real*8 || deg || Galactic longitude based on morphology fitting
|-  
+
|-
 
|GLAT || real*8 || deg || Galactic latitude based on morphology fitting
 
|GLAT || real*8 || deg || Galactic latitude based on morphology fitting
|-  
+
|-
 
|RA || real*8 || deg || Right ascension (J2000) in degrees transformed from (GLON, GLAT)
 
|RA || real*8 || deg || Right ascension (J2000) in degrees transformed from (GLON, GLAT)
|-  
+
|-
 
|DEC || real*8 || deg || Declination (J2000) in degrees transformed from (GLON, GLAT)
 
|DEC || real*8 || deg || Declination (J2000) in degrees transformed from (GLON, GLAT)
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
 
! colspan="4" | Morphology
 
! colspan="4" | Morphology
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS Keyword || Data type || Units || Description
|-  
+
|-
 
|GAU_MAJOR_AXIS || real*8 || arcmin || FWHM along the major axis of the elliptical Gaussian
 
|GAU_MAJOR_AXIS || real*8 || arcmin || FWHM along the major axis of the elliptical Gaussian
|-  
+
|-
|GAU_MAJOR_AXIS_SIG || real*8 || arcmin || 1<math>\sigma</math> uncertainty on the FWHM along the major axis
+
|GAU_MAJOR_AXIS_SIG || real*8 || arcmin || 1&sigma; uncertainty on the FWHM along the major axis
|-  
+
|-
 
|GAU_MINOR_AXIS || real*8 || arcmin ||  FWHM along the minor axis of the elliptical Gaussian
 
|GAU_MINOR_AXIS || real*8 || arcmin ||  FWHM along the minor axis of the elliptical Gaussian
|-  
+
|-
|GAU_MINOR_AXIS_SIG || real*8 || arcmin ||  1<math>\sigma</math> uncertainty on the FWHM along the minor axis
+
|GAU_MINOR_AXIS_SIG || real*8 || arcmin ||  1&sigma; uncertainty on the FWHM along the minor axis
|-  
+
|-
|GAU_POSITION_ANGLE || real*8 || rad || Position angle of the elliptical gaussian (see note 1)  
+
|GAU_POSITION_ANGLE || real*8 || rad || Position angle of the elliptical Gaussian (see note 1)
|-  
+
|-
|GAU_POSITION_ANGLE_SIG || real*8 || rad || 1<math>\sigma</math> uncertainty on the position angle
+
|GAU_POSITION_ANGLE_SIG || real*8 || rad || 1&sigma; uncertainty on the position angle
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
 
! colspan="4" | Photometry
 
! colspan="4" | Photometry
|- bgcolor="ffdead"  
+
|- bgcolor="ffdead"
! FITS Keyword || Data Type || Units || Description
+
! FITS Keyword || Data type || Units || Description
|-  
+
|-
|FLUX_3000_CLUMP || real*8 || Jy || Flux density of the clump at 3 THz
+
|FLUX_CLEAN_857 || real*8 || Jy || Flux density of the clump at 857 GHz
|-  
+
|-
|FLUX_3000_CLUMP_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the clump at 3 THz
+
|FLUX_CLEAN_857_SIG_SKY || real*8 || Jy || 1&sigma; uncertainty at 857 GHz due to sky confusion
|-  
+
|-
|FLUX_857_CLUMP || real*8 || Jy || Flux density of the clump at 857 GHz
+
|FLUX_CLEAN_857_SIG_DATA || real*8 || Jy || 1&sigma; uncertainty at 857 GHz due to measurement error
|-  
+
|-
|FLUX_857_CLUMP_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the clump at 857 GHz
+
|FLUX_CLEAN_857_SIG_GEOM || real*8 || Jy || 1&sigma; uncertainty at 857 GHz due to elliptical Gaussian fit accuracy
|-  
+
|-
|FLUX_545_CLUMP || real*8 || Jy || Flux density of the clump at 545 GHz
+
|FLUX_CLEAN_545 || real*8 || Jy || Flux density of the clump at 545 GHz
|-  
+
|-
|FLUX_545_CLUMP_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the clump at 545 GHz
+
|FLUX_CLEAN_545_SIG_SKY || real*8 || Jy || 1&sigma; uncertainty at 545 GHz due to sky confusion
|-  
+
|-
|FLUX_353_CLUMP || real*8 || Jy || Flux density of the clump at 353 GHz
+
|FLUX_CLEAN_545_SIG_DATA || real*8 || Jy || 1&sigma; uncertainty at 545 GHz due to measurement error
|-  
+
|-
|FLUX_353_CLUMP_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the clump at 353 GHz
+
|FLUX_CLEAN_545_SIG_GEOM || real*8 || Jy || 1&sigma; uncertainty at 545 GHz due to elliptical Gaussian fit accuracy
|-  
+
|-
|FLUX_3000_WBKG || real*8 || Jy || Flux density of the warm background at 3 THz (see note 2)
+
|FLUX_CLEAN_353 || real*8 || Jy || Flux density of the clump at 353 GHz
|-  
+
|-
|FLUX_3000_WBKG_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of warm background at 3 THz
+
|FLUX_CLEAN_353_SIG_SKY || real*8 || Jy || 1&sigma; uncertainty at 353 GHz due to sky confusion
|-  
+
|-
|FLUX_857_WBKG || real*8 || Jy || Flux density of the warm background at 857 GHz
+
|FLUX_CLEAN_353_SIG_DATA || real*8 || Jy || 1&sigma; uncertainty at 353 GHz due to measurement error
|-  
+
|-
|FLUX_857_WBKG_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the warm background at 857 GHz
+
|FLUX_CLEAN_353_SIG_GEOM || real*8 || Jy || 1&sigma; uncertainty at 353 GHz due to elliptical Gaussian fit accuracy
|-  
+
|-
|FLUX_545_WBKG || real*8 || Jy || Flux density of the warm background at 545 GHz
+
|FLUX_CLEAN_217 || real*8 || Jy || Flux density of the clump at 217 GHz
|-  
+
|-
|FLUX_545_WBKG_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the warm background at 545 GHz
+
|FLUX_CLEAN_217_SIG_SKY || real*8 || Jy || 1&sigma; uncertainty at 217 GHz due to sky confusion
|-  
+
|-
|FLUX_353_WBKG || real*8 || Jy || Flux density of the warm background at 353 GHz
+
|FLUX_CLEAN_217_SIG_DATA || real*8 || Jy || 1&sigma; uncertainty at 217 GHz due to measurement error
|-  
+
|-
|FLUX_353_WBKG_SIG || real*8 || Jy || 1<math>\sigma</math> uncertainty on the flux density of the warm background at 353 GHz
+
|FLUX_CLEAN_217_SIG_GEOM || real*8 || Jy || 1&sigma; uncertainty at 217 GHz due to elliptical Gaussian fit accuracy
|-  
+
|- bgcolor="ffdead" 
|FLUX_QUALITY || int*4 || 1-3 || Category of flux density reliability (see note 3)
+
! colspan="4" | Physical Properties
|-  
+
|- bgcolor="ffdead" 
|FLUX_BLENDING || int*4 || 0/1 || 1 if blending issue with flux density estimate (see note 4)
+
! FITS Keyword || Data type || Units || Description
|-  
+
|-
|FLUX_BLENDING_IDX || int*8 || || Catalogue index of the closest source responsible for blending
+
|PROB_COLCOL || real*8 ||  || Colour-colour selection probability
|-  
+
|-
|FLUX_BLENDING_ANG_DIST || real*8 || arcmin || Angular distance to the closest source responsible for blending
+
|EBV_MEAN || real*8 ||  || Mean extinction <i>E</i>(<i>B</i> − <i>V</i>)<sub>xgal</sub> within the source PSF
 +
|-
 +
|EBV_APER || real*8 ||  || Aperture estimate of the extinction <i>E</i>(<i>B</i> − <i>V</i>)<sub>xgal</sub> within the source PSF
 +
|-
 +
|EBV_APER_SIG || real*8 || || 1&sigma; uncertainty of the aperture extinction <i>E</i>(<i>B</i> − <i>V</i>)<sub>xgal</sub> within the source PSF
 +
|-
 +
|ZPHOT_[25,30,35,40,45,50]K || real*8 || || Submm photometric redshift estimate with <i>T</i><sub>xgal</sub> = 25, 30, 35, 40, 45, and 50 K
 +
|-
 +
|ZPHOT_[25,30,35,40,45,50]K_LOW || real*8 || || Lower limit of the 68 % confidence level
 +
|-
 +
|ZPHOT_[25,30,35,40,45,50]K_UP || real*8 ||  || Upper limit of the 68 % confidence level
 +
|-
 +
|ZPHOT_[25,30,35,40,45,50]K_CHI2 || real*8 || || Reduced &chi;<sup>2</sup> of the best fit
 +
|-
 +
|LFIR_[25,30,35,40,45,50]K || real*8 || <i>L</i><sub>&#9737;</sub> || FIR luminosity estimate with <math>T_{xgal}</math> = 25, 30, 35, 40, 45, and 50 K
 +
|-
 +
|LFIR_[25,30,35,40,45,50]K_LOW || real*8 ||  <i>L</i><sub>&#9737;</sub> || Lower limit of the 68 % confidence level
 +
|-
 +
|LFIR_[25,30,35,40,45,50]K_UP || real*8 ||  <i>L</i><sub>&#9737;</sub> || Upper limit of the 68 % confidence level
 +
|-
 +
|SFR_[25,30,35,40,45,50]K || real*8 || <i>M</i><sub>&#9737;</sub>yr<sup>-1</sup> || Star Formation Rate estimate with <i>T</i><sub>xgal</i> = 25, 30, 35, 40, 45, and 50 K
 +
|-
 +
|SFR_[25,30,35,40,45,50]K_LOW || real*8 || <i>M</i><sub>&#9737;</sub>yr<sup>-1</sup> || Lower limit of the 68 % confidence level
 +
|-
 +
|SFR_[25,30,35,40,45,50]K_UP || real*8 || <i>M</i><sub>&#9737;</sub>yr<sup>-1</sup> || Upper limit of the 68 % confidence level
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Flags
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 +
|-
 +
|XFLAG_PLANCK || string || || Contains the list of Planck catalogues matching the source: PCCS 857-, 545-, 353-, 217-, 143-, 100-, 70-, 44-, 33-GHz, PSZ, and PGCC
 +
|-
 +
|XFLAG_HERSCHEL || int*4 || 0/1 || 1 if present in the Herschel follow-up programme
 +
 
 +
|}
 +
 
 +
 
 +
== (2015) Second SZ Catalogue ==
 +
 
 +
The Planck SZ catalogue is constructed as described in [[Compact_Source_catalogues#Planck_Sunyaev-Zeldovich_catalogue|SZ catalogue]] and in sections 2 and 3 of {{PlanckPapers|planck2014-a36}}. Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The completeness and reliability of the catalogues have been assessed through internal and external validation, as described in section 4 of {{PlanckPapers|planck2014-a36}}.
 +
 
 +
The size of a detected object is given in terms of the scale size, &theta;<sub>s</sub>, and the flux is given in terms of the total integrated Comptonization parameter, <i>Y</i> = <i>Y</i><sub>5R500</sub>. The parameters of the generalized NFW profile assumed by the detection pipelines are written in the headers of the catalogues. For the sake of convenience, the conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub> is also provided in the header.
 +
 
 +
The union catalogue contains the coordinates of a detection, its signal-to-noise ratio, an estimate of <i>Y</i> and its uncertainty, together with a summary of the validation information, including external identification of a cluster and its redshift, if they are available. The pipeline from which the information is taken is called the reference pipeline. If more than one pipeline makes the same detection, the information is taken from the the pipeline that makes the most significant detection. Where the redshift is known, we provide the SZ mass for the reference pipeline.
 +
 
 +
The individual catalogues contain the coordinates and the signal-to-noise ratios of the detections, and information on the sizes and flux densities of the detections. The entries are cross-referenced to the detections in the union catalogue. The full information on the degeneracy between &theta;<sub>s</sub> and <i>Y</i> is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. This is provided in this form so it can be combined with a model or external data to produce tighter constraints on the source parameters. The individual catalogues also contain Planck measurements of the SZ mass observable, <i>M</i><sub>SZ</sub>, as calculated using a <i>Y-M</i> scaling relation and an assumed redshift, in order to break the <i>Y</i>-&theta;<sub>s</sub> degeneracy.  These are provided for each detection as functions of assumed redshift, in the range 0.01 < <i>z</i> < 1, along with the upper and lower 68% confidence limits.
 +
 
 +
The selection function of the union catalogue, the intersection catalogue, and the individual catalogues are provided in additional files. The selection function files contain the probability of detection for clusters of given intrinsic parameters &theta;<sub>500</sub> and <i>Y</i><sub>500</sub>.  The file includes the definition of the survey area in the form of a HEALPix mask, and is evaluated for a range of signal-to-noise thresholds between 4.5 and 10.
 +
 
 +
==== Union catalogue ====
 +
 
 +
The union catalogue is contained in  ''{{PLASingleFile|fileType=cat | name=HFI_PCCS_SZ-union_R2.08.fits | link=HFI_PCCS_SZ-union_R2.08.fits}}''.
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
 +
|- bgcolor="ffdead" 
 +
!colspan="4" | Extension 0: primary header, no data
 +
|- bgcolor="ffdead" 
 +
! FITS keyword || Data type || Units || Description
 
|-  
 
|-  
|FLUX_BLENDING_BIAS_3000 || real*8 || % || Relative bias of the flux density at 3000 GHz due to blending
+
|INSTRUME || String || || Instrument (HFI)
 
|-  
 
|-  
|FLUX_BLENDING_BIAS_857 || real*8 || % || Relative bias of the flux density at 857 GHz due to blending
+
| VERSION || String || || Version of catalogue
 
|-  
 
|-  
|FLUX_BLENDING_BIAS_545 || real*8 || % || Relative bias of the flux density at 545 GHz due to blending
+
| DATE || String || || Date file created: yyyy-mm-dd
|- 
 
|FLUX_BLENDING_BIAS_353 || real*8 ||  % || Relative bias of the flux density at 353 GHz due to blending
 
|- bgcolor="ffdead" 
 
! colspan="4" | Distance
 
|- bgcolor="ffdead" 
 
! FITS Keyword || Data Type || Units || Description
 
 
|-  
 
|-  
|DIST_KINEMATIC || real*8 || kpc || Distance estimate [1] using kinematics
+
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
 
|-  
 
|-  
|DIST_KINEMATIC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [1] using kinematics
+
| TELESCOP || String || || Telescope (PLANCK)
 
|-  
 
|-  
|DIST_OPT_EXT_DR7 || real*8 || kpc || Distance estimate [2] using optical extinction on SDSS DR7
+
| CREATOR || String || || Pipeline version
 
|-  
 
|-  
|DIST_OPT_EXT_DR7_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [2] using optical extinction on SDSS DR7
+
| DATE-OBS || String || || Start date of the survey: yyyy-mm-dd
 
|-  
 
|-  
|DIST_OPT_EXT_DR9 || real*8 || kpc || Distance estimate [3] using optical extinction on SDSS DR9
+
| DATE-END || String || || End date of the survey: yyyy-mm-dd
 
|-  
 
|-  
|DIST_OPT_EXT_DR9_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [3] using optical extinction on SDSS DR9
+
| PROCVER || String || || Data version
 
|-  
 
|-  
|DIST_NIR_EXT_IRDC || real*8 || kpc || Distance estimate  [4] using near-infrared extinction towards IRDCs
+
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter
 
|-  
 
|-  
|DIST_NIR_EXT_IRDC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate  [4] using near-infrared extinction towards IRDCs
+
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter
 
|-  
 
|-  
|DIST_NIR_EXT || real*8 || kpc || Distance estimate [5] using near-infrared extinction
+
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter
 
|-  
 
|-  
|DIST_NIR_EXT_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [5] using near-infrared extinction
+
| PP_C500 || Real*4 || || GNFW pressure profile <i>c</i><sub>500</sub> parameter
 
|-  
 
|-  
|DIST_MOLECULAR_COMPLEX || real*8 || kpc || Distance estimate [6] using molecular complex association
+
| PP_Y2YFH || Real*4 || || Conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub>
|-
+
 
|DIST_MOLECULAR_COMPLEX_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [6] using molecular complex association
 
|-
 
|DIST_HKP_GCC || real*8 || kpc || Distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
 
|-
 
|DIST_HKP_GCC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
 
|-
 
|DIST_OPTION || int*4 || 0-7 || Option of the best distance estimate used in other physical properties
 
|-
 
|DIST_QUALITY || int*4 || 0-4 || Quality Flag of the consistency between distance estimates (see note 5)
 
|-
 
|DIST || real*8 || kpc || Best distance estimate used for further physical properties
 
|-
 
|DIST_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the best distance estimate
 
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! colspan="4" | Temperature
+
!colspan="4" | Extension 1: BINTABLE, EXTNAME = PSZ2_UNION
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS Keyword || Data Type || Units || Description
+
! Column Name || Data type || Units || Description
|-  
+
|-
|TEMP_CLUMP || real*8 || K || Temperature of the clump with <math>\beta</math> as a free parameter
+
|INDEX || Int*4 || || Index used to cross-reference with individual catalogues
|-  
+
|-
|TEMP_CLUMP_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the clump temperature with <math>\beta</math> free
+
|NAME || String || || Source name (see note 1)
|-  
+
|-
|TEMP_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with <math>\beta</math> free
+
|GLON || Real*8 || deg || Galactic longitude
|-  
+
|-
|TEMP_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with <math>\beta</math> free
+
|GLAT || Real*8 || deg || Galactic latitude
|-  
+
|-
|BETA_CLUMP || real*8 || || Spectral index <math>\beta</math> of the clump
+
|RA  || Real*8 || deg || Right ascension (J2000) transformed from (GLON,GLAT)
|-  
+
|-
|BETA_CLUMP_SIG || real*8 || || 1<math>\sigma</math> uncertainty (from MCMC) on the emissivity spectral index <math>\beta</math> of the clump
+
|DEC  || Real*8 || deg || Declination (J2000) transformed from (GLON,GLAT)
|-  
+
|-
|BETA_CLUMP_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index <math>\beta</math> of the clump
+
|POS_ERR || Real*4 || arcmin || Position uncertainty (95% confidence interval)
|-  
+
|-
|BETA_CLUMP_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index <math>\beta</math> of the clump
+
|SNR || Real*4 || || Signal-to-noise ratio of the detection
|-  
+
|-
|TEMP_BETA2_CLUMP || real*8 || K || Temperature of the clump with <math>\beta</math> = 2
+
|PIPELINE || Int*4 || || Pipeline from which information is taken (reference pipeline): 1= MMF1; 2 = MMF3; 3 = PwS
|-  
+
|-
|TEMP_BETA2_CLUMP_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the temperature of the clump with <math>\beta</math> = 2
+
|PIPE_DET || Int*4 || || Pipelines that detect this object (see note 2)
|-  
+
|-
|TEMP_BETA2_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with <math>\beta</math> = 2
+
|PCCS2 || Bool || || Indicates whether detection matches with any in PCCS2 catalogues
|-  
+
|-
|TEMP_BETA2_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with <math>\beta</math> = 2
+
|PSZ || Int*4 || || Index of matching detection in PSZ1, or -1 if new detection
|-  
+
|-
|TEMP_WBKG || real*8 || K || Temperature of the warm background with <math>\beta</math> as a free parameter (see note 6)
+
|IR_FLAG || Int*1 || || Flag denoting heavy IR contamination
|-  
+
|-
|TEMP_WBKG_SIG || real*8 || K || 1<math>\sigma</math> dispersion of the warm background temperature with <math>\beta</math> free
+
|Q_NEURAL || Real*4 || || Neural network quality flag (see note 3)
|-  
+
|-
|TEMP_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with <math>\beta</math> free
+
|Y5R500 || Real*4 || 10<sup>-3</sup>&nbsp;arcmin<sup>2</sup> || Mean marginal <i>Y</i><sub>5R500</sub> as determined by reference pipeline
|-  
+
|-
|TEMP_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with <math>\beta</math> free
+
|Y5R500_ERR || Real*4 || 10<sup>-3</sup>&nbsp;arcmin<sup>2</sup> || Uncertainty on <i>Y</i><sub>5R500</sub> as determined by reference pipeline
|-  
+
|-
|BETA_WBKG || real*8 || || Spectral index <math>\beta</math> of the warm background (see note 6)
+
|VALIDATION || Int*4 || || External validation status (see note 4)
|-  
+
|-
|BETA_WBKG_SIG || real*8 || || 1<math>\sigma</math> uncertainty (from MCMC) of the emissivity spectral index <math>\beta</math> of the warm background
+
|REDSHIFT_ID || String || || External identifier of cluster associated with redshift measurement (see note 5)
|-  
+
|-
|BETA_WBKG_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index <math>\beta</math> of the warm background
+
|REDSHIFT || Real*4 || || Redshift of cluster (see note 5)
|-  
+
|-
|BETA_WBKG_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index <math>\beta</math> of the warm background
+
|MSZ || Real*4 || 10<sup>14</sup>&nbsp;<i>M</i><sub>&#9737;</sub> || SZ mass proxy (see note 6)
|-  
+
|-
|TEMP_BETA2_WBKG || real*8 || K || Temperature of the warm background with <math>\beta</math> = 2
+
|MSZ_ERR_UP || Real*4 || 10<sup>14</sup>&nbsp;<i>M</i><sub>&#9737;</sub> || Upper bound of 68% SZ mass proxy confidence interval (see note 6)
|-  
+
|-
|TEMP_BETA2_WBKG_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the temperature of the warm background with <math>\beta</math> = 2
+
|MSZ_ERR_LOW || Real*4 || 10<sup>14</sup>&nbsp;<i>M</i><sub>&#9737;</sub> || Lower bound of 68% SZ mass proxy confidence interval (see note 6)
|-  
+
|-
|TEMP_BETA2_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with <math>\beta</math> = 2
+
|MCXC || String || || Identifier of X-ray counterpart in the MCXC, if one is present
|-  
+
|-
|TEMP_BETA2_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with <math>\beta</math> = 2
+
|REDMAPPER || String || || Identifier of optical counterpart in the RedMAPPer catalogue, if one is present
|- bgcolor="ffdead" 
+
|-
! colspan="4" | Physical properties
+
|ACT || String || || Identifier of SZ counterpart in the ACT catalogues, if one is present
|- bgcolor="ffdead" 
+
|-
! FITS Keyword || Data Type || Units || Description
+
|SPT || String || || Identifier of SZ counterpart in the SPT catalogues, if one is present
|-  
+
|-
|NH2 || real*8 || cm<sup>-2</sup> || Column density <math>N_{H_2}</math> of the clump
+
|WISE_FLAG || Int*4 || || Confirmation flag of WISE overdensity (see note 7)
|-  
+
|-
|NH2_SIG || real*8 || cm<sup>-2</sup> || 1<math>\sigma</math> uncertainty on the column density
+
|AMI_EVIDENCE || Real*4 || || Bayesian evidence for AMI counterpart detection (see note 8)
|-
+
|-
|NH2_LOW[1,2,3] || real*8 || cm<sup>-2</sup> || Lower 68%, 95% and 99% confidence limit of the column density
+
|COSMO || Bool || || Indicates whether detection is in the cosmology sample
|-  
+
|-
|NH2_UP[1,2,3]  || real*8 || cm<sup>-2</sup> || Upper 68%, 95% and 99% confidence limit of the column density
+
|COMMENT|| String || || Comments on this detection
|-
+
|}
|MASS || real*8 || <math>M_{o}</math> || Mass estimate of the clump
+
 
|-
+
'''Notes'''
|MASS_SIG  || real*8 || <math>M_{o}</math> || 1<math>\sigma</math> uncertainty on the mass estimate of the clump
+
# Format is <tt>PSZ2 Glll.ll&plusmn;bb.b</tt> where <i>l</i> and <i>b</i> are the Galactic coordinates, truncated to two decimal places.
|-  
+
# The three least significant decimal digits are used to represent detection or non-detection by the pipelines. The order of the digits is: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
|MASS_LOW[1,2,3]  || real*8 || <math>M_{o}</math> || Lower 68%, 95% and 99% confidence limit of the mass estimate
+
# Neural network quality flag is 1-<i>Q</i><sub>bad</sub>, following the definitions in Aghanim et al. 2014.
|-  
+
# Summary of the external validation, encoding the most robust external identification: 10 = ENO follow-up; 11 = RTT follow-up; 12 = PanSTARRs; 13 = RedMAPPer non-blind; 14 = SDSS high-z; 15 = AMI; 16 = WISE; 20 = legacy identification from the PSZ1; 21 = MCXC; 22 = SPT; 23 = ACT; 24 = RedMAPPer; 25 = legacy identification from PSZ1 with externally updated redshift; 30 = NED; and -1 = no known external counterpart.
|MASS_UP[1,2,3] || real*8 || <math>M_{0}</math> || Upper 68%, 95% and 99% confidence limit of the mass estimate
+
# The redshift source is the most robust external identification listed in the VALIDATION field.
|-  
+
# <i>M</i><sub>SZ</sub> is the hydrostatic mass assuming the best-fit <i>Y-M</i> scaling relation of Arnaud (2010) as a prior. The uncertainties are statistical and based on the Planck measurement uncertainties only.  Not included in the uncertainties are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.
|DENSITY || real*8 || cm<sup>-3</sup> || Mean density of the clump
+
# Assigned by visual inspection: 0 = no significant galaxy overdensity; 1 = possible galaxy overdensity; 2 = probable galaxy overdensity; 3 = significant galaxy overdensity detected; -1 = possible galaxy overdensity (affected by bright star artefacts); -2 = no significant galaxy overdensity (affected by bright star artefacts); -3 = no assessment possible (affected by bright star artefacts); and -10 = not analysed.
|-  
+
# Defined in the paper.
|DENSITY_SIG  || real*8 || cm<sup>-3</sup>  || 1<math>\sigma</math> uncertainty on the mean density estimate of the clump
+
 
 +
==== Individual catalogues ====
 +
 
 +
The individual pipeline catalogues are contained in the FITS files
 +
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-MMF1_R2.08.fits | link=HFI_PCCS_SZ-MMF1_R2.08.fits }} (MMF1 pipeline)
 +
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-MMF3_R2.08.fits  | link=HFI_PCCS_SZ-MMF3_R2.08.fits }} (MMF3 pipeline)
 +
* {{PLASingleFile | fileType=cat | name=HFI_PCCS_SZ-PwS_R2.08.fits  | link=HFI_PCCS_SZ-PwS_R2.08.fits }} (PowellSnakes pipeline).
 +
 
 +
Their structure is shown in the following table.
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
 +
|+ <small>'''FITS file structure'''</small>
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Extension 0: Primary header, no data
 +
|- bgcolor="ffdead" 
 +
! FITS keyword || Data type || Units || Description
 
|-  
 
|-  
|DENSITY_LOW[1,2,3]  || real*8 || cm<sup>-3</sup>  || Lower 68%, 95% and 99% confidence limit of the mean density estimate
+
|INSTRUME || String || || Instrument (HFI)
 
|-  
 
|-  
|DENSITY_UP[1,2,3]  || real*8 || cm<sup>-3</sup> || Upper 68%, 95% and 99% confidence limit of the mean density estimate
+
| VERSION || String || || Version of catalogue
 
|-  
 
|-  
|SIZE || real*8 || pc || Physical size of the clump
+
| DATE || String || || Date file created: yyyy-mm-dd
 
|-  
 
|-  
|SIZE_SIG  || real*8 || pc  || 1<math>\sigma</math> uncertainty on the physical size estimate of the clump
+
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
 
|-  
 
|-  
|SIZE_LOW[1,2,3]  || real*8 || pc  || Lower 68%, 95% and 99% confidence limit of the physical size estimate
+
| TELESCOP || String || || Telescope (PLANCK)
 
|-  
 
|-  
|SIZE_UP[1,2,3]  || real*8 || pc || Upper 68%, 95% and 99% confidence limit of the physical size estimate
+
| CREATOR || String || || Pipeline version
 
|-  
 
|-  
|LUMINOSITY || real*8 || L<sub>o</sub> || Luminosity of the clump
+
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd
 
|-  
 
|-  
|LUMINOSITY_SIG  || real*8 || L<sub>o</sub>  || 1<math>\sigma</math> uncertainty on the luminosity estimate of the clump
+
| DATE-END || String || || End time of the survey: yyyy-mm-dd
 
|-  
 
|-  
|LUMINOSITY_LOW[1,2,3]  || real*8 || L<sub>o</sub>  || Lower 68%, 95% and 99% confidence limit of the luminosity estimate
+
| PROCVER || String || || Data version
 
|-  
 
|-  
|LUMINOSITY_UP[1,2,3]  || real*8 || L<sub>o</sub> || Upper 68%, 95% and 99% confidence limit of the luminosity estimate
+
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter
|- bgcolor="ffdead" 
 
! colspan="4" | Flags
 
|- bgcolor="ffdead" 
 
! FITS Keyword || Data Type || Units || Description
 
 
|-  
 
|-  
|XFLAG_LMC || int*4 || 0/1 || 1 if part of the LMC
+
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter
 
|-  
 
|-  
|XFLAG_SMC || int*4 || 0/1 || 1 if part of the SMC
+
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter
 
|-  
 
|-  
|XFLAG_ECC || int*4 || 0/1 || 1 if present in the ECC
+
| PP_C500 || Real*4 || || GNFW pressure profile <i>c</i><sub>500</sub> parameter
 
|-  
 
|-  
|XFLAG_PCCS_857 || int*4 || 0/1 || 1 if present in the PCCS 857 GHz band
+
| PP_Y2YFH || Real*4 || || Conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub>
|-
+
 
|XFLAG_PCCS_545 || int*4 || 0/1 || 1 if present in the PCCS 545 GHz band
+
|- bgcolor="ffdead" 
|-
+
! colspan="4" | Extension 1: BINTABLE, EXTNAME = PSZ2_INDIVIDUAL
|XFLAG_PCCS_353 || int*4 || 0/1 || 1 if present in the PCCS 353 GHz band
+
|- bgcolor="ffdead" 
|-  
+
! Column name || Data type || Units || Description
|XFLAG_PCCS_217 || int*4 || 0/1 || 1 if present in the PCCS 217 GHz band
 
|-  
 
|XFLAG_PCCS_143 || int*4 || 0/1 || 1 if present in the PCCS 143 GHz band
 
 
|-
 
|-
|XFLAG_PCCS_100 || int*4 || 0/1 || 1 if present in the PCCS 100 GHz band
+
|INDEX || Int*4 || || Index from union catalogue
 +
|-
 +
|NAME || String || || Source name (see note 1)
 +
|-
 +
|GLON || Real*8 || deg || Galactic longitude
 +
|-
 +
|GLAT || Real*8 || deg || Galactic latitude
 +
|-
 +
|RA  || Real*8 || deg || Right ascension (J2000) transformed from (GLON, GLAT)
 +
|-
 +
|DEC  || Real*8 || deg || Declination (J2000) transformed from (GLON, GLAT)
 
|-
 
|-
|XFLAG_PCCS_70 || int*4 || 0/1 || 1 if present in the PCCS 70 GHz band
+
|POS_ERR || Real*4 || arcmin || Position uncertainty (95% confidence interval)
 
|-
 
|-
|XFLAG_PCCS_44 || int*4 || 0/1 || 1 if present in the PCCS 44 GHz band
+
|SNR || Real*4 || || Signal-to-noise ratio of detection
 
|-
 
|-
|XFLAG_PCCS_30 || int*4 || 0/1 || 1 if present in the PCCS 30 GHz band
+
|TS_MIN || Real*4 || || Minimum value of &theta;<sub>s</sub> in grid in second extension HDU (see note 2)
 
|-
 
|-
|XFLAG_PSZ || int*4 || 0/1 || 1 if present in the PCCS PSZ
+
|TS_MAX || Real*4 || || Maximum value of &theta;<sub>s</sub> in grid in second extension HDU (see note 2)
 
|-
 
|-
|XFLAG_PHZ || int*4 || 0/1 || 1 if present in the PCCS HZ
+
|Y_MIN || Real*4 || || Minimum value of <i>Y</i> in grid in second extension HDU (see note 2)
 
|-
 
|-
|XFLAG_HKP_GCC || int*4 || 0/1 || 1 if present in the Herschel HKP-GCC
+
|Y_MAX || Real*4 || || Maximum value of <i>Y</i> in grid in second extension HDU (see note 2)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 +
|-  
 +
| PIPELINE || String || || Name of detection pipeline
  
|}
+
|- bgcolor="ffdead" 
 
+
! colspan="4" | Extension 2: IMAGE, EXTNAME = PSZ2_PROBABILITY (see note 2)
 
+
|- bgcolor="ffdead" 
Notes:
+
! Keyword || Data type || Value || Description
* 1: The position angle of the 2D ellipse is defined as the angle between the axis parallele to the Galactic plane and the major axis, counted clockwise.
+
|-
* 2: The warm bakcground flux densities are computed using the same solid angle as for the clumps flux densities, but on the warm conponent map.
+
| NAXIS1 || Integer || 256 || Dimension 1
* 3: See text above for a full description of the FLUX_QUALITY flag, for which 1 is best.
+
|-
* 4: This relative bias due to blending provides a rough estimate of the factor that should be applied on the clumpds flux densities to get a corrected estimate. It has been obtained on a very simple modelling of clumps morphology and the local environment. It has therefore to be taken very carefully.
+
| NAXIS2 || Integer || 256 || Dimension 2  
* 5: See text above for a full description of the DIST_QUALITY flag.
+
|-
* 6: Temperature and spectral index of the warm background are based on the warm background flux density estimates obtained on the same solid angle used for clumps
+
| NAXIS3 || Integer || <i>N</i><sub>det</sub> || Dimension 3 = Number of detections
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 +
|-
 +
| PIPELINE || String || || Name of detection pipeline
  
 +
|- bgcolor="ffdead"
 +
! colspan="4" | Extension 3: IMAGE, EXTNAME = PSZ2_MSZ_ARRAY (see note 3)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 +
|-
 +
| NAXIS1 || Integer || 100 || Dimension 1
 +
|-
 +
| NAXIS2 || Integer || 4 || Dimension 2
 +
|-
 +
| NAXIS3 || Integer || <i>N</i><sub>det</sub> || Dimension 3 = Number of detections
  
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 +
|-
 +
| PIPELINE || String || || Name of detection pipeline
 +
|}
  
==(2015) Planck List of high-redshift source candidates==
 
  
The Planck list of high-redshift source candidates (PHZ) is a list of 2151 sources located in the cleanest 26% of the sky and identified as point sources
+
'''Notes'''
exhibiting an excess in the submillimeter compared to their environment. It has been built using the 48 months Planck data at 857, 545, 353 and 217 GHz combined with the 3 THz IRAS data, as it is described in {{PlanckPapers | }}. These sources are considered as high-z source candidates (z>1.5-2), given the very low contamination by Galactic cirrus.   
+
# Format <tt>PSZ2 Glll.ll&plusmn;bb.bb</tt> where <i>l</i> and <i>b</i> are the Galactic coordinates truncated to two decimal places.
 +
# Extension 2 contains a three-dimensional image with the two-dimensional probability distribution in &theta;<sub>s</sub> and <i>Y</i> for each detection. The probability distributions are evaluated on a 256 &times; 256 linear grid between the limits specified in extension 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 &times; 256 &times; <i>N</i><sub>det</sub>, where <i>N</i><sub>det</sub> is the number of detections.  The first dimension is &theta;<sub>s</sub> and the second dimension is <i>Y</i>.
 +
# Extension 3 contains a three-dimensional image with the information on the <i>M</i><sub>SZ</sub> observable per cluster as a function of assumed redshift. The image dimensions are 100 &times; 4 &times; <i>N</i><sub>det</sub>, where <i>N</i><sub>det</sub> is the number of detections. The first dimension is the assumed redshift. The second dimension has size 4: the first element is the assumed redshift value corresponding to the <i>M</i><sub>SZ</sub> values; the second element is the <i>M</i><sub>SZ</sub> lower 68% confidence bound; the third element is the M<sub>SZ</sub> estimate; and the fourth element is the <i>M</i><sub>SZ</sub> upper 68% confidence bound, all in units of 10<sup>14</sup>&nbsp;<i>M</i><sub>&#9737;</sub>. These uncertainties are based on the Planck measurement uncertainties only. Not included in the error estimates are the statistical errors on the scaling relation, the intrinsic scatter in the relation, or systematic errors in data selection for the scaling relation fit.
 +
 
 +
==== Selection function ====
 +
 
 +
The selection function for the union, intersection, and individual pipeline catalogues are contained in the FITS files
 +
 
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-union-survey_R2.08.fits (union catalogue, survey mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-union-cosmolog_R2.08.fits (union catalogue, cosmology mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-intersec-survey_R2.08.fits (intersection catalogue, survey mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-intersec-cosmolog_R2.08.fits  (intersection catalogue, cosmology mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-MMF1-survey_R2.08.fits (MMF1 catalogue, survey mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-MMF1-cosmolog_R2.08.fits (MMF1 catalogue, cosmology mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-MMF3-survey_R2.08.fits (MMF3 catalogue, survey mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-MMF3-cosmolog_R2.08.fits (MMF3 catalogue, cosmology mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-PwS-survey_R2.08.fits (PowellSnakes catalogue, survey mask)
 +
* http://pla.esac.esa.int/pla/aio/product-action?SOURCE_LIST_ASSOCIATED_PRODUCT.FILE_ID=HFI_PCCS_SZ-selfunc-PwS-cosmolog_R2.08.fits (PowellSnakes catalogue, cosmology mask).
  
  
 +
Their structure is shown in the following table.
  
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=1000px
+
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
|+ '''FITS file structure'''
+
|+ <small>'''FITS file structure'''</small>
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! colspan="4" | Identification
+
! colspan="4" | Extension 0: Primary header, no data
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS Keyword || Data Type || Units || Description
+
! FITS keyword || Data type || Units || Description
 
|-  
 
|-  
|NAME || String || || Source Name
+
|INSTRUME || String || || Instrument (HFI)
 
|-  
 
|-  
|SNR_X545 || real*8 || || S/N in the 545 GHz excess map
+
| VERSION || String || || Version of catalogue
 
|-  
 
|-  
|SNR_D857 || real*8 || || S/N in the 857 GHz cleaned map
+
| DATE || String || || Date file created: yyyy-mm-dd
 
|-  
 
|-  
|SNR_D545 || real*8 || || S/N in the 545 GHz cleaned map
+
| ORIGIN || String || || Name of organization responsible for the data (HFI-DPC)
 
|-  
 
|-  
|SNR_D353 || real*8 || || S/N in the 353 GHz cleaned map
+
| TELESCOP || String || || Telescope (PLANCK)
|- bgcolor="ffdead" 
 
! colspan="4" | Source position
 
|- bgcolor="ffdead" 
 
! FITS Keyword || Data Type || Units || Description
 
 
|-  
 
|-  
|GLON || real*8 || deg || Galactic longitude based on morphology fitting
+
| CREATOR || String || || Pipeline version
 
|-  
 
|-  
|GLAT || real*8 || deg || Galactic latitude based on morphology fitting
+
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd
 
|-  
 
|-  
|RA || real*8 || deg || Right ascension (J2000) in degrees transformed from (GLON, GLAT)
+
| DATE-END || String || || End time of the survey: yyyy-mm-dd
 
|-  
 
|-  
|DEC || real*8 || deg || Declination (J2000) in degrees transformed from (GLON, GLAT)
+
| PROCVER || String || || Data version
|- bgcolor="ffdead" 
 
! colspan="4" | Morphology
 
|- bgcolor="ffdead" 
 
! FITS Keyword || Data Type || Units || Description
 
 
|-  
 
|-  
|GAU_MAJOR_AXIS || real*8 || arcmin || FWHM along the major axis of the elliptical Gaussian
+
| JOIN || String || || Join type (UNION, INTERSEC, MMF1, MMF3, PwS)
 
|-  
 
|-  
|GAU_MAJOR_AXIS_SIG || real*8 || arcmin || 1<math>\sigma</math> uncertainty on the FWHM along the major axis
+
| MASK || String || || Mask name (SURVEY, COSMOLOG)
 +
 
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Extension 1: BINTABLE, HEALPix map (see note 1)
 +
|- bgcolor="ffdead" 
 +
! FITS keyword || Data type || Value || Description
 +
|-
 +
|PIXTYPE || String || HEALPIX || HEALPix pixelation
 +
|-
 +
|ORDERING || String || RING || Pixel ordering
 +
|-
 +
|NSIDE || Int*4 || 2048 || HEALPix resolution parameter
 +
|-
 +
|NPIX ||Int*4 || 50331648 || Number of pixels
 +
|-
 +
|COORDSYS || String || G || Coordinate system
 +
 
 +
|- bgcolor="ffdead" 
 +
! colspan="4" | Extension 2: IMAGE, EXTNAME = SELFUNC (see note 2)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|GAU_MINOR_AXIS || real*8 || arcmin || FWHM along the minor axis of the elliptical Gaussian
+
| NAXIS1 || Integer || 30 || Dimension 1
 
|-  
 
|-  
|GAU_MINOR_AXIS_SIG || real*8 || arcmin || 1<math>\sigma</math> uncertainty on the FWHM along the minor axis
+
| NAXIS2 || Integer || 32 || Dimension 2
 
|-  
 
|-  
|GAU_POSITION_ANGLE || real*8 || rad || Position angle of the elliptical gaussian (see note 1)
+
| NAXIS3 || Integer || 12 || Dimension 3
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|GAU_POSITION_ANGLE_SIG || real*8 || rad || 1<math>\sigma</math> uncertainty on the position angle
+
| AXIS1 || String || CY500 || Name of axis 1
|- bgcolor="ffdead" 
 
! colspan="4" | Photometry
 
|- bgcolor="ffdead" 
 
! FITS Keyword || Data Type || Units || Description
 
 
|-  
 
|-  
|FLUX_CLEAN_857 || real*8 || Jy || Flux density of the clump at 857 GHz
+
| AXIS2 || String || T500 || Name of axis 2
 
|-  
 
|-  
|FLUX_CLEAN_857_SIG_SKY || real*8 || Jy || 1<math>\sigma</math> uncertainty at 857 GHz due to sky confusion
+
| AXIS3 || String || SNRCUT || Name of axis 3
 
|-  
 
|-  
|FLUX_CLEAN_857_SIG_DATA || real*8 || Jy || 1<math>\sigma</math> uncertainty at 857 GHz due to measurement error
+
| UNITS || String || PERCENT || Units of selection function
 
|-  
 
|-  
|FLUX_CLEAN_857_SIG_GEOM || real*8 || Jy || 1<math>\sigma</math> uncertainty at 857 GHz due to elliptical Gaussian fit accuracy
+
| COMPTYPE || String || DIFF || Type of selection function (differential)
 +
 
 +
|- bgcolor="ffdead"
 +
! colspan="4" | Extension 3: IMAGE, EXTNAME = YGRID (see note 3)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|FLUX_CLEAN_545 || real*8 || Jy || Flux density of the clump at 545 GHz
+
| NAXIS1 || Integer || 30 || Dimension 1
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|FLUX_CLEAN_545_SIG_SKY || real*8 || Jy || 1<math>\sigma</math> uncertainty at 545 GHz due to sky confusion
+
| COL1 || String || CY500 || Grid values of <i>Y</i><sub>500</sub>
 +
 
 +
|- bgcolor="ffdead"
 +
! colspan="4" | Extension 4: IMAGE, EXTNAME = TGRID (see note 4)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|FLUX_CLEAN_545_SIG_DATA || real*8 || Jy || 1<math>\sigma</math> uncertainty at 545 GHz due to measurement error
+
| NAXIS1 || Integer || 32 || Dimension 1
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|FLUX_CLEAN_545_SIG_GEOM || real*8 || Jy || 1<math>\sigma</math> uncertainty at 545 GHz due to elliptical Gaussian fit accuracy
+
| COL1 || String || T500 || Grid values of &theta;<sub>500</sub>
 +
 
 +
|- bgcolor="ffdead"
 +
! colspan="4" | Extension 5: IMAGE, EXTNAME = SNR_THRESH (see note 5)
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|FLUX_CLEAN_353 || real*8 || Jy || Flux density of the clump at 353 GHz
+
| NAXIS1 || Integer || 12 || Dimension 1
|-
 
|FLUX_CLEAN_353_SIG_SKY || real*8 || Jy || 1<math>\sigma</math> uncertainty at 353 GHz due to sky confusion
 
|-
 
|FLUX_CLEAN_353_SIG_DATA || real*8 || Jy || 1<math>\sigma</math> uncertainty at 353 GHz due to measurement error
 
|-
 
|FLUX_CLEAN_353_SIG_GEOM || real*8 || Jy || 1<math>\sigma</math> uncertainty at 353 GHz due to elliptical Gaussian fit accuracy
 
|-
 
|FLUX_CLEAN_217 || real*8 || Jy || Flux density of the clump at 217 GHz
 
|-
 
|FLUX_CLEAN_217_SIG_SKY || real*8 || Jy || 1<math>\sigma</math> uncertainty at 217 GHz due to sky confusion
 
|-
 
|FLUX_CLEAN_217_SIG_DATA || real*8 || Jy || 1<math>\sigma</math> uncertainty at 217 GHz due to measurement error
 
|-
 
|FLUX_CLEAN_217_SIG_GEOM || real*8 || Jy || 1<math>\sigma</math> uncertainty at 217 GHz due to elliptical Gaussian fit accuracy
 
|- bgcolor="ffdead" 
 
! colspan="4" | Distance
 
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS Keyword || Data Type || Units || Description
+
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|DIST_KINEMATIC || real*8 || kpc || Distance estimate [1] using kinematics
+
| COL1 || String || S/N || Grid values of S/N threshold
|-
+
 
|DIST_KINEMATIC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [1] using kinematics
+
|}
|-  
+
 
|DIST_OPT_EXT_DR7 || real*8 || kpc || Distance estimate [2] using optical extinction on SDSS DR7
+
'''Notes'''
|-  
+
# Extension 1 contains a mask defining the survey region, given by an <i>N</i><sub>side</sub> = 2048 ring-ordered HEALPix map in GALACTIC coordinates. Pixels in the survey region have the value 1.0, while pixels outside  the survey region have value 0.0.
|DIST_OPT_EXT_DR7_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [2] using optical extinction on SDSS DR7
+
# Extension 2 contains a three-dimensional image, giving the survey completeness probability distribution for various S/N thresholds. The information is stored in an image of size 30 &times; 32 &times; 12. The first dimension is <i>Y</i><sub>500</sub>, the second dimension is &theta;<sub>500</sub> and the third dimension is the signal-to-noise threshold. The units are percentages and lie in the range 0-100, denoting the detection probability of a cluster in the given (<i>Y</i><sub>500</sub>, &theta;<sub>500</sub>) bin.
|-
+
# Extension 3 contains the <i>Y</i><sub>500</sub> grid values for the completeness data cube in the second extension. It has length 30 and spans the range from 1.12480 &times; 10<sup>-4</sup> arcmin<sup>2</sup> to 7.20325 &times; 10<sup>-2</sup> arcmin<sup>2</sup> in logarithmic steps.
|DIST_OPT_EXT_DR9 || real*8 || kpc || Distance estimate [3] using optical extinction on SDSS DR9
+
# Extension 4 contains the θ<sub>500</sub> grid values for the completeness data cube in the second extension. It has length 32 and spans the range from 0.9416 arcmin to 35.31 arcmin in logarithmic steps.
|-  
+
# Extension 5 contains the signal-to-noise threshold grid values for the completeness data cube in the second extension. It has length 12 and contains thresholds from 4.5 to 10.0 in steps of 0.5.
|DIST_OPT_EXT_DR9_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [3] using optical extinction on SDSS DR9
+
 
 +
=== Previous releases: (2013) PSZ1 ===
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="background-color: #EEE8AA;width:95%">
 +
'''Second Planck Release (2013): Description of the Planck SZ Catalogue'''
 +
<div class="mw-collapsible-content">
 +
 
 +
The Planck SZ catalogue is constructed as described in [[Compact_Source_catalogues#Planck_Sunyaev-Zeldovich_catalogue|SZ catalogue]] and in section 2 of {{PlanckPapers|planck2013-p05a}}.
 +
 
 +
Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The individual catalogues are provided for the expert user in order to assess the consistency of the pipelines. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in sections 3-6 of {{PlanckPapers|planck2013-p05a}}.
 +
 
 +
The union catalogue contains the coordinates and the signal-to-noise ratio of the detections and a summary of the external validation information, including external identification of a cluster and its redshift if it is available.
 +
 
 +
The individual catalogues contain the coordinates and the signal-to-noise ratio of the detections, and information on the size and flux of the detections. The entries are cross-referenced to the detections in the union catalogue.
 +
 
 +
The size of a detection is given in terms of the scale size, &theta;<sub>s</sub>, and the flux is given in terms of the total integrated Comptonization parameter, <i>Y</i> = <i>Y</i><sub>5r<sub>500</sub></sub>. The parameters of the GNFW profile assumed by the detection pipelines is written in the headers in the catalogues. For the sake of convenience, the conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub> is also written in the header.
 +
 
 +
The full information on the degeneracy between &theta;<sub>s</sub> and <i>Y</i> is included in the individual catalogues in the form of the two-dimensional probability distribution for each detection. It is computed on a well-sampled grid to produce a two-dimensional image for each detection. The degeneracy information is provided in this form so it can be combined with a model or external data to produce tighter constraints on the parameters.
 +
 
 +
 +
'''Union Catalogue'''
 +
 
 +
The union catalogue is contained in  ''{{PLASingleFile|fileType=cat | name=COM_PCCS_SZ-union_R1.12.fits | link=COM_PCCS_SZ-union_R1.12.fits}}''.
 +
 
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
 +
|- bgcolor="ffdead" 
 +
!colspan="4" | Extension 0: Primary header, no data
 +
|- bgcolor="ffdead" 
 +
! FITS Keyword || Data type || Units || Description
 
|-  
 
|-  
|DIST_NIR_EXT_IRDC || real*8 || kpc || Distance estimate  [4] using near-infrared extinction towards IRDCs
+
|INSTRUME || String || || Instrument.
 
|-  
 
|-  
|DIST_NIR_EXT_IRDC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate  [4] using near-infrared extinction towards IRDCs
+
| VERSION || String || || Version of catalogue.
 
|-  
 
|-  
|DIST_NIR_EXT || real*8 || kpc || Distance estimate [5] using near-infrared extinction
+
| DATE || String || || Date file created: yyyy-mm-dd.
 
|-  
 
|-  
|DIST_NIR_EXT_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [5] using near-infrared extinction
+
| ORIGIN || String || || Name of organization responsible for the data.
 +
|-  
 +
| TELESCOP || String || || PLANCK.
 
|-  
 
|-  
|DIST_MOLECULAR_COMPLEX || real*8 || kpc || Distance estimate [6] using molecular complex association
+
| CREATOR || String || || Pipeline version.
 +
|-
 +
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd.
 
|-  
 
|-  
|DIST_MOLECULAR_COMPLEX_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [6] using molecular complex association
+
| DATE-END || String || || End time of the survey: yyyy-mm-dd.
 
|-  
 
|-  
|DIST_HKP_GCC || real*8 || kpc || Distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
+
| PROCVER || String || || Data version.
 
|-  
 
|-  
|DIST_HKP_GCC_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the distance estimate [7] from the Herschel Key-Programme Galactic Cold Cores
+
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter.
 
|-  
 
|-  
|DIST_OPTION || int*4 || 0-7 || Option of the best distance estimate used in other physical properties
+
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter.
 
|-  
 
|-  
|DIST_QUALITY || int*4 || 0-4 || Quality Flag of the consistency between distance estimates (see note 5)
+
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter.
 
|-  
 
|-  
|DIST || real*8 || kpc || Best distance estimate used for further physical properties
+
| PP_C500 || Real*4 || || GNFW pressure profile <i>c</i><sub>500</sub> parameter.
 
|-  
 
|-  
|DIST_SIG || real*8 || kpc || 1<math>\sigma</math> uncertainty on the best distance estimate
+
| PP_Y2YFH || Real*4 || || Conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub>.
 +
 
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! colspan="4" | Temperature
+
!colspan="4" | Extension 1: data extension (BINTABLE)
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS Keyword || Data Type || Units || Description
+
! Column Name || Data type || Units || Description
|-  
+
|-
|TEMP_CLUMP || real*8 || K || Temperature of the clump with <math>\beta</math> as a free parameter
+
|INDEX || Int*4 || || Index. Used to cross-reference with individual catalogues.
|-  
+
|-
|TEMP_CLUMP_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the clump temperature with <math>\beta</math> free
+
|NAME || String || || Source name (note 1).
|-  
+
|-
|TEMP_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with <math>\beta</math> free
+
|GLON || Real*8 || degrees || Galactic longitude.
|-  
+
|-
|TEMP_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with <math>\beta</math> free
+
|GLAT || Real*8 || degrees || Galactic latitude.
|-  
+
|-
|BETA_CLUMP || real*8 || || Spectral index <math>\beta</math> of the clump
+
|RA  || Real*8 || degrees || Right ascension (J2000) transformed from (GLON,GLAT).
|-  
+
|-
|BETA_CLUMP_SIG || real*8 || || 1<math>\sigma</math> uncertainty (from MCMC) on the emissivity spectral index <math>\beta</math> of the clump
+
|DEC  || Real*8 || degrees || Declination (J2000) transformed from (GLON,GLAT).
|-  
+
|-
|BETA_CLUMP_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index <math>\beta</math> of the clump
+
|POS_ERR || Real*4 || arcmin || Position uncertainty (approximate 68% confidence interval). See [[#Caveats|Caveats]] below.
|-  
+
|-
|BETA_CLUMP_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index <math>\beta</math> of the clump
+
|SNR || Real*4 || || Signal-to-noise ratio of the detection.
|-  
+
|-
|TEMP_BETA2_CLUMP || real*8 || K || Temperature of the clump with <math>\beta</math> = 2
+
|PIPELINE || Int*4 || || Souce pipeline: 1= MMF1; 2 = MMF3; 3 = PwS.
|-  
+
|-
|TEMP_BETA2_CLUMP_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the temperature of the clump with <math>\beta</math> = 2
+
|PIPE_DET || Int*4 || || Pipelines which detect this object (note 2).
|-  
+
|-
|TEMP_BETA2_CLUMP_LOW1 || real*8 || K || Lower 68% confidence limit of the clump temperature with <math>\beta</math> = 2
+
|PCCS || Bool || || Indicates whether detection matches any PCCS source.
|-  
+
|-
|TEMP_BETA2_CLUMP_UP1 || real*8 || K || Upper 68% confidence limit of the clump temperature with <math>\beta</math> = 2
+
|VALIDATION || Int*4 || || External validation status (note 3)
|-  
+
|-
|TEMP_WBKG || real*8 || K || Temperature of the warm background with <math>\beta</math> as a free parameter (see note 6)
+
|ID_EXT || String|| || External identifier of cluster.
|-  
+
|-
|TEMP_WBKG_SIG || real*8 || K || 1<math>\sigma</math> dispersion of the warm background temperature with <math>\beta</math> free
+
|REDSHIFT || Real*4 || || Redshift of cluster.
|-  
+
|-
|TEMP_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with <math>\beta</math> free
+
|COSMO || Bool || || Detection is in the cosmology sample.
|-  
+
|-
|TEMP_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with <math>\beta</math> free
+
|COMMENT|| Bool || || Detection has a comment in the associated text file (note 4).
|-  
+
|}
|BETA_WBKG || real*8 || || Spectral index <math>\beta</math> of the warm background (see note 6)
+
 
|-
+
 
|BETA_WBKG_SIG || real*8 || || 1<math>\sigma</math> uncertainty (from MCMC) of the emissivity spectral index <math>\beta</math> of the warm background
+
'''Notes'''
|-  
+
# format is ''PSZ1 Glll.ll+mn;bb.b'' where <i>l</i> nd <i>b</i> are the Galactic and truncated to 2 decimal places.
|BETA_WBKG_LOW1 || real*8 || || Lower 68% confidence limit of the emissivity spectral index <math>\beta</math> of the warm background
+
# The three least significant decimal digits are used to represent detection or non-detection by the pipelines. Order of the digits: hundreds = MMF1; tens = MMF3; units = PwS. If it is detected then the corresponding digit is set to 1, otherwise it is set to 0.
|-  
+
# values are: 1 = candidate of class 1; 2 = candidate of class 2; 3 = candidate of class 3; 10 = Planck cluster confirmed by follow-up;  20 = known cluster.
|BETA_WBKG_UP1 || real*8 || || Upper 68% confidence limit of the emissivity spectral index <math>\beta</math> of the warm background
+
# The  comments on the detections in the catalogue are contained in a text file called ''{{PLASingleFile|fileType=catdoc | name=COM_PCCS_SZ-union_comments_R1.11.txt | link=COM_PCCS_SZ-union_comments_R1.11.txt}}'', which contains one line for each detection in the union catalogue with COMMENT = T. The line starts with the INDEX and NAME of the detection to facilitate cross-referencing. The remainder of the line is the comment on that detection.
|-
+
 
|TEMP_BETA2_WBKG || real*8 || K || Temperature of the warm background with <math>\beta</math> = 2
+
'''Individual Catalogues'''
|-  
+
 
|TEMP_BETA2_WBKG_SIG || real*8 || K || 1<math>\sigma</math> uncertainty on the temperature of the warm background with <math>\beta</math> = 2
+
The individual pipeline catalogues are contained in the FITS files
|-  
+
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-MMF1_R1.11.fits  | link=COM_PCCS_SZ-MMF1_R1.11.fits }} (Matched Multi-Filter method #1)
|TEMP_BETA2_WBKG_LOW1 || real*8 || K || Lower 68% confidence limit of the warm background temperature with <math>\beta</math> = 2
+
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-MMF3_R1.12.fits  | link=COM_PCCS_SZ-MMF3_R1.12.fits }} (Matched Multi-Filter method #3)
|-  
+
* {{PLASingleFile | fileType=cat | name=COM_PCCS_SZ-PwS_R1.11.fits  | link=COM_PCCS_SZ-PwS_R1.11.fits }} (Powell Snakes method)
|TEMP_BETA2_WBKG_UP1 || real*8 || K || Upper 68% confidence limit of the warm background temperature with <math>\beta</math> = 2
+
Their structure is as follows:
|- bgcolor="ffdead"   
+
 
! colspan="4" | Physical properties
+
 
|- bgcolor="ffdead"   
+
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
! FITS Keyword || Data Type || Units || Description
+
|+ '''FITS file structure'''
|-
+
|- bgcolor="ffdead"   
|NH2 || real*8 || cm<sup>-2</sup> || Column density <math>N_{H_2}</math> of the clump
+
 
|-
+
! colspan="4" | Ext. 0: Primary header, no data
|NH2_SIG || real*8 || cm<sup>-2</sup> || 1<math>\sigma</math> uncertainty on the column density
+
|- bgcolor="ffdead"   
|-
+
! FITS Keyword || Data type || Units || Description
|NH2_LOW[1,2,3] || real*8 || cm<sup>-2</sup> || Lower 68%, 95% and 99% confidence limit of the column density
 
|-
 
|NH2_UP[1,2,3]  || real*8 || cm<sup>-2</sup> || Upper 68%, 95% and 99% confidence limit of the column density
 
|-
 
|MASS || real*8 || <math>M_{o}</math> || Mass estimate of the clump
 
|-
 
|MASS_SIG  || real*8 || <math>M_{o}</math> || 1<math>\sigma</math> uncertainty on the mass estimate of the clump
 
|-
 
|MASS_LOW[1,2,3]  || real*8 || <math>M_{o}</math> || Lower 68%, 95% and 99% confidence limit of the mass estimate
 
 
|-  
 
|-  
|MASS_UP[1,2,3]  || real*8 || <math>M_{0}</math> || Upper 68%, 95% and 99% confidence limit of the mass estimate
+
|INSTRUME || String || || Instrument.
 
|-  
 
|-  
|DENSITY || real*8 || cm<sup>-3</sup> || Mean density of the clump
+
| VERSION || String || || Version of catalogue.
 
|-  
 
|-  
|DENSITY_SIG  || real*8 || cm<sup>-3</sup>  || 1<math>\sigma</math> uncertainty on the mean density estimate of the clump
+
| DATE || String || || Date file created: yyyy-mm-dd.
 
|-  
 
|-  
|DENSITY_LOW[1,2,3]  || real*8 || cm<sup>-3</sup>  || Lower 68%, 95% and 99% confidence limit of the mean density estimate
+
| ORIGIN || String || || Name of organization responsible for the data.
 
|-  
 
|-  
|DENSITY_UP[1,2,3]  || real*8 || cm<sup>-3</sup> || Upper 68%, 95% and 99% confidence limit of the mean density estimate
+
| TELESCOP || String || || PLANCK.
 
|-  
 
|-  
|SIZE || real*8 || pc || Physical size of the clump
+
| CREATOR || String || || Pipeline version.
 
|-  
 
|-  
|SIZE_SIG  || real*8 || pc  || 1<math>\sigma</math> uncertainty on the physical size estimate of the clump
+
| DATE-OBS || String || || Start time of the survey: yyyy-mm-dd.
 +
|-
 +
| DATE-END || String || || End time of the survey: yyyy-mm-dd.
 
|-  
 
|-  
|SIZE_LOW[1,2,3]  || real*8 || pc  || Lower 68%, 95% and 99% confidence limit of the physical size estimate
+
| PROCVER || String || || Data version.
 
|-  
 
|-  
|SIZE_UP[1,2,3]  || real*8 || pc || Upper 68%, 95% and 99% confidence limit of the physical size estimate
+
| PP_ALPHA || Real*4 || || GNFW pressure profile &alpha; parameter.
 
|-  
 
|-  
|LUMINOSITY || real*8 || L<sub>o</sub> || Luminosity of the clump
+
| PP_BETA || Real*4 || || GNFW pressure profile &beta; parameter.
 
|-  
 
|-  
|LUMINOSITY_SIG  || real*8 || L<sub>o</sub>  || 1<math>\sigma</math> uncertainty on the luminosity estimate of the clump
+
| PP_GAMMA || Real*4 || || GNFW pressure profile &gamma; parameter.
 
|-  
 
|-  
|LUMINOSITY_LOW[1,2,3]  || real*8 || L<sub>o</sub> || Lower 68%, 95% and 99% confidence limit of the luminosity estimate
+
| PP_C500 || Real*4 || || GNFW pressure profile <i>c</i><sub>500</sub> parameter.
 
|-  
 
|-  
|LUMINOSITY_UP[1,2,3]  || real*8 || L<sub>o</sub> || Upper 68%, 95% and 99% confidence limit of the luminosity estimate
+
| PP_Y2YFH || Real*4 || || Conversion factor from <i>Y</i> to <i>Y</i><sub>500</sub>.
 +
|- bgcolor="ffdead" 
 +
 
 +
 
 +
! colspan="4" | Ext. 1: EXTNANE = ''PSZ_INDIVIDUAL'' (BINTABLE)
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! colspan="4" | Flags
+
! Column Name || Data type || Units || Description
 +
|-
 +
|INDEX || Int*4 || || Index from union catalogue.
 +
|-
 +
|NAME || String || || Source name - see note 1.
 +
|-
 +
|GLON || Real*8 || deg || Galactic longitude.
 +
|-
 +
|GLAT || Real*8 || deg || Galactic latitude.
 +
|-
 +
|RA  || Real*8 || deg || Right ascension (J2000) transformed from (GLON,GLAT).
 +
|-
 +
|DEC  || Real*8 || deg || Declination (J2000) transformed from (GLON,GLAT).
 +
|-
 +
|POS_ERR || Real*4 || arcmin || Position uncertainty (approximate 68% confidence interval). See [[#Caveats|Caveats]] below.
 +
|-
 +
|SNR || Real*4 || || Signal-to-noise ratio of the detection.
 +
|-
 +
|SNR_COMPAT || Real*4 || || S/N of the detection in compatibility mode (note 2).
 +
|-
 +
|TS_MIN || Real*4 || || Minimum value of &theta;<sub>s</i in grid in second extension HDU (see below).
 +
|-
 +
|TS_MAX || Real*4 || || Maximum value of &theta;<sub>s</i> in grid in second extension HDU (see below).
 +
|-
 +
|Y_MIN || Real*4 || || Minimum value of <i>Y</i> in grid in second extension HDU (see below).
 +
|-
 +
|Y_MAX || Real*4 || || Maximum value of <i>Y</i> in grid in second extension HDU (see below).
 +
 
 
|- bgcolor="ffdead"   
 
|- bgcolor="ffdead"   
! FITS Keyword || Data Type || Units || Description
+
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|XFLAG_LMC || int*4 || 0/1 || 1 if part of the LMC
+
| PIPELINE || String || || Name of detection pipeline.
 +
|- bgcolor="ffdead" 
 +
 
 +
 
 +
! colspan="4" | Ext. 2: EXTNAME = ''PSZ_PROBABILITY'' (IMAGE) - note 3
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 +
|-
 +
| NAXIS1 || Integer || 256 || Dim 1
 
|-  
 
|-  
|XFLAG_SMC || int*4 || 0/1 || 1 if part of the SMC
+
| NAXIS2 || Integer || 256 || Dim 2
 
|-  
 
|-  
|XFLAG_ECC || int*4 || 0/1 || 1 if present in the ECC
+
| NAXIS3 || Integer || Nsources || Dim 3 = Number of sources
 +
|- bgcolor="ffdead" 
 +
! Keyword || Data type || Value || Description
 
|-  
 
|-  
|XFLAG_PCCS_857 || int*4 || 0/1 || 1 if present in the PCCS 857 GHz band
+
| PIPELINE || String || || Name of detection pipeline.
|-  
+
|}
|XFLAG_PCCS_545 || int*4 || 0/1 || 1 if present in the PCCS 545 GHz band
+
 
|-  
+
 
|XFLAG_PCCS_353 || int*4 || 0/1 || 1 if present in the PCCS 353 GHz band
+
'''Notes'''
|-  
+
# Format ''PSZ1 Glll.ll&plusmn;bb.bb'' where <i>l</i> and <i>b</i> are the Galactic coordinates truncated to two decimal places.
|XFLAG_PCCS_217 || int*4 || 0/1 || 1 if present in the PCCS 217 GHz band
+
# For PwS, this is the S/N evaluated in a manner compatible with the MMF pipelines. For MMF1 and MMF3, it is identical to S/N.
|-  
+
# Ext. 2 contains a three-dimensional image with the two-dimensional probability distribution in &theta;<sub>s</sub> and <i>Y</i> for each detection. The probability distributions are evaluated on a 256 &times; 256 linear grid between the limits specified in Ext. 1. The limits are determined independently for each detection. The dimension of the 3D image is 256 &times; 256 &times; n, where n is the number of detections.  The first dimension is &theta;<sub>s</sub> and the second dimension is <i>Y</i>.
|XFLAG_PCCS_143 || int*4 || 0/1 || 1 if present in the PCCS 143 GHz band
+
 
|-
+
 
|XFLAG_PCCS_100 || int*4 || 0/1 || 1 if present in the PCCS 100 GHz band
+
'''Mask'''
|-
+
 
|XFLAG_PCCS_70 || int*4 || 0/1 || 1 if present in the PCCS 70 GHz band
+
The mask used to construct the catalogue is contained in a file: ''{{PLASingleFile|fileType=catdoc | name=COM_PCCS_SZ-unionMask_2048_R1.11.fits| link=COM_PCCS_SZ-unionMask_2048_R1.11.fits}}''.
|-
+
 
|XFLAG_PCCS_44 || int*4 || 0/1 || 1 if present in the PCCS 44 GHz band
+
It is in GALACTIC coordinates, NESTED ordering, NSIDE=2048.
|-
+
 
|XFLAG_PCCS_30 || int*4 || 0/1 || 1 if present in the PCCS 30 GHz band
+
 
|-
+
'''Additional information'''
|XFLAG_PSZ || int*4 || 0/1 || 1 if present in the PCCS PSZ
+
 
|-
+
A set of comments on the union catalogue is available in
|XFLAG_PHZ || int*4 || 0/1 || 1 if present in the PCCS HZ
+
 
|-
+
: ''{{PLASingleFile|fileType=cat | name=COM_DocPCCS_SZ-union-comments_R1.11.txt | link=COM_DocPCCS_SZ-union-comments_R1.11.txt}}''
|XFLAG_HKP_GCC || int*4 || 0/1 || 1 if present in the Herschel HKP-GCC
+
 
 
+
Additional information on the SZ detections was retrieved from external sources and written into the FITS file
|}
+
 
 
+
: ''{{PLASingleFile|fileType=cat | name=COM_PCCS_SZ-validation_R1.12.fits | link=COM_PCCS_SZ-validation_R1.12.fits}}''
 +
 
 +
(for more details see {{PlanckPapers|planck2013-p05a}}). This file contains a single ''BINTABLE'' extension.  The table contains 1 line per source, and the columns and their meaning are given below.
 +
 
 +
{| border="1" cellpadding="3" cellspacing="0" align="center" style="text-align:left" width=800px
 +
|+ '''FITS file structure'''
 +
|- bgcolor="ffdead" 
 +
 
 +
! colspan="4" | Ext. 0:  (BINTABLE)
 +
|- bgcolor="ffdead" 
 +
! Column Name || Data type || Units || Description
 +
|-
 +
|INDEX || Int*4 || || Index from union catalogue.
 +
|-
 +
|NAME || String || || Source name in union catalogue
 +
|-
 +
|REDSHIFT || Real*4 ||  || Redshift
 +
|-
 +
|REDSHIFT_SOURCE || Int*4 ||  || Source for redshift - see note 4.
 +
|-
 +
|ALT_NAME  || String ||  || Alternative names.
 +
|-
 +
|RA_MCXC  || Real*4 || degrees || Right Ascension of the MCXC identifier.
 +
|-
 +
|DEC_MCXC || Real*4 || degrees || Declination of the MCXC identifier.
 +
|-
 +
|YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || Compton parameter in R500 from SZ-proxy.
 +
|-
 +
|ERRP_YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup>  || Error sup. in YZ_500
 +
|-
 +
|ERRM_YZ_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup>  || Error inf. in YZ_500
 +
|-
 +
|M_YZ_500 || Real*4 || 10<sup>14</sup> Msol|| Derived mass estimate (M_YZ_500) from SZ proxy.
 +
|-
 +
|ERRP_M_YZ_500 || Real*4 || 10<sup>14</sup> Msol || Error sup. on M_YZ_500.
 +
|-
 +
|ERRM_M_YZ_500 || Real*4 || 10<sup>14</sup> Msol || Error sup. on M_YZ_500.
 +
|-
 +
|S_X || Real*4 || erg/s/cm<sup>2</sup>  || Unabsorbed X-ray flux - see note 1.
 +
|-
 +
|ERR_S_X || Real*4 || erg/s/cm<sup>2</sup>  || Error on unabsorbed X-ray flux.
 +
|-
 +
|Y_PSX_500 || Real*4 || 10<sup>-4</sup> arcmin<sup>2</sup> || SZ signal for PSZ clusters identified with MCXC clusters- see note 2.
 +
|-
 +
|SN_PSX || Real*4 ||  || Signal to noise for PSZ clusters identified with MCXC clusters - see note 3.
 +
|}
 +
 
 +
'''Notes'''
 +
# Unabsorbed X-ray flux measured in an aperture of 5 arcmin in the band [0.1-2.4] keV. The aperture is centered on the Planck position, except for candidates associated with a BSC source for which we adopt the X-ray position. For sources with <math>(S/N)_{RASS} < 1\sigma</math>, we only quote an upper limit.
 +
# SZ signal re-extracted fixing the size to the X-ray size provided in the MCXC catalogue at the X-ray position, for PSZ clusters identified with MCXC clusters.
 +
# Computed in the Planck data at the X-ray position fixing the size to the X-ray size provided in the MCXC catalogue, for PSZ clusters identified with MCXC clusters.
 +
# Source for redshifts:
 +
    -1 : No redshift available;
 +
      1 : MCXC updated compilation{{BibCite|Piffaretti2011}};
 +
      2 : Databases NED and SIMBAD-CDS;
 +
      3 : SDSS cluster catalogue{{BibCite|Wen2012}};
 +
      4 : SDSS cluster catalogue{{BibCite|Szabo2011}};
 +
      5 : SPT{{BibCite|Vanderlinde2010}}{{BibCite|Williamson2011}}{{BibCite|Andersson2011}}{{BibCite|Plagge2010}}{{BibCite|Reichardt2013}}{{BibCite|Story2011}}{{BibCite|Song2012}};
 +
      6 : ACT{{BibCite|Hasselfield2013}}{{BibCite|Marriage2011}}{{BibCite|Menanteau2010}}{{BibCite|Sifon2013}};
 +
      7 : Search in SDSS galaxy catalogue from Planck Collab.;
 +
    20 : XMM-Newton confirmation from Planck Collab.;
 +
    50 : ENO-imaging confirmation from Planck Collab.;
 +
    60 : WFI-imaging confirmation from Planck Collab.;
 +
    65 : NTT-spectroscopic confirmation from Planck Collab.;
 +
    500 : RTT-spectroscopic confirmation from Planck Collab.;
 +
    600 : NOT-spectroscopic confirmation from Planck Collab.;
 +
    650 : GEMINI-spectroscopic confirmation from Planck Collab.;
 +
    700 : ENO-spectroscopic confirmation from Planck Collab.
 +
 
 +
'''Caveats'''
 +
 
 +
The following issue was found in Feb. 2014 in R1.11 of the MMF3 catalogue: the POS_ERR field values are overestimated by a factor 3.125 on average.  This issue has been resolved in R1.12.  A corrected version of the union catalogue has also been produced (also R1.12)
 +
 
 +
The approximate 68% (1-sigma) confidence interval in the POS_ERR field is computed as half of the 95% (2&sigma;) confidence interval. Previously this was erroneously described as a 95% confidence interval.
 +
 
 +
 
 +
==References==
 +
<References/>
  
  
==References==
 
<References />
 
 
 
[[Category:Mission products|005]]
 
[[Category:Mission products|005]]

Latest revision as of 12:58, 26 January 2021

The 2015 compact source catalogues will not be regenerated using data from the 2018 release and remain the most up-to-date products.

(2015) Second Catalogue of Compact Sources (PCCS2 and PCCS2E)[edit]

The second Planck Catalogue of Compact Sources (PCCS2) is a set of single-frequency source catalogues extracted from the Planck full-mission maps in intensity and polarization (LFI_SkyMap_0??_1024_R2.01_full.fits and HFI_SkyMap_???_2048_R2.00_full.fits). The catalogues have been constructed as described in PCCS and in section 2 of Planck-2015-A26[1]. The validation of the catalogues is described in section 3 of Planck-2015-A26[1].

The catalogue at 100 GHz and above has been divided into two sub-catalogues: the PCCS2, in which the sources have been detected in regions of the sky where it is possible to estimate the reliability of the detections, either statistically or by using external catalogues; and PCCS2E, in which the detected sources are located in regions of the sky where it is not possible to make an estimate of their reliability.

By definition, the reliability of the whole PCCS2 is ≥ 80%, and a flag is available that allows the user to select a subsample of sources with a higher level of reliability (e.g., 90% or 95%).

The nine Planck full-mission frequency channel maps are used as input to the source detection pipelines. They contain 48 months of data for LFI channels and 29 months of data for HFI channels. Therefore the flux densities of sources obtained from the full-mission maps are the average of at least eight observations for LFI channels or at least four observations for HFI channels. The relevant properties of the frequency maps and main parameters used to generate the catalogues are summarized in Tables 1 and 2.

Four different photometry methods have been used. For one of the methods (the native photometry from the Mexican-hat wavelet detection algorithm), the analysis is performed on patches containing tangent-plane projections of the map. For the other methods (aperture photometry, point spread function fitting, and Gaussian fitting), the analysis is performed directly on the full-sky maps.

PCCS2 in intensity.
Sky distribution of the PCCS2 intensity sources for three different channels: 30 GHz (red circles); 143 GHz (blue circles); and 857 GHz (green circles). The size of the circles is related to the brightness of the sources and the beam size of each channel.
PCCS2E in intensity.
Sky distribution of the PCCS2E intensity sources for two different channels: 143 GHz (blue circles); and 857 GHz (green circles).

The analysis in polarization has been performed in a non-blind fashion, looking at the position of the sources previously detected in intensity. As a result, polarization flux densities and polarization angles have been measured for hundreds of sources with a significance >99.99%. This high threshold in significance has been chosen to minimize the possibility of misinterpreting a peak of the polarized background as a source. This implies that, in general, most of the polarized sources are very bright, introducing an additional selection effect.

PCCS2 in polarization.
Sky distribution of the PCCS2 polarization sources in three different channels: 30GHz (red circles); 44GHz (green circles); and 70GHz (blue circles).
Sky distribution of the PCCS2 polarization sources in four different channels: 100GHz (red circles); 143GHz (blue circles); 217GHz (green circles); and 353 GHz (black).
PCCS2E in polarization.
Sky distribution of the PCCS2E polarization sources at three different channels: 100GHz (red circles); 143GHz (blue circles); 217GHz (green circles); and 353 GHz (black).


Table 1: PCCS2 and PCCS2E characteristics.
Channel 30 44 70 100 143 217 353 545 857
Frequency [GHz] 28.4 44.1 70.4 100.0 143.0 217.0 353.0 545.0 857.0
Wavelength [μm] 10561 6807 4260 3000 2098 1382 850 550 350
Number of sources
PCCS2 1560 934 1296 1742 2160 2135 1344 1694 4891
PCCS2E 2487 4139 16842 22665 31068 43290
Union PCCS2+PCCS2E 4229 6299 18977 24009 32762 48181
Number of sources in the extragalactic zonea
PCCS2 745 367 504 1742 2160 2135 1344 1694 4891
PCCS2E 0 0 26 289 839 2097
Union PCCS2+PCSS2E 1742 2160 2161 1633 2533 6988
Flux densities [mJy] in the extragalactic zonea
PCCS2
Minimumb 376 603 444 232 147 127 242 535 720
90% completeness 426 676 489 269 177 152 304 555 791
Uncertainty 87 134 101 55 35 29 55 105 168
PCCS2E
Minimumb 189 350 597 939
90% completeness 144 311 557 927
Uncertainty 35 73 144 278

Table 1 Notes a 30-70 GHz: the extragalactic zone is defined by |b| > 30°. For 100-857 GHz the numbers outside of the Galactic region where the reliability cannot be accurately assessed. Note that for the PCCS2E the only sources that occur in this region lie in the filament mask.
b Minimum flux density of the catalogue in the extragalactic zone after excluding the faintest 10% of sources.

-
Table 2: PCCS2 & PCCS2E polarization characteristics for sources with polarized emission significance > 99.99%
Channel 30 44 70 100 143 217 353
Number of significantly polarized sources in PCCS2 122 30 34 20 25 11 1
Minimum polarized flux densitya [mJy] 117 181 284 138 148 166 453
Polarized flux density uncertainty [mJy] 46 88 91 30 26 30 81
Minimum polarized flux density for 90% completeness [mJy] 199 412 397 135 100 136 347
Minimum polarized flux density for 95% completeness [mJy] 251 468 454 160 111 153 399
Minimum polarized flux density for 100% completeness [mJy] 600 700 700 250 147 257 426
Number of significantly polarized sources in PCCS2E 43 111 325 666
Minimum polarized flux densitya [mJy] 121 87 114 348
Polarized flux density uncertainty [mJy] 52 44 55 178
Minimum polarized flux density for 90% completeness [mJy] 410 613 270 567
Minimum polarized flux density for 95% completeness [mJy] 599 893 464 590
Minimum polarized flux density for 100% completeness [mJy] 835 893 786 958

Table 2 Notes

a Minimum polarized flux density of the catalogue of significantly polarized sources after excluding the faintest 10% of sources.

Catalogues[edit]

The PCCS2 catalogues (at each frequency) are contained in the FITS files

COM_PCCS_030_R2.04.fits
COM_PCCS_044_R2.04.fits
COM_PCCS_070_R2.04.fits
COM_PCCS_100_R2.01.fits
COM_PCCS_143_R2.01.fits
COM_PCCS_217_R2.01.fits
COM_PCCS_353_R2.01.fits
COM_PCCS_545_R2.01.fits
COM_PCCS_857_R2.01.fits .

The PCCS2E catalogues are contained in the FITS files

COM_PCCS_100-excluded_R2.01.fits
COM_PCCS_143-excluded_R2.01.fits
COM_PCCS_217-excluded_R2.01.fits
COM_PCCS_353-excluded_R2.01.fits
COM_PCCS_545-excluded_R2.01.fits
COM_PCCS_857-excluded_R2.01.fits

The structure of these files is as follows.

PCCS2/PCCS2E FITS file structure
Extension 0: Primary header, no data
FITS keyword Data type Units Description
INSTRUME String Instrument (LFI / HFI)
VERSION String Version of PCCS (PCCS2 / PCCS2_E)
DATE String Date file created: yyyy-mm-dd
ORIGIN String Name of organization responsible for the data (LFI-DPC / HFI-DPC)
TELESCOP String Telescope (PLANCK)
CREATOR String Pipeline version
DATE-OBS String days Beginning of the survey: yyyy-mm-dd
DATE-END String days End of the survey: yyyy-mm-dd
FWHM Real*4 arcmin FWHM from an elliptical Gaussian fit to the effective beam
OMEGA_B Real*4 arcmin2 Area of the effective beam
FWHM_EFF Real*4 arcmin FWHM computed from OMEGA_B assuming beam is Gaussian
OMEGA_B1 Real*4 arcmin2 Beam area within a radius of 1 × FWHM_EFF
OMEGA_B2 Real*4 arcmin2 Beam area within a radius of 2 × FWHM_EFF
Extension 1: BINTABLE, EXTNAME = PCCS2_fff (where fff is the frequency channel)
Column Name Data type Units Description
Identification
NAME String Source name (see note 1)
Source position
GLON Real*8 deg Galactic longitude based on extraction algorithm
GLAT Real*8 deg Galactic latitude based on extraction algorithm
RA Real*8 deg Right ascension (J2000) transformed from (GLON,GLAT)
DEC Real*8 deg Declination (J2000) transformed from (GLON,GLAT)
Photometry
DETFLUX Real*4 mJy Flux density of source as determined by detection method
DETFLUX_ERR Real*4 mJy Uncertainty (1 σ) in derived flux density from detection method
APERFLUX Real*4 mJy Flux density of source as determined from aperture photometry
APERFLUX_ERR Real*4 mJy Uncertainty (1 σ) in derived flux density from aperture photometry
PSFFLUX Real*4 mJy Flux density of source as determined from PSF fitting
PSFFLUX_ERR Real*4 mJy Uncertainty (1 σ) in derived flux density from PSF fitting
GAUFLUX Real*4 mJy Flux density of source as determined from 2-D Gaussian fitting
GAUFLUX_ERR Real*4 mJy Uncertainty (1 σ) in derived flux density from 2-D Gaussian fitting
GAU_SEMI1 Real*4 arcmin Gaussian fit along axis 1 (FWHM; see note 2 for axis definition)
GAU_SEMI1_ERR Real*4 arcmin Uncertainty (1 σ) in derived Gaussian fit along axis 1
GAU_SEMI2 Real*4 arcmin Gaussian fit along axis 2 (FWHM)
GAU_SEMI2_ERR Real*4 arcmin Uncertainty (1 σ) in derived Gaussian fit along axis 2
GAU_THETA Real*4 deg Gaussian fit orientation angle (see note 2)
GAU_THETA_ERR Real*4 deg Uncertainty (1 σ) in derived Gaussian fit orientation angle
GAU_FWHM_EFF Real*4 arcmin Gaussian fit effective FWHM
Polarization measurements (30-353 GHz only)
P Real*4 mJy Polarization flux density of the sources as determined by a matched filter (see note 3)
P_ERR Real*4 mJy Uncertainty (1 σ) in derived polarization flux density (see note 3)
ANGLE_P Real*4 degrees Orientation of polarization with respect to NGP (see notes 2 and 3)
ANGLE_P_ERR Real*4 degrees Uncertainty (1 σ) in orientation of polarization (see note 3)
APER_P Real*4 mJy Polarization flux density of the sources as determined by aperture photometry (see note 3)
APER_P_ERR Real*4 mJy Uncertainty (1 σ) in derived polarization flux density (see note 3)
APER_ANGLE_P Real*4 degrees Orientation of polarization with respect to NGP (see notes 2 and 3)
APER_ANGLE_P_ERR Real*4 degrees Uncertainty (1 σ) in orientation of polarization (see note 3)
P_UPPER_LIMIT Real*4 mJy Polarization flux density 99.99% upper limit. This is provided only when the P column is set to NULL; otherwise this column itself contains NULL.
APER_P_UPPER_LIMIT Real*4 mJy Polarization flux density 99.99% upper limit. This is provided only when the APER_P column is set to NULL; otherwise this column itself contains NULL.
Marginal polarization measurements (100-353 GHz only) – see note 4
P_STAT Integer*2 Polarization detection status
PX Real*4 mJy Polarization flux density of the sources as determined by a matched filter using a Bayesian polarization estimator
PX_ERR_LOWER Real*4 mJy PX uncertainty; lower 95% error bar
PX_ERR_UPPER Real*4 mJy PX uncertainty; upper 95% error bar
ANGLE_PX Real*4 deg Orientation of polarization with respect to NGP using Bayesian polarization estimator (see note 2)
ANGLE_PX_ERR_LOWER Real*4 deg ANGLE_PX uncertainty; lower 95% error bar
ANGLE_PX_ERR_UPPER Real*4 deg ANGLE_PX uncertainty; upper 95% error bar
Flags and validation
EXTENDED Integer*2 Extended source flag (see note 5)
EXT_VAL Integer*2 External validation flag (see note 6)
ERCSC String Name of the ERCSC counterpart, if any
PCCS String Name of the PCCS counterpart, if any
Flags and validation (PCCS2 only)
HIGHEST_RELIABILITY_CAT Integer*4 See note 7
Flags and validation (PCCS2E, 100-857 GHz only)
WHICH_ZONE Integer*2 See note 8
Flags and validation (217-857 GHz only)
CIRRUS_N Integer*2 Number of sources (S/N > 5) detected at 857 GHz within a 1° radius.
SKY_BRIGHTNESS Real*4 MJy sr-1 The mean 857 GHz brightness within a 2° radius. This may be used as another indicator of cirrus contamination.
Flux densities at other frequencies (857 GHz only)
APERFLUX_217 Real*4 mJy Estimated flux density at 217 GHz
APERFLUX_ERR_217 Real*4 mJy Uncertainty in flux density at 217 GHz
APERFLUX_353 Real*4 mJy Estimated flux density at 353 GHz
APERFLUX_ERR_353 Real*4 mJy Uncertainty in flux density at 353 GHz
APERFLUX_545 Real*4 mJy Estimated flux density at 545 GHz
APERFLUX_ERR_545 Real*4 mJy Uncertainty in flux density at 545 GHz

Notes

  1. Format is PCCS2 fff Glll.ll±bb.bb for sources in the PCCS2 and PCCS2E fff Glll.ll±bb.bb for sources in the PCCS2E, where "fff" is the frequency channel and l and b the position of the source in Galactic coordinates truncated to two decimal places.
  2. We follow the IAU/IEEE convention (Hamaker & Bregman 1996) for defining the angle of polarization of a source in this catalogue, and this convention is also used for the other angles in the catalogue. The angle is measured from the North Galactic Pole in a clockwise direction from -90° to 90°. Note that this is different than the convention used for the CMB maps.
  3. Provided when the significance of the polarization measurement is > 99.99% and set to NULL otherwise.
  4. The P_STAT flag gives the status of the marginal polarization detection. Possible values are:
    3 – bright, the P field filled in and all PX fields set to NULL;
    2 – significant, the P field is set to NULL, 0 is outside the PX 95% HPD, and all PX fields are filled;
    1 – marginal, the P field is set to NULL, 0 is inside the PX 95% HPD (but the mode of the PX posterior distribution is not 0) and all PX fields are filled;
    0 – no detection, the P field is set to NULL, the mode of the PX posterior distribution is 0, PX_ERRL, ANGLE_PX, ANGLE_PX_ERR_LOWER, and ANGLE_PX_ERR_UPPER are set to NULL.
  5. The EXTENDED flag has the value of "0" if the source is compact and the value of "1" if it is extended. The source size is determined by the geometric mean of the Gaussian fit FWHMs, with the criterion for extension being √(GAU_FWHMMAJ * GAU_FWHMIN) > 1.5 times the beam FWHM.
  6. The EXT_VAL flag gives the status of the external validation. Possible values are:
    3 – the source has a clear counterpart in one of the catalogues used as ancillary data;
    2 – the source does not have a clear counterpart in one of the catalogues used as ancillary data, but it has been detected by the internal multi-frequency method;
    1 – the source does not have a clear counterpart in one of the catalogues used as ancillary data and it has not been detected by the internal multi-frequency method, but it has been detected in a previous Planck source catalogue;
    0 – the source does not have a clear counterpart in one of the catalogues used as ancillary data and has not been detected by the internal multi-frequency method.
  7. The HIGHEST_RELIABILTY_CAT column contains the highest reliability catalogue to which the source belongs. As the full catalogue reliability is ≥ 80%, this is the lowest possible value in this column. Where possible this is provided in steps of 1%, otherwise it is in steps of 5%.
  8. The WHICH_ZONE column encodes the zone in which the source lies:
    1 – source lies inside the filament mask;
    2 – source lies inside the Galactic zone;
    3 – sources lies in both the filament mask and Galactic zone.

Zone map[edit]

For each HFI frequency channel there is an associated map that defines where the quantified-reliability (PCCS2) and unquantified-reliability (PCCS2E) zones are on the sky.

The files are called

COM_PCCS_100-zoneMask_R2.01.fits
COM_PCCS_143-zoneMask_R2.01.fits
COM_PCCS_217-zoneMask_R2.01.fits
COM_PCCS_353-zoneMask_R2.01.fits
COM_PCCS_545-zoneMask_R2.01.fits
COM_PCCS_857-zoneMask_R2.01.fits .

The structure of the files is shown in the following table.

Zone map FITS file structure
Extension 0: Primary header, no data
FITS keyword Data type Units Description
DATE String Date of creation of file
Extension 1: BINTABLE, HEALPix map (see note 1)
FITS keyword Data type Value Description
PIXTYPE String HEALPIX HEALPix pixelation
ORDERING String RING Pixel ordering
NSIDE Int*4 2048 HEALPix resolution parameter
NPIX Int*4 50331648 Number of pixels
COORDSYS String G Coordinate system
FREQ_CHL String Frequency channel

Notes

  1. This FITS extension contains an integer HEALPix map, which encodes the information on which of four possible regions on the sky each pixel belongs to:
    0 – quantified-reliability zone (PCCS2);
    1 – filament mask;
    2 – Galactic zone;
    3 – filament mask and Galactic zone.

S/N threshold map[edit]

For each HFI frequency channel there are a number of maps that contains the S/N threshold used to accept sources into the PCCS2 and PCCS2E catalogues.

For the full catalogue (80% reliability in the quantified reliability zone) they are

COM_PCCS_100-SN-threshold_R2.01.fits
COM_PCCS_143-SN-threshold_R2.01.fits
COM_PCCS_217-SN-threshold_R2.01.fits
COM_PCCS_353-SN-threshold_R2.01.fits
COM_PCCS_545-SN-threshold_R2.01.fits
COM_PCCS_857-SN-threshold_R2.01.fits .

For 85% reliability they are

COM_PCCS_100-SN-threshold-85pc-reliability_R2.01.fits
COM_PCCS_143-SN-threshold-85pc-reliability_R2.01.fits
COM_PCCS_217-SN-threshold-85pc-reliability_R2.01.fits
COM_PCCS_353-SN-threshold-85pc-reliability_R2.01.fits
COM_PCCS_545-SN-threshold-85pc-reliability_R2.01.fits
COM_PCCS_857-SN-threshold-85pc-reliability_R2.01.fits .

For 90% reliability they are

COM_PCCS_100-SN-threshold-90pc-reliability_R2.01.fits
COM_PCCS_143-SN-threshold-90pc-reliability_R2.01.fits
COM_PCCS_217-SN-threshold-90pc-reliability_R2.01.fits
COM_PCCS_353-SN-threshold-90pc-reliability_R2.01.fits
COM_PCCS_545-SN-threshold-90pc-reliability_R2.01.fits
COM_PCCS_857-SN-threshold-90pc-reliability_R2.01.fits .

For 95% reliability they are

COM_PCCS_100-SN-threshold-95pc-reliability_R2.01.fits
COM_PCCS_143-SN-threshold-95pc-reliability_R2.01.fits
COM_PCCS_217-SN-threshold-95pc-reliability_R2.01.fits
COM_PCCS_353-SN-threshold-95pc-reliability_R2.01.fits
COM_PCCS_545-SN-threshold-95pc-reliability_R2.01.fits
COM_PCCS_857-SN-threshold-95pc-reliability_R2.01.fits .

The structure of the files is shown in the following table.

Zone map FITS file structure
Extension 0: Primary header, no data
FITS keyword Data type Units Description
DATE String Date of creation of file
Extension 1: BINTABLE, HEALPix map (see note 1)
FITS keyword Data type Value Description
PIXTYPE String HEALPIX HEALPix pixelation
ORDERING String RING Pixel ordering
NSIDE Int*4 2048 HEALPix resolution parameter
NPIX Int*4 50331648 Number of pixels
COORDSYS String G Coordinate system
FREQ_CHL String Frequency channel

Notes

  1. This FITS extension contains a single precision HEALPix map of the S/N threshold applied in the generation of the catalogue at that position on the sky.

Noise map[edit]

For each HFI frequency channel there is an associated map that contains the detection noise as a function of position on the sky.

The files are called

COM_PCCS_100-noise-level_R2.01.fits
COM_PCCS_143-noise-level_R2.01.fits
COM_PCCS_217-noise-level_R2.01.fits
COM_PCCS_353-noise-level_R2.01.fits
COM_PCCS_545-noise-level_R2.01.fits
COM_PCCS_857-noise-level_R2.01.fits .

The structure of the files shown in the following table.

Zone map FITS file structure
Extension 0: Primary header, no data
FITS keyword Data type Units Description
DATE String Date of creation of file
Extension 1: BINTABLE, HEALPix map (see note 1)
FITS keyword Data type Value Description
PIXTYPE String HEALPIX HEALPix pixelation
ORDERING String RING Pixel ordering
NSIDE Int*4 2048 HEALPix resolution parameter
NPIX Int*4 50331648 Number of pixels
COORDSYS String G Coordinate system
FREQ_CHL String Frequency channel

Notes

  1. This FITS extension contains a single precision HEALPix map of the detection noise at each location on the sky, in units of Jy.


Previous releases: (2013) PCCS and (2011) ERCSC[edit]


Second Planck Release (2013): Description of the PCCS

The Catalogue of Compact Sources


Product description

Sky distribution of the PCCS sources at three different channels: 30GHz (pink circles), 143GHz (magenta circles) and 857GHz (green circles). The dimension of the circles is related to the brightness of the sources and the beam size of each channel.

The PCCS is a set of nine single-frequencies lists of sources extracted from the Planck nominal mission data. By definition its reliability is > 80% and a special effort was made to use simple selection procedures in order to facilitate statistical analyses. With a common detection method for all the channels and the additional three photometries, spectral analysis can also be done safely. The deeper completeness levels and, as a consequence, the higher number of sources compared with its predecessor the ERCSC, will allow the extension of previous studies to more sources and to fainter flux densities. The PCCS is the natural evolution of the ERCSC, but both lack polarization and multi-frequency information. Future releases will take advantage of the full mission data and they will contain information on properties of sources not available in this release, such as polarization, multi-frequency and variability.


Table 1: PCCS characteristics
Channel 30 44 70 100 143 217 353 545 857
Frequency [GHz] 28.4 44.1 70.4 100.0 143.0 217.0 353.0 545.0 857.0
Beam FWHM1 [arcmin] 32.38 27.10 13.30 9.88 7.18 4.87 4.65 4.72 4.39
S/N threshold 4.0 4.0 4.0 4.6 4.7 4.8 4.92/6.03 4.7/7.0 4.9/7.0
# of detections 1256 731 939 3850 5675 16070 17689 26472 35719
# of detections for |b| > 30º) 572 258 332 845 1051 1901 2035 4164 7851
Flux density uncertainty [mJy] 109 198 149 61 38 35 74 132 189
Min flux density4 [mJy] 461 825 566 266 169 149 298 479 671
90% completeness [mJ] 575 1047 776 300 190 180 330 570 680
Position uncertainty5 [arcmin] 1.8 2.1 1.4 1.0 0.7 0.7 0.8 0.5 0.4


Notes

  1. The Planck beams are described in Planck-2013-IV[2] and Planck-2013-VII[3]. This table shows the values which were adopted for the PCCS (derived from the effective beams).
  2. In the extragalactic zone (48% of the sky; see Fig. 2 in Planck-2013-XXVIII[4]).
  3. In the Galactic zone (52% of the sky; see Fig. 2 in Planck-2013-XXVIII[4]).
  4. Minimum flux density of the catalogue at |b| > 30º after excluding the 10% faintest sources.
  5. Positional uncertainty derived by comparison with PACO sample ([5][6][7]) up to 353 GHz and with Herschel samples (HRS, KINGFISH, HeViCS, H-ATLAS) in the other channels.

Before using the PCCS, please read the Cautionary Notes in the PCCS general description section. For full details, see paper Planck-2013-XXVIII[4].

Production process

For a description of the production and validation processes of the PCCS see the corresponding section.

Inputs

The data obtained from t